Advertisement

The Physics of \({\mathrm{Sr}}_{2}{\mathrm{RuO}}_{4}\) Approaching a Van Hove Singularity

  • Mark Edward Barber
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Materials with strong electron-electron correlations are of particular importance in the study of condensed matter physics as it is here where conventional theories are often seen to be violated and exotic phases such as superconductivity and magnetism emerge.

References

  1. 1.
    Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, J. G., et al. (1994). Superconductivity in a layered perovskite without copper. Nature, 372, 532–534.ADSCrossRefGoogle Scholar
  2. 2.
    Bergemann, C., Mackenzie, A. P., Julian, S. R., Forsythe, D., & Ohmichi, E. (2003). Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Advances in Physics, 52, 639–725.ADSCrossRefGoogle Scholar
  3. 3.
    Forsythe, D., Julian, S. R., Bergemann, C., Pugh, E., Steiner, M. J., Alireza, P. L., et al. (2002). Evolution of Fermi-liquid interactions in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) under pressure. Physical Review Letters, 89, 166402.Google Scholar
  4. 4.
    Kikugawa, N., Bergemann, C., Mackenzie, A. P., & Maeno, Y. (2004). Band-selective modification of the magnetic fluctuations in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): A study of substitution effects. Physical Review, B70, 134520.ADSCrossRefGoogle Scholar
  5. 5.
    Shen, K. M., Kikugawa, N., Bergemann, C., Balicas, L., Baumberger, F., Meevasana, W., et al. (2007). Evolution of the Fermi surface and quasiparticle renormalization through a van Hove singularity in \({\rm Sr}_{2-y}{\rm La}_{y}{\rm RuO}_{4}\). Physical Review Letters, 99, 187001.Google Scholar
  6. 6.
    Burganov, B., Adamo, C., Mulder, A., Uchida, M., King, P. D. C., Harter, J. W., et al. (2016). Strain control of fermiology and many-body interactions in two-dimensional ruthenates. Physical Review Letters, 116, 197003.Google Scholar
  7. 7.
    Hicks, C. W., Brodsky, D. O., Yelland, E. A., Gibbs, A. S., Bruin, J. A. N., Barber, M. E., et al. (2014). Strong increase of \(T_c\) of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) under both tensile and compressive strain. Science, 344, 283–285.ADSCrossRefGoogle Scholar
  8. 8.
    Chmaissem, O., Jorgensen, J. D., Shaked, H., Ikeda, S., & Maeno, Y. (1998). Thermal expansion and compressibility of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 57, 5067–5070.ADSCrossRefGoogle Scholar
  9. 9.
    Mackenzie, A. P., Julian, S. R., Diver, A. J., McMullan, G. J., Ray, M. P., Lonzarich, G. G., et al. (1996). Quantum oscillations in the layered Perovskite superconductor \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 76, 3786–3789.ADSCrossRefGoogle Scholar
  10. 10.
    Damascelli, A., Lu, D. H., Shen, K. M., Armitage, N. P., Ronning, F., Feng, D. L., et al. (2000). Fermi surface, surface states, and surface reconstruction in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 85, 5194–5197.ADSCrossRefGoogle Scholar
  11. 11.
    Bergemann, C., Julian, S. R., Mackenzie, A. P., NishiZaki, S., & Maeno, Y. (2000). Detailed topography of the Fermi surface of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 84, 2662–2665.ADSCrossRefGoogle Scholar
  12. 12.
    Yoshida, Y., Mukai, A., Settai, R., Miyake, K., Inada, Y., Onuki, Y., et al. (1999). Fermi surface properties in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Journal of the Physical Society of Japan, 68, 3041–3053.ADSCrossRefGoogle Scholar
  13. 13.
    Yoshida, Y., Settai, R., Onuki, Y., Takei, H., Betsuyaku, K., & Harima, H. (1998). Fermi surface and Yamaji effect in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Journal of the Physical Society of Japan, 67, 1677–1681.ADSCrossRefGoogle Scholar
  14. 14.
