Retrieval of Winds and Waves from Synthetic Aperture Radar Imagery

  • Weizeng ShaoEmail author
  • Xiaofeng Li
  • Xiaofeng Yang


Recent developments of winds and waves retrieval from synthetic aperture radar (SAR) are introduced. winds were retrieved using the geophysical model function (GMF) together with polarization ratio (PR) model. An ocean surface wave retrieval algorithm, named Parameterized First-guess Spectrum Method (PFSM), is used to extract wave parameters from X-band TerraSAR-X/TanDEM-X (TS-X/TD-X) and C-band Sentinel-1 (S-1) SAR images over whole ocean, in particular, there are several cases at China seas. This theoretic-based algorithm relies on the first-guess wave spectrum produced by SAR-derived wind speed. More recent, several studies have made an attempt to retrieve significant wave height (SWH) and mean wave period (MWP) based on the cutoff wavelength in azimuth (or satellite flight) direction. A new semi-empirical algorithm for wave parameters retrieval at C-band, which depends on the radar incidence angle, wave propagation angle relative to range direction and azimuthal cutoff wavelength, has been implemented for S-1 SAR images and then validated against moored buoys. Although existing waves retrieval algorithms work for C- and X-band SAR with about 0.6 m error of SWH, the accuracy of retrieval waves is expected to be improved in the future.


Wind Wave Algorithms SAR 



The X-band TS-X/TD-X images are kindly provided by German Aerospace Center (DLR) through several AOs (No. OCE1656 and OCE2256). We appreciated European Space Agency (ESA) provides C-band S-1 SAR images for free via NOAA buoy measurements were accessed via ECMWF reanalysis data were openly accessed via Wave data from the WaveWatch-III model were kindly provided by the professional Institut Francais de Recherche pour Exploitation de la MER (IFREMER) group and the data were collected through the server:


