Remote Sensing of Phytoplankton Variability in the Arabian/Persian Gulf

  • Igor PolikarpovEmail author
  • Faiza Al-Yamani
  • Maria Saburova


The Arabian/Persian Gulf [hereafter the Gulf (Sheppard et al. (Mar Pollut Bull 60:13–38, 2010) mentioned that fourteen historical variants of the name of the Arabian/Persian Gulf are known. Here the name ‘Gulf’ is used, as is the case in several preceding scientific papers.)] is a marginal sea of the Indian Ocean connected with the Gulf of Oman through the Strait of Hormuz. Remote sensing approaches to the studies of phytoplankton biomass variability within this very productive and hydrographically and optically complex area are reviewed and analyzed. The remote-sensing reflectance of the Gulf surface is significantly affected by bottom reflection due to the Gulf’s shallowness. Another crucial factor is the deposition of aeolian dust transported through the atmosphere from the adjacent deserts. Spatial and temporal variability in phytoplankton biomass estimated as remotely sensed chlorophyll concentrations together with physical factors are analyzed with a special emphasis on high biomass and toxic phytoplankton blooms.


Arabian Gulf Chlorophyll Harmful Algal Blooms Phytoplankton Remote sensing 



We would like to thank Kuwait Institute for Scientific Research (Kuwait) for funding. Authors are grateful to the editorial team, especially to Martin Gade and Vittorio Barale and for their patience support. We greatly appreciate the two anonymous reviewers for their helpful comments and suggestions.