    Ohmichi, E., Adachi, H., Mori, Y., Maeno, Y., Ishiguro, T., & Oguchi, T. (1999). Angle-dependent magnetoresistance oscillation in the layered perovskite \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 59, 7263–7265.ADSCrossRefGoogle Scholar
  15. 15.
    Maeno, Y., Yoshida, K., Hashimoto, H., Nishizaki, S., Ikeda, S.-I., Nohara, M., et al. (1997). Two-dimensional Fermi liquid behavior of the superconductor \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Journal of the Physical Society of Japan, 66, 1405–1408.ADSCrossRefGoogle Scholar
  16. 16.
    Ishida, K., Kitaoka, Y., Asayama, K., Ikeda, S., Nishizaki, S., Maeno, Y., et al. (1997). Anisotropic pairing in superconducting \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): Ru NMR and NQR studies. Physical Review B, 56, R505–R508.ADSCrossRefGoogle Scholar
  17. 17.
    Hussey, N. E., Mackenzie, A. P., Cooper, J. R., Maeno, Y., Nishizaki, S., & Fujita, T. (1998). Normal-state magnetoresistance of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 57, 5505–5511.ADSCrossRefGoogle Scholar
  18. 18.
    Ohmichi, E., Maeno, Y., Nagai, S., Mao, Z. Q., Tanatar, M. A., & Ishiguro, T. (2000). Magnetoresistance of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) under high magnetic fields parallel to the conducting plane. Physical Review B, 61, 7101–7107.ADSCrossRefGoogle Scholar
  19. 19.
    Shoenberg, D. (1984). Magnetic oscillations in metals. (Cambridge University Press). ISBN 9780521224802.Google Scholar
  20. 20.
    Mackenzie, A. P., & Maeno, Y. (2003). The superconductivity of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) and the physics of spin-triplet pairing. Reviews of Modern Physics, 75, 657–712.ADSCrossRefGoogle Scholar
  21. 21.
    Onnes, H. K. (1911). The resistance of pure mercury at helium temperatures. Communications Physics Laboratory University of Leiden, 12, 120.Google Scholar
  22. 22.
    Ginzburg, V. L., & Landau, L. D. (1950). On the theory of superconductivity. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 20, 1064.Google Scholar
  23. 23.
    Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Microscopic theory of superconductivity. Physical Review, 106, 162–164.ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Annett, J. F. (2004). Superconductivity, superfluids and condensates (Oxford University Press). ISBN 9780198507567Google Scholar
  25. 25.
    Blundell, S. J. (2009). Superconductivity: A very short introduction (Oxford University Press). ISBN 9780199540907.Google Scholar
  26. 26.
    Townsend, P., & Sutton, J. (1962). Investigation by electron tunneling of the superconducting energy gaps in Nb, Ta, Sn, and Pb. Physical Review, 128, 591–595.ADSCrossRefGoogle Scholar
  27. 27.
    Mackenzie, A. P., Haselwimmer, R. K. W., Tyler, A. W., Lonzarich, G. G., Mori, Y., Nishizaki, S., et al. (1998). Extremely strong dependence of superconductivity on disorder in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 80, 161–164.ADSCrossRefGoogle Scholar
  28. 28.
    Anderson, P. W. (1959). Knight shift in superconductors. Physical Review Letters, 3, 325–326.ADSCrossRefGoogle Scholar
  29. 29.
    Rice, T. M., & Sigrist, M. (1995). \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): An electronic analogue of \({}^{3}{{\rm He}}\)? Journal of Physics: Condensed Matter, 7, L643–L648.ADSGoogle Scholar
  30. 30.
    Maeno, Y., Kittaka, S., Nomura, T., Yonezawa, S., & Ishida, K. (2012). Evaluation of spin-triplet superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Journal of the Physical Society of Japan, 81, 011009.ADSCrossRefGoogle Scholar
  31. 31.
    Kallin, C. (2012). Chiral p-wave order in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Reports on Progress in Physics, 75, 042501.ADSCrossRefGoogle Scholar
  32. 32.
    Liu, Y., & Mao, Z.-Q. (2015). Unconventional superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physica C: Superconductivity and its Applications, 514, 339–353.ADSCrossRefGoogle Scholar
  33. 33.
