Advertisement

Ocean Colour Remote Sensing in the Laptev Sea

  • Birgit Heim
  • Bennet Juhls
  • Ekaterina Abramova
  • Astrid Bracher
  • Roland Doerffer
  • Rafael Gonçalves-Araujo
  • Sebastian Hellman
  • Alexandra Kraberg
  • Feodor Martynov
  • Paul Overduin
Chapter

Abstract

The Laptev and Eastern Siberian shelves are the world’s broadest shallow shelf systems. Large Siberian rivers and coastal erosion of up to meters per summer deliver large volumes of terrestrial matter into the Arctic shelf seas. In this chapter we investigate the applicability of Ocean Colour Remote Sensing during the ice-free summer season in the Siberian Laptev Sea region. We show that the early summer river peak discharge may be traced using remote sensing in years characterized by early sea-ice retreat. In the summer time after the peak discharge, the spreading of the main Lena River plume east and north-east of the Lena River Delta into the shelf system becomes hardly traceable using optical remote sensing methods. Measurements of suspended particulate matter (SPM) and coloured dissolved organic matter (cDOM) are of the same magnitude in the coastal waters of Buor Khaya Bay as in the Lena River. Match-up analyses of in situ chlorophyll-a (Chl-a) show that standard Medium Resolution Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived Chl-a is not a valid remote sensing product for the coastal waters and the inner shelf region of the Laptev Sea. All MERIS and MODIS-derived Chl-a products are overestimated by at least a factor of ten, probably due to absorption by the extraordinarily high amount of non-algal particles and cDOM in these coastal and inner-shelf waters. Instead, Ocean Colour remote sensing provides information on wide-spread resuspension over shallows and lateral advection visible in satellite-derived turbidity. Satellite Sea Surface Temperature (SST) data clearly show hydrodynamics and delineate the outflow of the Lena River for hundreds of kilometres out into the shelf seas.

Keywords

Ocean colour Laptev Sea Lena Delta Lena River Arctic coastal waters cDOM Chl-a MERIS MODIS 

Notes

Acknowledgements

This work is supported by the German Science Foundation (DFG 4575), the Helmholtz Climate Initiative REKLIM, and the Helmholtz Impulse Fond (HGF Young Investigators Group Phytooptics). RG is funded by a Ph.D. fellowship from CAPES–Brazil in collaboration with the German Academic Exchange Service (DAAD), and a visiting fellowship from the Helmholtz Graduate School for Polar and Marine Research (POLMAR–AWI). The Russian–German marine expeditions are supported and organized by AWI and GEOMAR (DE) and the Arctic and Antarctic Research Institute (AARI, RU). The expeditions are an integral part of joint Russian–German projects funded by the German Federal Ministry for Education and Research and the Russian Ministry of Education and Science. The ESA ENVISAT project (MERIS-ID 5504) provided MERIS data. BEAM-VISAT and SNAP are open-source software initiated by ESA and developed by Brockmann Consult (DE). The C2R processor was developed as a joint effort between the HZG Research Centre, Institute for Coastal Research and Brockmann Consult under ESA contract.