  1. Acker JG, Leptoukh G (2007) Online analysis enhances use of NASA earth science data. EOS Trans Am Geophys Union 88(2):14–17CrossRefGoogle Scholar
  2. Al-Ansari ES, Abdel-Moati MA, Al-Ansi MA et al (2015) Geochemical composition of dust from Qatar peninsula. In: Qatar university life science symposium 2015. Accessed 25 Jan 2017
  3. Al-Azri AR, Piontkovski SA, Al-Hashmi KA et al (2014) Mesoscale and nutrient conditions associated with the massive 2008 Cochlodinium polykrikoides bloom in the Sea of Oman/Arabian Gulf. Estuar Coasts 37:325–338CrossRefGoogle Scholar
  4. Al-Dousari AM, Al-Awadhi J (2012) Dust fallout in northern Kuwait, major sources and characteristics. Kuwait J Sci 39(2A):171–187Google Scholar
  5. Al Gheilani HM, Matsuoka K, AlKindi AY et al (2012) Fish kill incidents and harmful algal blooms in Omani waters. J Agric Mar Sci 16:23–33CrossRefGoogle Scholar
  6. Al-Yamani FY, Bishop J, Ramadhan E et al (2004) Oceanographic atlas of Kuwait’s waters. Kuwait Institute for Scientific Research, KuwaitGoogle Scholar
  7. Al-Yamani F, Saburova M, Polikarpov I (2012) A preliminary assessment of harmful algal blooms in Kuwait’s marine environment. Aquat Ecosyst Health Manag 15(Suppl 1):64–72CrossRefGoogle Scholar
  8. Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176CrossRefGoogle Scholar
  9. Antoine D, André J-M, Morel A (1996) Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem Cycles 10:57–69CrossRefGoogle Scholar
  10. Banzon VF, Gordon HR, Kuchinke CP et al (2009) Validation of a SeaWiFS dust-correction methodology in the Mediterranean Sea: identification of an algorithm-switching criterion. Remote Sens Environ 113:2689–2700CrossRefGoogle Scholar
  11. Blondeau-Patissier D, Gower JFR, Dekker AG et al (2014) A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr 123:123–144CrossRefGoogle Scholar
  12. Chang GC, Gould RW (2006) Comparisons of optical properties of the coastal ocean derived from satellite ocean color and in situ measurements. Opt Express 14:10149–10163CrossRefGoogle Scholar
  13. Chiffings AW (1995) Marine Region II: Arabian Seas. In: Kelleher G, Bleakley C, Wells SM (eds) A global representative system of marine protected areas, vol IV. IUCN. Gland, Switzerland, pp 40–71Google Scholar
  14. Davidson K, Gowen RJ, Harrison PJ et al (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manag 146:206–216CrossRefGoogle Scholar
  15. Dubovik O, Holben BN, Eck TF et al (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide location. J Atmos Sci 59:590–608CrossRefGoogle Scholar
  16. Ghanea M, Moradi M, Kabiri K (2016) A novel method for characterizing harmful algal blooms in the Persian Gulf using MODIS measurements. Adv Space Res 58:1348–1361CrossRefGoogle Scholar
  17. Gower JFR, King S, Borstad GA et al (2005) Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int J Remote Sens 26:2005–2012CrossRefGoogle Scholar
  18. Hamza W, Munawar M (2009) Protecting and managing the Arabian Gulf: past, present and future. Aquat Ecosyst Health Manag 12:429–439CrossRefGoogle Scholar
  19. Hamza W, Enan MR, Al-Hassini H et al (2011) Dust storms over the Arabian Gulf: a possible indicator of climate changes consequences. Aquat Ecosyst Health Manag 14:260–268CrossRefGoogle Scholar
  20. Hamzehei S, Bidokhti AA, Mortazavi MS et al (2013) Red tide monitoring in the Persian Gulf and Gulf of Oman using MODIS sensor data. Tech J Eng Appl Sci 3(12):1100–1107Google Scholar
  21. Heil CA, Glibert PM, Al-Sarawi MA et al (2001) First record of a fish-killing Gymnodinium sp. bloom in Kuwait Bay, Arabian Sea: chronology and potential causes. Mar Ecol Prog Ser 214:15–23CrossRefGoogle Scholar
  22. Hoepffner N, Djavidnia S, Nykjaer L et al (2014) Thermal infrared remote sensing and sea surface temperature of marine and coastal waters around Africa. In: Barale V, Gade M (eds) Remote sensing of the African Seas. Springer, Berlin, pp 55–74Google Scholar
  23. Husar RB, Prospero JM, Stowe LL (1997) Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. J Geophys Res-Atmos 102(D14):16889–16909CrossRefGoogle Scholar
  24. John VC, Coles SL, Abozed AI (1990) Seasonal cycle of temperature, salinity and water masses of the Western Arabian Gulf. Oceanol Acta 13:273–281Google Scholar
  25. Johns WE, Yao F, Olson DB et al (2003) Observations of seasonal exchange through the Straits of Hormuz and the inferred freshwater budgets of the Persian Gulf. J Geophys Res 108(C12):3391CrossRefGoogle Scholar
  26. Jones DA, Price ARG, Al-Yamani F et al (2002) Coastal and marine ecology. In: Khan NY, Munawar M, Price ARG (eds) The Gulf ecosystem: health and sustainability. Backhuys Publishers, Leiden, pp 65–103CrossRefGoogle Scholar