    Ishida, K., Mukuda, H., Kitaoka, Y., Asayama, K., Mao, Z. Q., Mori, Y., et al. (1998). Spin-triplet superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) identified by \(^{17}\)O Knight Shift. Nature, 396, 658–660.ADSCrossRefGoogle Scholar
  34. 34.
    Duffy, J. A., Hayden, S. M., Maeno, Y., Mao, Z., Kulda, J., & Mcintyre, G. J. (2000). Polarized-neutron scattering study of the cooper-pair moment in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 85, 5412–5415.ADSCrossRefGoogle Scholar
  35. 35.
    Nelson, K. D., Mao, Z. Q., Maeno, Y., & Liu, Y. (2004). Odd-parity superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Science, 306, 1151–1154.ADSCrossRefGoogle Scholar
  36. 36.
    Sauls, J. A., Zou, Z. & Anderson, P. W. (1985). Josephson tunneling between superconductors with different spin and space symmetries.Google Scholar
  37. 37.
    Geshkenbein, V. B., & Larkin, A. I. (1986). The Josephson effect in superconductors with heavy fermions. JETP Letters, 43, 306–309.Google Scholar
  38. 38.
    Balian, R., & Werthamer, N. R. (1963). Superconductivity with pairs in a relative p wave. Physical Review, 131, 1553–1564.ADSCrossRefGoogle Scholar
  39. 39.
    Luke, G. M., Fudamoto, Y., Kojima, K. M., Larkin, M. I., Nachumi, B., Uemura, Y. J., et al. (2000). Unconventional superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physica B: Condensed Matter, 289–290, 373–376.ADSCrossRefGoogle Scholar
  40. 40.
    Luke, G. M., Fudamoto, Y., Kojima, K. M., Larkin, M. I., Merrin, J., Nachumi, B., et al. (1998). Time-reversal symmetry-breaking superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Nature, 394, 558–561.ADSCrossRefGoogle Scholar
  41. 41.
    Kapitulnik, A., Xia, J., Schemm, E., & Palevski, A. (2009). Polar Kerr effect as probe for time-reversal symmetry breaking in unconventional superconductors. New Journal of Physics, 11, 055060.ADSCrossRefGoogle Scholar
  42. 42.
    Xia, J., Maeno, Y., Beyersdorf, P. T., Fejer, M. M., & Kapitulnik, A. (2006). High resolution Polar Kerr effect measurements of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): Evidence for broken time-reversal symmetry in the superconducting state. Physical Review Letters, 97, 167002.ADSCrossRefGoogle Scholar
  43. 43.
    Tamegai, T., Yamazaki, K., Tokunaga, M., Mao, Z., & Maeno, Y. (2003). Search for spontaneous magnetization in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physica C: Superconductivity, 388–389, 499–500.ADSCrossRefGoogle Scholar
  44. 44.
    Björnsson, P. G., Maeno, Y., Huber, M. E., & Moler, K. A. (2005). Scanning magnetic imaging of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 72, 012504.ADSCrossRefGoogle Scholar
  45. 45.
    Kirtley, J. R., Kallin, C., Hicks, C. W., Kim, E.-A., Liu, Y., Moler, K. A., et al. (2007). Upper limit on spontaneous supercurrents in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 76, 014526.Google Scholar
  46. 46.
    Hicks, C. W., Kirtley, J. R., Lippman, T. M., Koshnick, N. C., Huber, M. E., Maeno, Y., et al. (2010). Limits on superconductivity-related magnetization in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) and \({{\rm PrOs}}_{4}{{\rm Sb}}_{12}\) from scanning SQUID microscopy. Physical Review, B81, 214501.Google Scholar
  47. 47.
    NishiZaki, S., Maeno, Y., & Mao, Z. (2000). Changes in the superconducting state of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) under magnetic fields probed by specific heat. Journal of the Physical Society of Japan, 69, 572–578.ADSCrossRefGoogle Scholar
  48. 48.