References

  1. Bélanger S, Cizmeli SA, Ehn J, Matsuoka A, Doxaran D, Hooker S, Babin M (2013) Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting. Biogeosciences 10:6433–6452CrossRefGoogle Scholar
  2. Burenkov VI, Ershova SV, Kopelevich OV, Sheberstov SV, Shevchenko VP (2001a) An estimate of the distribution of suspended matter in the Barents Sea waters on the basis of the SeaWiFS satellite ocean color scanner. Oceanology 41(5):622–628Google Scholar
  3. Burenkov VI, Vedernikov VI, Ershova SV, Kopelevich OV, Sheberstov SV (2001b) Use of data from satellite ocean color scanner SeaWiFS for assessment of bio-optical characteristics of the Barents Sea. Oceanology 41(4):461–468Google Scholar
  4. Burenkov VI, Vazyulya SV, Kopelevich OV, Sheberstov SV (2004) Spatio-temporal variability of the suspended matter distribution in the surface layer of the White Sea from the data of the SeaWiFS satellite color scanner. Oceanology 44(4):461–468Google Scholar
  5. Burenkov VI, Goldin YuA, Kravchishina MD (2010) The distribution of the suspended matter concentration in the Kara Sea in September 2007 based on ship and satellite data. Oceanology 50(5):799–806Google Scholar
  6. Charkin AN, Dudarev OV, Semiletov IP, Kruhmalev AV, Vonk JE, Sánchez-García L, Karlsson E, Gustafsson O (2011) Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: the primary recipient of input from Lena River and coastal erosion in the southeast Laptev Sea. Biogeosciences 8:2581–2594CrossRefGoogle Scholar
  7. Cota GF, Wang J, Comiso JC (2004) Transformation of global satellite chlorophyll retrievals with a regionally tuned algorithm. Remote Sens Environ 90:373–377CrossRefGoogle Scholar
  8. Dmitrenko IA, Kirillov SA, Tremblay LB (2008) The long-term and interannual variability of summer freshwater storage over the Eastern Siberian shelf: implication for climate change. J Geophys Res 113:C03007Google Scholar
  9. Doerffer R, Schiller H (2008) MERIS Regional coastal and lake case 2 water project atmospheric correction. GKSS Research Center, Geesthacht, p 42Google Scholar
  10. Doxaran D, Ehn J, Bélanger S, Matsuoka A, Hooker S, Babin M (2012) Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean) and implications for ocean colour remote sensing. Biogeosciences 9:3213–3229CrossRefGoogle Scholar
  11. Eicken H, Reimnitz E, Alexandrov V, Martin T, Kassens H, Viehoff T (1997) Sea-ice processes in the Laptev Sea and their importance for sediment export. Cont Shelf Res 17(2):205–233CrossRefGoogle Scholar
  12. Eicken H, Dmitrenko I, Tyshko K, Darovskikh A, Dierking W, Blahak U, Groves J, Kassens H (2005) Zonation of the Laptev Sea landfast ice cover and its importance in a frozen estuary. Glob Plan Change 48:55–83CrossRefGoogle Scholar
  13. Fedororova I, Chetverova A, Bolshiyanov D, Makarov A, Boike J, Heim B, Morgenstern A, Overduin P, Wegner C, Kashina V, Eulenburg A, Dobrotina E, Sidorina I (2013) Lena Delta hydrology and geochemistry. Biogeosciences 10:20179–20237CrossRefGoogle Scholar
  14. Gavrilov AV, Romanovskii NN, Romanovsky VE, Hubberten HW, Tumskoy VE (2003) Reconstruction of ice complex remnants on the Eastern Siberian Arctic shelf. Permafrost Perigl 14:187–198CrossRefGoogle Scholar
  15. Gonçalves-Araujo R, Stedmon CA, Heim B, Dubinenkov I, Kraberg A, Moiseev D, Bracher A (2015) From fresh to marine waters: characterization and fate of dissolved organic matter in the Lena River Delta region, Siberia. Front Marine Sci 2:108Google Scholar