  27. Kwarteng AY, Mozumder C (2016) Monitoring chlorophyll-a and sea surface temperature variations in SE Arabian Gulf and NW Sea of Oman from MODIS Aqua data. In: Proceedings of 37th Asian conference on remote sensing, Colombo, Sri Lanka, 17–21 Oct 2016, p Ab0012Google Scholar
  28. Lunde P (2005) The Seas of Sindbad. Saudi Aramco World 56(4):20–29Google Scholar
  29. Mahowald NM, Baker AR, Bergametti G et al (2005). Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19(4):CB4025Google Scholar
  30. Mallet M, Chami M, Gentili B et al (2009) Impact of sea-surface dust radiative forcing on the oceanic primary production: A 1D modeling approach applied to the West African coastal waters. Geophys Res Lett 36:L15828CrossRefGoogle Scholar
  31. Maritorena S, Morel AY, Gentili B (1994) Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo. Limnol Oceanogr 39(7):1689–1703CrossRefGoogle Scholar
  32. Meskhidze N, Chameides WL, Nenes A (2005) Dust and pollution: a recipe for enhanced ocean fertilization? J Geophys Res-Atmos 110(D3):D03301CrossRefGoogle Scholar
  33. Moradi M, Kabiri K (2012) Red tide detection in the Strait of Hormuz (east of the Persian Gulf) using MODIS fluorescence data. Int J Remote Sens 33:1015–1028CrossRefGoogle Scholar
  34. Nezlin NP, Polikarpov IG, Al-Yamani FY et al (2010) Satellite monitoring of climatic factors regulating phytoplankton variability in the Arabian (Persian) Gulf. J Mar Syst 82:47–60CrossRefGoogle Scholar
  35. Nobileau D, Antoine D (2005) Detection of blue-absorbing aerosols using near infrared and visible (ocean color) remote sensing observations. Remote Sens Environ 95:368–387CrossRefGoogle Scholar
  36. O’Reilly JE, Maritorena S, Mitchell BG et al (1998) Ocean color chlorophyll algorithms for SeaWiFS. J Geophys Res 103(C11):24937–24953CrossRefGoogle Scholar
  37. Olalekan AA, Malik K (2015) Application of Giovanni for rapid assessment of harmful algal blooms in the Arabian Gulf. Arab J Geosci 8(10):8767–8775CrossRefGoogle Scholar
  38. Patra PK, Kumar MD, Mahowald N et al (2007) Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the North Indian Ocean. J Geophys Res 112(C5):C05029CrossRefGoogle Scholar
  39. Polikarpov I, Saburova M, Al-Yamani F (2016) Diversity and distribution of winter phytoplankton in the Arabian Gulf and the Sea of Oman. Cont Shelf Res 199:85–99CrossRefGoogle Scholar
  40. Reynolds RM (1993) Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—results from the Mt. Mitchell expedition. Mar Pollut Bull 27:35–59CrossRefGoogle Scholar
  41. Richlen ML, Morton SL, Jamali EA et al (2010) The catastrophic 2008–2009 red tide in the Arabian Gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9:163–172CrossRefGoogle Scholar
  42. Shanmugam P, Ahn YH (2007) New atmospheric correction technique to retrieve the ocean colour from SeaWiFS imagery in complex coastal waters. J Opt A Pure Appl Opt 9:511–530CrossRefGoogle Scholar
  43. Sharifinia M, Penchah MM, Mahmoudifard A et al (2015) Monthly variability of chlorophyll-a concentration in Persian Gulf using remote sensing techniques. Sains Malaysiana 44(3):387–397CrossRefGoogle Scholar
  44. Sheppard C, Al-Husiani M, Al-Jamali F et al (2010) The Gulf: a young sea in decline. Mar Pollut Bull 60:13–38CrossRefGoogle Scholar
  45. Subba Rao DV, Al-Yamani F (1998) Phytoplankton ecology in the waters between Shatt Al-Arab and Straits of Hormuz, Arabian Gulf: a review. Plankton Biol Ecol 45(2):106–116Google Scholar
  46. Subba Rao DV, Al-Yamani F (1999) Analysis of the relationship between phytoplankton biomass and the euphotic layer off Kuwait. Arab Gulf. Indian J Mar Sci 28(4):416–423Google Scholar
  47. Subba Rao DV, Al-Yamani F, Lennox A et al (1999) Biomass and production characteristics of the first red-tide noticed in Kuwait Bay, Arabian Gulf. J Plankton Res 22(4):805–810Google Scholar
  48. Subba Rao DV, Al-Hassan JM, Al-Yamani F et al (2003) The elusive red tides in the arid zone sea, off Kuwait, the Arabian Gulf. Harmful Algae News 24:10–13Google Scholar
  49. Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction, 2nd edn. Daya Publishing House, New DelhiGoogle Scholar
  50. Xing XG, Zhao DZ, Liu YG et al (2007) An overview of remote sensing of chlorophyll fluorescence. Ocean Sci J 42:49–59CrossRefGoogle Scholar
  51. Zhao J, Ghedira H (2014) Monitoring red tide with satellite imagery and numerical models: a case study in the Arabian Gulf. Mar Pollut Bull 79:305–313CrossRefGoogle Scholar
  52. Zhao J, Temimi M, Ghedira H (2015) Characterization of harmful algal blooms (HABs) in the Arabian Gulf and the Sea of Oman using MERIS fluorescence data. ISPRS J Photogramm Remote Sens 101:125–136CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Igor Polikarpov
    • 1
    Email author
  • Faiza Al-Yamani
    • 1
  • Maria Saburova
    • 1
  1. 1.Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSalmiyaKuwait

Personalised recommendations