    Izawa, K., Takahashi, H., Yamaguchi, H., Matsuda, Y., Suzuki, M., Sasaki, T., et al. (2001). Superconducting gap structure of spin-triplet superconductor \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) studied by thermal conductivity. Physical Review Letters, 86, 2653–2656.ADSCrossRefGoogle Scholar
  49. 49.
    Tanatar, M. A., Nagai, S., Mao, Z. Q., Maeno, Y., & Ishiguro, T. (2001). Thermal conductivity of superconducting \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) in oriented magnetic fields. Physical Review B, 63, 064505.ADSCrossRefGoogle Scholar
  50. 50.
    Tanatar, M. A., Suzuki, M., Nagai, S., Mao, Z. Q., Maeno, Y., & Ishiguro, T. (2001). Anisotropy of magnetothermal conductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 86, 2649–2652.ADSCrossRefGoogle Scholar
  51. 51.
    Ishida, K., Mukuda, H., Kitaoka, Y., Mao, Z., Mori, Y., & Maeno, Y. (2000). Anisotropic superconducting gap in the spin-triplet superconductor \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): Evidence from a Ru-NQR study. Physical Review Letters, 84, 5387–5390.ADSCrossRefGoogle Scholar
  52. 52.
    Bonalde, I., Yanoff, B. D., Salamon, M. B., Van Harlingen, D. J., Chia, E. M. E., Mao, Z. Q., et al. (2000). Temperature dependence of the penetration depth in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): Evidence for nodes in the gap function. Physical Review Letters, 85, 4775–4778.ADSCrossRefGoogle Scholar
  53. 53.
    Hein, M. A., Ormeno, R. J., & Gough, C. E. (2001). The microwave surface impedance of ultra-pure superconducting metals. Journal of Physics: Condensed Matter, 13, L65.ADSGoogle Scholar
  54. 54.
    Lupien, C., Macfarlane, W. A., Proust, C., Taillefer, L., Mao, Z. Q., & Maeno, Y. (2001). Ultrasound attenuation in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): An angle-resolved study of the superconducting gap function. Physical Review Letters, 86, 5986–5989.ADSCrossRefGoogle Scholar
  55. 55.
    Deguchi, K., Tanatar, M. A., Mao, Z., Ishiguro, T., & Maeno, Y. (2002). Superconducting double transition and the upper critical field limit of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) in parallel magnetic fields. Journal of the Physical Society of Japan, 71, 2839–2842.ADSCrossRefGoogle Scholar
  56. 56.
    Morris, R. C., Coleman, R. V., & Bhandari, R. (1972). Superconductivity and magnetoresistance in \({{\rm NbSe}}_{2}\). Physical Review B, 5, 895–901.ADSCrossRefGoogle Scholar
  57. 57.
    Sigrist, M., & Ueda, K. (1991). Phenomenological theory of unconventional superconductivity. Reviews of Modern Physics, 63, 239–311.ADSCrossRefGoogle Scholar
  58. 58.
    Walker, M. B., & Contreras, P. (2002). Theory of elastic properties of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) at the superconducting transition temperature. Physical Review B, 66, 214508.Google Scholar
  59. 59.
    Zutic, I., & Mazin, I. (2005). Phase-sensitive tests of the pairing state symmetry in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 95, 217004.ADSCrossRefGoogle Scholar
  60. 60.
    Leijnse, M., & Flensberg, K. (2012). Introduction to topological superconductivity and Majorana fermions. Semiconductor Science and Technology, 27, 124003.ADSCrossRefGoogle Scholar
  61. 61.
    Beenakker, C. W. J. (2013). Search for Majorana fermions in superconductors. Annual Review of Condensed Matter Physics, 4, 113–136.ADSCrossRefGoogle Scholar
  62. 62.
    Van Hove, L. (1953). The occurrence of singularities in the elastic frequency distribution of a crystal. Physical Review, 89, 1189–1193.ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Ashcroft, N. W. & Mermin, N. D. (1976). Solid state physics (Saunders College Publishing). ISBN 9780030839931.Google Scholar
  64. 64.