  16. Günther F, Overduin PP, Sandakov AV, Grosse G, Grigoriev MN (2013) Short-and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 10:4297–4318CrossRefGoogle Scholar
  17. Heim B, Abramova E, Doerffer R, Günther F, Hölemann J, Kraberg A, Lantuit H, Loginova A, Martynov F, Overduin PP, Wegner C (2014) Ocean colour remote sensing in the Southern Laptev Sea: evaluation and applications. Biogeosciences 11(15):4191–4210CrossRefGoogle Scholar
  18. Hessen DO, Carroll JL, Kjeldstad B, Korosov AA, Pettersson LH, Pozdnyakov D, Sørensen K (2010) Input of organic carbon as determinant of nutrient fluxes, light climate and productivity in the Ob and Yenisey estuaries. Estuar Coast Shelf Sci 88:53–66CrossRefGoogle Scholar
  19. Hölemann J, Schirmacher M, Prange A, Kassens H (1999) Geochemistry of surficial and ice-rafted sediments from the Laptev Sea (Siberia). Estuar Coast Shelf Sci 49:45–59CrossRefGoogle Scholar
  20. Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719CrossRefGoogle Scholar
  21. Sathyendranath S (ed) (2000) Remote sensing of ocean colour in coastal, and other optically-complex waters. Reports of the International Ocean-Colour Coordinating Group (IOCG), Dartmouth, Canada 3:140Google Scholar
  22. Janout M, Hölemann J, Juhls B, Krumpen T, Rabe B, Bauch D, Wegner C, Kassens H, Timokhov L (2016) Episodic warming of near-bottom waters under the Arctic Sea ice on the central Laptev Sea shelf. Geophys Res Let 43(1):264–270CrossRefGoogle Scholar
  23. Kraberg AC, Druzhkova E, Heim B, Loeder MJG, Wiltshire KH (2013) Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography. Biogeosciences 10:7263–72777277.  https://doi.org/10.5194/bg-10-7263-2013CrossRefGoogle Scholar
  24. Lantuit H, Atkinson D, Overduin PP, Grigoriev M, Rachold V, Grosse G, Hubberten H-W (2011) Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, North Siberia, 1951–2006. Polar Res 30:7341CrossRefGoogle Scholar
  25. Lantuit H, Overduin PP, Couture N, Wetterich S, Are F, Atkinson D, Brown J, Cherkashov G, Drozdov D, Forbes D, Graves-Gaylord A, Grigoriev M, Hubberten HW, Jordan J, Jorgenson T, Ødegård RS, Ogorodov S, Pollard W, Rachold V, Sedenko S, Solomon S, Steenhuisen F, Streletskaya I, Vasiliev A (2012) The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuar Coast 35(2):383–400CrossRefGoogle Scholar
  26. Lisitsin AP, Shevchenko VP, Burenkov VI (2000) Hydrooptics and suspended matter of Arctic Seas. Atmos Ocean Opt 13:61–71Google Scholar
  27. Matsuoka A, Huot Y, Shimada K, Saitoh S, Babin M (2007) Bio-optical characteristics of the Western Arctic Ocean: implications for ocean color algorithms. Can J Remote Sens 33:503–518CrossRefGoogle Scholar
  28. Matsuoka A, Hooker SB, Bricaud A, Gentili B, Babin M (2013) Estimating absorption coefficients of colored dissolved organic matter (cDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space. Biogeosciences 10:917–927CrossRefGoogle Scholar
  29. Örek H, Doerffer R, Röttgers R, Boersma M, Wiltshire KH (2013) Contribution to a bio-optical model for remote sensing of Lena River water. Biogeosciences 10:7081–7094CrossRefGoogle Scholar
  30. Pozdnyakov DV, Korosov AA, Pettersson LH, Johannessen OM (2005) MODIS evidences the river run-off impact on the Kara Sea trophy. Int J Remote Sensing 26:364–368Google Scholar
  31. Rachold V, Eicken H, Gordeev VV, Grigoriev MN, Hubberten H-W, Lisitzin AP, Shevchenko VP, Schirrmeister L (2004) Modern terrigenous organic carbon input to the Arctic Ocean. In: Stein R, Macdonald RW (eds) Organic carbon cycle in the Arctic Ocean: present and past. Springer, Berlin, pp 33–55CrossRefGoogle Scholar