  1. Alpers W, Bruning C (1986) On the relative importance of motion-related contributions to SAR imaging mechanism of ocean surface waves. IEEE Trans Geosci Remote Sens 86:10529–10546Google Scholar
  2. Alpers W, Rufenach C (1979) The effect of orbital motions on synthetic aperture radar imagery of ocean waves. IEEE Trans Antennas Propag 27:685–690CrossRefGoogle Scholar
  3. Alpers W, Ross DB, Rufenach CL (1981) On the detectability of ocean surface waves by real and synthetic radar. J Geophys Res 86:10529–10546CrossRefGoogle Scholar
  4. Chapron B, Johnsen H, Garello R (2001) Wave and wind retrieval from SAR images of the ocean. Ann Telecommun 56:682–699Google Scholar
  5. Grieco G, Lin W, Migliaccio M, Nirchio F, Portabella M (2016) Dependency of the Sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed. Int J Remote Sens 37:5086–5104CrossRefGoogle Scholar
  6. Hasselmann K, Hasselmann S (1991) On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum. J Geophys Res 96:10713–10729CrossRefGoogle Scholar
  7. Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE, Enke K, Ewing JA, Gienapp H, Hasselmann DE, Kruseman P (1973) Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP). Deutches Hydrographisches Institut, Hamburg, GermanyGoogle Scholar
  8. Hasselmann S, Bruning C, Hasselmann K (1996) An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. J Geophys Res 101:6615–6629CrossRefGoogle Scholar
  9. He YJ, Shen H, Perrie W (2006) Remote sensing of ocean waves by polarimetric SAR. J Atmos Oceanic Technol 23:1768CrossRefGoogle Scholar
  10. Hersbach H (2010) Comparison of C-Band scatterometer CMOD5.N equivalent neutral winds with ECMWF. J Atmos Ocean Tech 27:721–736CrossRefGoogle Scholar
  11. Hersbach H, Stoffelen A, Haan SD (2007) An improved C-band scatterometer ocean geophysical model function: CMOD5. J Geophys Res 112:C03006CrossRefGoogle Scholar
  12. Kerbaol V, Chapron B, Vachon PW (1998) Analysis of ERS-1/2 synthetic aperture radar wave mode imagettes. J Geophys Res 115:7833–7846CrossRefGoogle Scholar
  13. Lehner S, Horstmann J (1998) Mesoscale wind measurements using recalibrated ERS SAR images. J Geophys Res 103:7847–7856CrossRefGoogle Scholar
  14. Li XM, Lehner S (2014) Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEM-X Data. IEEE Trans Geosci Remote Sens 52:2928–2939CrossRefGoogle Scholar
  15. Li XF, Pichel WG, He MX, Wu S, Friedman K, Clemente-Colon P, Zhao CF (2002) Observation of hurricane-generated ocean swell refraction at the gulf stream north wall with the RADARSAT-1 synthetic aperture radar. IEEE Trans Geosci Remote Sens 40:2131–2142CrossRefGoogle Scholar
  16. Li XM, Lehner S, Rosenthal W (2010) Investigation of ocean surface wave refraction using TerraSAR-X data. IEEE Trans Geosci Remote Sens 48:830–840CrossRefGoogle Scholar
  17. Li XM, Lehner S, Bruns T (2011) Ocean wave integral parameter measurements using Envisat ASAR wave mode data. IEEE Trans Geosci Remote Sens 49:155–174CrossRefGoogle Scholar
  18. Li XF, Zhang JA, Yang XF, Pichel WG, DeMaria M, Long D, Li ZW (2013) Tropical cyclone morphology from spaceborne synthetic aperture radar. Bull Am Meteorol Soc 94:215CrossRefGoogle Scholar
  19. Lin B, Shao WZ, Li XF, Li H, Du XQ, Ji QY, Cai LN (2017) Development and validation of an ocean wave retrieval algorithm for VV-polarization Sentinel-1 SAR data. Acta Oceanol 36:95–101CrossRefGoogle Scholar
  20. Mastenbroek C, de Valk CF (2000) A semi-parametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. J Geophys Res 105:3497–3516CrossRefGoogle Scholar
  21. Monaldo FM, Beal RC (1998) Comparison of SIR-C SAR wavenumber spectra with WAM model predictions. J Geophys Res 103:18815–18822CrossRefGoogle Scholar
  22. Monaldo FM, Jackson C, Li XF, Pichel WG (2016) Preliminary evaluation of Sentinel-1A wind speed retrievals. IEEE J Sel Topics Appl Earth Observ Remote Sens 9:2638–2642CrossRefGoogle Scholar
  23. Mouche AA, Chapron B (2015) Global C-Band Envisat, RADARSAT-2 and Sentinel-1 SAR measurements in co-polarization and cross-polarization. J Geophys Res 88:3–9Google Scholar
  24. Pleskachevsky AL, Rosenthal W, Lehner S (2016) Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images, ISPRS. J Photogram 119:464–484CrossRefGoogle Scholar
  25. Quilfen Y, Bentamy A, Elfouhaily TM, Katsaros K, Tournadre J (1998) Observation of tropical cyclones by high-resolution scatterometry. J Geophys Res 103:7767–7786CrossRefGoogle Scholar
  26. Ren YZ, He MX, Lehner S (2012) An algorithm for the retrieval of sea surface wind fields using X-band TerraSAR-X data. Int J Remote Sens 33:7310–7336CrossRefGoogle Scholar
  27. Ren L, Yang JS, Zheng G, Wang J (2015) Significant wave height estimation using azimuth cutoff of C-band RADARSAT-2 single-polarization SAR images. Acta Oceanol Sin 12:1–9CrossRefGoogle Scholar
  28. Schulz-Stellenfleth J, Lehner S, Hoja D (2005) A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. J Geophys Res 110:297–314CrossRefGoogle Scholar
  29. Schulz-Stellenfleth J, Konig T, Lehner S (2007) An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J Geophys Res 112:1–14CrossRefGoogle Scholar
  30. Shao WZ, Sun J, Guan CL, Sun ZF (2014) A method for sea surface wind field retrieval from SAR image mode data. J Ocean Univ China 13:198–204CrossRefGoogle Scholar
  31. Shao WZ, Li XF, Sun J (2015) Ocean wave parameters retrieval from TerraSAR-X images validated against buoy measurements and model results. Remote Sens 7:12815–12828CrossRefGoogle Scholar
  32. Shao WZ, Zhang Z, Li XM, Wang WL (2016a) Sea surface wind speed retrieval from TerraSAR-X HH-polarization data using an improved polarization ratio model. IEEE J Sel Topics Appl Earth Observ Remote Sens 9:4991–4997CrossRefGoogle Scholar
  33. Shao WZ, Zhang Z, Li XF, Li H (2016b) Ocean wave parameters retrieval from Sentinel-1 SAR imagery. Remote Sens 8:707–721CrossRefGoogle Scholar
  34. Shao WZ, Wang J, Li XF, Sun J (2017a) An empirical algorithm for wave retrieval from co-polarization X-Band SAR imagery. Remote Sens 9:711–724CrossRefGoogle Scholar
  35. Shao WZ, Shen YX, Sun J (2017b) Preliminary assessment of wind and wave retrieval from Chinese Gaofen-3 SAR imagery. Sensors 17:1705–1718CrossRefGoogle Scholar
  36. Stoffelen A, Anderson D (1997) Scatterometer data interpretation: derivation of the transfer function, CMOD4. J Geophys Res 102:5767–5780CrossRefGoogle Scholar
  37. Stopa JE, Mouche AA (2017) Significant wave heights from Sentinel-1 SAR: validation and applications. J Geophys Res 122:1827–1848CrossRefGoogle Scholar
  38. Stopa JE, Ardhuin F, Collard F, Chapron B (2016) Estimating wave orbital velocities through the azimuth cut-off from space borne satellites. J Geophys Res 120:7616–7634CrossRefGoogle Scholar
  39. Sun J, Guan CL (2006) Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images. Chin J Oceanol Limnol 24:12–20CrossRefGoogle Scholar
  40. Sun J, Kawamura H (2009) Retrieval of surface wave parameters from SAR images and their validation in the coastal seas around Japan. J Oceanogr 65:567–577CrossRefGoogle Scholar
  41. Vachon PW, Krogstad HE, Paterson JS (1994) Airborne and spaceborne synthetic aperture radar observations of ocean waves. Atmos Ocean 32:83–112CrossRefGoogle Scholar
  42. Voorrips C, Makin V, Hasselmann S (1997) Assimilation of wave spectra from pitch-and-roll buoys in a North Sea wave model. J Geophys Res 102:5829–5849CrossRefGoogle Scholar
  43. Wang H, Zhu J, Yang JS (2012) A semi-empirical algorithm for SAR wave height retrieval and its validation using Envisat ASAR wave mode data. Acta Oceanol Sin 31:59–66Google Scholar
  44. Yang XF, Li XF, Pichel W, Li ZW (2011) Comparison of ocean surface winds from ENVISAT ASAR, Metop ASCAT scatterometer, buoy Measurements, and NOGAPS model. IEEE Trans Geosci Remote Sens 49:4743–4750CrossRefGoogle Scholar
  45. Zhang B, Perrie W, He YJ (2011) Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. J Geophys Res 116:1318–1323CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zhejiang Ocean UniversityZhejiangChina
  2. 2.National Oceanic and Atmospheric Administration (NOAA)College ParkUSA
  3. 3.Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingChina

Personalised recommendations