    Lifshitz, I. M. (1960). Anomalies of electron characteristics of a metal in the high pressure region. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 38, 1569–1576.Google Scholar
  65. 65.
    Landau, L. D. (1937). On the theory of phase transitions. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 7, 19–32.Google Scholar
  66. 66.
    Wen, X.-G. (2004). Quantum field theory of many-body systems (Oxford University Press). ISBN 9780198530947.Google Scholar
  67. 67.
    Lazarev, B. G., Lazareva, L. S., & Makarov, V. I. (1963). Some singularities of the behavior of the superconducting transition temperature of Thallium under pressure. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 44, 481–482.Google Scholar
  68. 68.
    Makarov, V. I., & Bar’yakhtar, V. G. (1965). Anomalies in the superconducting transition temperature under pressure. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 48, 1717–1722.Google Scholar
  69. 69.
    Holtham, P. M. (1973). A pseudopotential calculation of the effect of pressure on the Fermi surface and superconducting transition temperature of thallium. Journal of Physics F: Metal Physics, 3, 1361–1372.ADSCrossRefGoogle Scholar
  70. 70.
    Chu, C. W., Smith, T. F., & Gardner, W. E. (1970). Study of Fermi-surface topology changes in rhenium and dilute Re solid solutions from \(T_c\) measurements at high pressure. Physical Review B, 1, 214–221.ADSCrossRefGoogle Scholar
  71. 71.
    Struzhkin, V. V., Timofeev, Y. A., Hemley, R. J., & Mao, H.-K. (1997). Superconducting \(T_c\) and electron-phonon coupling in Nb to 132 GPa: Magnetic susceptibility at megabar pressures. Physical Review Letters, 79, 4262–4265.ADSCrossRefGoogle Scholar
  72. 72.
    Benhabib, S., Sacuto, A., Civelli, M., Paul, I., Cazayous, M., Gallais, Y., et al. (2015). Collapse of the normal-state pseudogap at a Lifshitz Transition in the \({{\rm Bi}}_{2}{{\rm Sr}}_{2}{{\rm CaCu}}_{2}{{\rm O}}_{8+\delta }\) cuprate superconductor. Physical Review Letters, 114, 147001.Google Scholar
  73. 73.
    LeBoeuf, D., Doiron-Leyraud, N., Vignolle, B., Sutherland, M., Ramshaw, B. J., Levallois, J., et al. (2011). Lifshitz critical point in the cuprate superconductor \({{\rm YBa}}_{2}{{\rm Cu}}_{3}{{\rm O}}_{y}\) from high-field Hall effect measurements. Physical Review B, 83, 054506.Google Scholar
  74. 74.
    Kikugawa, N., Mackenzie, A. P., Bergemann, C., Borzi, R. A., Grigera, S. A., & Maeno, Y. (2004). Rigid-band shift of the Fermi level in the strongly correlated metal: \({\rm Sr}_{2-y}{\rm La}_{y}{\rm RuO}_{4}\). Physical Review B, 70, 060508.Google Scholar
  75. 75.
    Laugier, J., & Filhol, A. (1983). An interactive program for the interpretation and simulation of Laue patterns. Journal of Applied Crystallography, 16, 281–283.CrossRefGoogle Scholar
  76. 76.
    Paglione, J., Lupien, C., MacFarlane, W. A., Perz, J. M., Taillefer, L., Mao, Z. Q., et al. (2002). Elastic tensor of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 65, 220506.Google Scholar
  77. 77.
    Taniguchi, H., Nishimura, K., Goh, S. K., Yonezawa, S., & Maeno, Y. (2015). Higher-\(T_c\) superconducting phase in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) induced by in-plane uniaxial pressure. Journal of the Physical Society of Japan, 84, 014707.ADSCrossRefGoogle Scholar
  78. 78.
    Ying, Y. A., Staley, N. E., Xin, Y., Sun, K., Cai, X., Fobes, D., et al. (2013). Enhanced spin-triplet superconductivity near dislocations in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Nature Communications, 4, 2596.Google Scholar
  79. 79.