  32. Schirrmeister L, Siegert Ch, Kunitzky VV, Grootes P, Erlenkeuser H (2002) Late quaternary ice rich permafrost sequences as a palaeoenvironmental archive for the Laptev Sea region in Northern Siberia. Int J Earth S 91:154–167CrossRefGoogle Scholar
  33. Semiletov IP, Shakhova NE, Pipko II, Pugach SP, Charkin AN, Dudarev OV, Kosmach DA, Nishino S (2013) Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea. Biogeosciences 10:5977–5996CrossRefGoogle Scholar
  34. Vetrov EA, Romankevich EA, Belyaev NA (2008) Chlorophyll, primary production, fluxes, and balance of organic carbon in the Laptev Sea. Geochem Int 46:1055–1063CrossRefGoogle Scholar
  35. Vonk JE, Sánchez-García L, van Dongen BE, Alling V, Kosmach D, Charkin A, Semiletov IP, Dudarev OV, Shakhova N, Roos P, Eglinton T, Andersson A, Gustafsson O (2012) Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489:137–140CrossRefGoogle Scholar
  36. Vonk JE, Semiletov IP, Dudarev OV, Eglinton TI, Andersson A, Shakhova N, Charkin A, Heim B, Gustafsson O (2014) Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters. J Geophys Res Oceans 119(12):8410–8421CrossRefGoogle Scholar
  37. Wang J, Cota GF (2003) Remote sensing reflectance in the Beaufort and Chukchi Seas: observations and models. Appl Opt 42:2754–2765CrossRefGoogle Scholar
  38. Wegner C, Hölemann JA, Dmitrenko I, Kirillov SA, Kassens H (2005) Seasonal variations in sediment dynamics on the Laptev Sea shelf (Siberian Arctic). Glob Planet Change 48:126–140CrossRefGoogle Scholar
  39. Wegner C, Bauch D, Hölemann JA, Janout MA, Heim B, Novikin A, Kassens H, Timokhov L (2013) Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer. Biogeosciences 10:1117–1129CrossRefGoogle Scholar
  40. Weingartner TJ, Cavalieri DJ, Aagaard K, Sasaki Y (1998) Circulation, dense water formation, and outflow on the Northeast Chukchi Shelf. J Geophys Res 103:7647–7661CrossRefGoogle Scholar
  41. Winterfeld M, Goñi M, Just J, Hefter J, Mollenhauer G (2015a) Characterization of particulate organic matter in the Lena River delta and adjacent nearshore zone, NE Siberia; Part 2: Lignin-derived phenol compositions. Biogeosciences 12:2261–2283CrossRefGoogle Scholar
  42. Winterfeld M, Laepple T, Mollenhauer G (2015b) Characterization of particulate organic matter in the Lena River delta and adjacent nearshore zone, NE Siberia—Part I: Radiocarbon inventories. Biogeosciences 12(12):3769–3788CrossRefGoogle Scholar
  43. Zsolnay Á, Baigar E, Jimenez E, Steinweg B, Saccomandi F (1999) Differentiating with fluorescence spectroscopy the source of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Birgit Heim
    • 1
  • Bennet Juhls
    • 1
    • 2
    • 3
  • Ekaterina Abramova
    • 4
    • 5
  • Astrid Bracher
    • 1
  • Roland Doerffer
    • 6
  • Rafael Gonçalves-Araujo
    • 1
  • Sebastian Hellman
    • 1
  • Alexandra Kraberg
    • 1
  • Feodor Martynov
    • 5
  • Paul Overduin
    • 1
  1. 1.Alfred Wegener Institute Helmholtz Center for Polar and Marine ResearchPotsdam and BremerhavenGermany
  2. 2.Institute for Space SciencesFreie Universitaet BerlinBerlinGermany
  3. 3.GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
  4. 4.Lena Tiksi ReserveTiksiRussia
  5. 5.Saint Petersburg State UniversitySaint PetersburgRussia
  6. 6.Helmholtz Centre Geesthacht HZG, Institute for Coastal ResearchGeesthachtGermany

Personalised recommendations