Advertisement

Application of the Spatial Information System of Geocomplexes in Model Territory

  • László Miklós
  • Erika Kočická
  • Zita Izakovičová
  • Dušan Kočický
  • Anna Špinerová
  • Andrea Diviaková
  • Viktória Miklósová
Chapter

Abstract

The chapter presents the application of the geosystem approach to the creation of a proper spatial informational system with respects to the principles described in previous chapters. The application is presented on concrete model territory of the watershed of the Ipel’ river (South Central Slovakia). Those principles were the followings
  • a unified mathematical depiction of the map base, namely in depiction UTM Zone 34N; Gauss–Krüger projection of the cartographic base

  • the spatial projection base is a digital elevation model of DTM relief;

  • the framework for each thematic layer is unified topographic object base. Maps are processed in a uniform format in the ESRI filegeodatabase;

  • the carriers of spatial information are carefully compiled in the system of georeferencing elements, namely:
    • raster—for morphometric parameters of relief;

    • point—hydrological and weather stations;

    • section—sections of rivers and roads;

    • polygon—indicators of other geosystem elements that are displayed in the form of areals, i.e. abiotic, biotic and socio-economic elements and complexes, including elements of land use and buildings in GIS base.

  • contains a purposefully selected set of indicators and values that characterize the primary structure (abiotic complex), secondary structure (biotic complex and land use), as well as the tertiary landscape structure (socio-economic complex), including statistical indicators, which are linked to the village and cadastral area;

  • the system of georeferenced elements and indicators enables permanent updating of values as well as the addition of new variables into the system.

The indicators and their domain values were arranged to a purpose-oriented catalogue that allows a quick and easy access to the database and map content. The catalogue was constructed hierarchically, it is possible to gradually gain an overview of the content by gradually unpacking the various hierarchical levels and layers. These hierarchical levels are
  • element of the geosystem (level of Component);
    • property of element (level of Thematic layer);
      • indicator of property of element (level of Attribute, indicator);
        • dimension of indicator of property of element (level of Dimension);
          • value of indicator of property of the element (level of Value of attribute).

As the result the chapter brings as examples cuts of the electronically produced maps on different indicators.

Keywords

Model territory Information system Catalogue Maps 

References

  1. Collective (2008) Katalóg tried objektov ZB GIS. Úrad geodézie, kartografie a katastra SR, Bratislava, Topografický ústav, Banská Bystrica, pp 229Google Scholar
  2. Conception (2006) Koncepcia tvorby, aktualizácie a správy ZB GIS na roky 2006–2010 (2006) Úrad geodézie, kartografie a katastra SR, BratislavaGoogle Scholar
  3. Kocsis K, Agárdi N, Koczó F, Mezei G A, Nemerkényi Zs, Szabó R (2016) Generalizálás géppel, vagy kézzel? - módszertani összehasonlítás Magyarország Nemzeti Atlasza példáján. In: Pajtókné Tari I, Tóth A (eds) Magyar Földrajzi Napok: Absztraktkötet: VIII. Magyar Földrajzi Konferencia. Budapest: Magyar Földrajzi Társaság, p 103Google Scholar
  4. Maglocký Š (2002) Potenciálna prirodzená vegetácia. In: Miklós L, Hrnčiarová T (eds) Atlas krajiny SR, MŽP SR, SAŽP Banská Bystrica, 1. vydanie, 114–115Google Scholar
  5. Miklós L, Izakovičová Z, Kanka R, Ivanič B, Kočický D, Špinerová A, David S, Piscová V, Štefunková D, Oszlányi J, Ábrahámová A (2011) Geografický informačný systém povodia Ipľa: Katalóg GIS a výber máp. Bratislava: Ústav krajinnej ekológie SAV: Katedra UNESCO, Fakulta ekológie a environmentalistiky, Technická univerzita Zvolen, Esprit Banská Štiavnica, 143 ppGoogle Scholar
  6. Miklós L, Diviaková A, Izakovičová Z (2011) Ekologické siete a územný systém ekologickej stability. Vydavateľstvo TU vo Zvolene, pp 141Google Scholar
  7. Miklós L, Ivanič B, Kočický D (2011) Krajinnoekologická základňa integrovaného manažmentu povodia Ipľa. Digitálna databáza a tematické mapové vrstvy. Projekt HUSK 0801/2.1.2/0162 Vytvorenie jednotného monitoringu na báze priestorového informačného systému v povodí Ipľa. Banská Štiavnica, Esprit, spol. s r. o. (elektronický zdroj)Google Scholar
  8. Miklós L, Németh R, Verrasztó Z (2014) Application of GIS in studying the drainage basin of the Ipoly River. Scientific Annals of the Danube Delta Institute, Tulcea, Romania 20:109–128Google Scholar
  9. Németh R (2016) Társadalom és környezete a geoinformatikus szemével (Social Geographical Challenges and Search for Adequate Answers in EastCentral Europe of the 21st Century, Beregszász/Ukrajne. pp 600–607Google Scholar
  10. Verrasztó Z (2010) Környezeti monitoring vizsgálatok az Ipoly vízgyűjtőjén (Tájökológiai Lapok. Gödöllő 8(3):532–561Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • László Miklós
    • 1
  • Erika Kočická
    • 1
  • Zita Izakovičová
    • 2
  • Dušan Kočický
    • 3
  • Anna Špinerová
    • 1
  • Andrea Diviaková
    • 1
  • Viktória Miklósová
    • 2
  1. 1.UNESCO-Chair for Sustainable DevelopmentTechnical University in ZvolenZvolenSlovakia
  2. 2.Institute of Landscape Ecology SASBratislavaSlovakia
  3. 3.ESPRIT Ltd.Banská ŠtiavnicaSlovakia

Personalised recommendations