    Steppke, A., Zhao, L., Barber, M. E., Scaffidi, T., Jerzembeck, F., Rosner, H., et al. (2017). Strong peak in \(T_c\) of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) under uniaxial pressure. Science355. http://science.sciencemag.org/content/355/6321/eaaf9398.
  80. 80.
    Liu, Y.-C., Zhang, F.-C., Rice, T. M. & Wang, Q.-H. (2016). Theory of the evolution of superconductivity in\({{\rm Sr}}_{2}{{\rm RuO}}_{4}\)under anisotropic strain. arXiv:1604.06666.
  81. 81.
    Lyard, L., Samuely, P., Szabo, P., Klein, T., Marcenat, C., Paulius, L., et al. (2002). Anisotropy of the upper critical field and critical current in single crystal \({{\rm MgB}}_{2}\). Physical Review B, 66, 180502.Google Scholar
  82. 82.
    Gurevich, A. (2007). Limits of the upper critical field in dirty two-gap superconductors. Physica C: Superconductivity and its Applications, 456, 160–169.ADSCrossRefGoogle Scholar
  83. 83.
    Kittaka, S., Nakamura, T., Aono, Y., Yonezawa, S., Ishida, K., & Maeno, Y. (2009). Angular dependence of the upper critical field of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 80, 174514.Google Scholar
  84. 84.
    Ramires, A., & Sigrist, M. (2016). Identifying detrimental effects for multiorbital superconductivity: Application to \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 94, 104501.ADSCrossRefGoogle Scholar
  85. 85.
    Ramires, A. & Sigrist, M. (2016). A note on the upper critical field of\({{\rm Sr}}_{2}{{\rm RuO}}_{4}\)under strain. arXiv:1606.08709.
  86. 86.
    Maeno, Y., Ando, T., Mori, Y., Ohmichi, E., Ikeda, S., NishiZaki, S., et al. (1998). Enhancement of superconductivity of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) to 3 K by embedded metallic microdomains. Physical Review Letters, 81, 3765–3768.ADSCrossRefGoogle Scholar
  87. 87.
    Yaguchi, H., Wada, M., Akima, T., Maeno, Y., & Ishiguro, T. (2003). Interface superconductivity in the eutectic \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\)-Ru: 3-K phase of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 67, 214519.ADSCrossRefGoogle Scholar
  88. 88.
    Kittaka, S., Nakamura, T., Yaguchi, H., Yonezawa, S., & Maeno, Y. (2009). Spatial development of superconductivity in the \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\)-Ru eutectic system. Journal of the Physical Society of Japan, 78, 064703.ADSCrossRefGoogle Scholar
  89. 89.
    Ying, Y. A., Xin, Y., Clouser, B. W., Hao, E., Staley, N. E., Myers, R. J., et al. (2009). Suppression of proximity effect and the enhancement of p-wave superconductivity in the \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\)-Ru system. Physical Review Letters, 103, 247004.Google Scholar
  90. 90.
    Ford, P. J., & Mydosh, J. A. (1976). Electrical resistivity of noble-metal-host-3d solute spin-glass alloys. Physical Review B, 14, 2057–2070.ADSCrossRefGoogle Scholar
  91. 91.
    Hartnoll, S. A., Mahajan, R., Punk, M., & Sachdev, S. (2014). Transport near the Ising-nematic quantum critical point of metals in two dimensions. Physical Review B, 89, 155130.ADSCrossRefGoogle Scholar
  92. 92.
    Maslov, D. L., Yudson, V. I., & Chubukov, A. V. (2011). Resistivity of a non-galilean-invariant Fermi liquid near Pomeranchuk quantum criticality. Physical Review Letters, 106, 106403.ADSCrossRefGoogle Scholar
  93. 93.
    Pal, H. K., Yudson, V. I., & Maslov, D. L. (2012). Resistivity of non-galilean-invariant Fermi- and non-Fermi liquids. Lithuanian Journal of Physics, 52, 142–164.ADSCrossRefGoogle Scholar
  94. 94.
    Grosche, F. M., Pfleiderer, C., McMullan, G. J., Lonzarich, G. G., & Bernhoeft, N. R. (1995). Critical behaviour of \({{\rm ZrZn}}_{2}\). Physica B: Physics of Condensed Matter, 206–207, 20–22.ADSCrossRefGoogle Scholar
  95. 95.
    Julian, S. R., Pfleiderer, C., Grosche, F. M., Mathur, N. D., McMullan, G. J., Diver, A. J., et al. (1996). The normal states of magnetic d and f transition metals. Journal of Physics: Condensed Matter, 8, 9675.ADSGoogle Scholar
  96. 96.
    Pfleiderer, C., McMullan, G. J., Julian, S. R., & Lonzarich, G. G. (1997). Magnetic quantum phase transition in MnSi under hydrostatic pressure. Physical Review B, 55, 8330–8338.ADSCrossRefGoogle Scholar
  97. 97.
    Pfleiderer, C., Julian, S. R., & Lonzarich, G. G. (2001). Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature, 414, 427–430.ADSCrossRefGoogle Scholar
  98. 98.
    Niklowitz, P. G., Beckers, F., Lonzarich, G. G., Knebel, G., Salce, B., Thomasson, J., et al. (2005). Spin-fluctuation-dominated electrical transport of \({{\rm Ni}}_{3}{{\rm Al}}\) at high pressure. Physical Review B, 72, 024424.Google Scholar
  99. 99.
    Grosche, F. M., Julian, S. R., Mathur, N. D., & Lonzarich, G. G. (1996). Magnetic and superconducting phases of \({{\rm CePd}}_{2}{{\rm Si}}_{2}\). Physica B: Condensed Matter, 223, 50–52.ADSCrossRefGoogle Scholar
  100. 100.
    Grosche, F. M., Walker, I. R., Julian, S. R., Mathur, N. D., Freye, D. M., Steiner, M. J., et al. (2001). Superconductivity on the threshold of magnetism in \({{\rm CePd}}_{2}{{\rm Si}}_{2}\) and \({{\rm CeIn}}_{3}\). Journal of Physics: Condensed Matter, 13, 2845–2860.ADSGoogle Scholar
  101. 101.
    Moroni-Klementowicz, D., Brando, M., Albrecht, C., Duncan, W. J., Grosche, F. M., Grüner, D., et al. (2009). Magnetism in \({{\rm Nb}}_{1-y}{{\rm Fe}}_{2+y}\): Composition and magnetic field dependence. Physical Review B, 79, 224410.Google Scholar
  102. 102.
    Brando, M., Duncan, W. J., Moroni-Klementowicz, D., Albrecht, C., Grüner, D., Ballou, R., et al. (2008). Logarithmic Fermi-liquid breakdown in \({{\rm NbFe}}_{2}\). Physical Review Letters, 101, 026401.Google Scholar
  103. 103.
    Neal, B. P., Ylvisaker, E. R., & Pickett, W. E. (2011). Quantum criticality in \({{\rm NbFe}}_{2}\) induced by zero carrier velocity. Physical Review B, 84, 085133.ADSCrossRefGoogle Scholar
  104. 104.
    Klauder, J. R. & Kunzler, J. E. (1960). Higher order open orbits and the interpretation of magnetoresistance and Hall-effect data for copper. In The Fermi surface (p. 125). New York: Wiley.Google Scholar
  105. 105.
    Pippard, A. B. (1989). Magnetoresistance in metals (Cambridge University Press). ISBN 9780521326605Google Scholar
  106. 106.
    Ong, N. (1991). Geometric interpretation of the weak-field Hall conductivity in two-dimensional metals with arbitrary Fermi surface. Physical Review B, 43, 193–201.ADSCrossRefGoogle Scholar
  107. 107.
    Mackenzie, A. P., Hussey, N. E., Diver, A. J., Julian, S. R., Maeno, Y., Nishizaki, S., et al. (1996). Hall effect in the two-dimensional metal \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 54, 7425–7429.ADSCrossRefGoogle Scholar
  108. 108.
    Kikugawa, N., Mackenzie, A., Bergemann, C., & Maeno, Y. (2004). Low-temperature Hall effect in substituted \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 70, 174501.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations