Uniaxial Stress Technique

  • Mark Edward BarberEmail author
Part of the Springer Theses book series (Springer Theses)


Advances in condensed matter physics come, often, from new material discoveries. The field of superconductivity is one such example, marked by the discovery of each new family of superconductors.


  1. 1.
    Onnes, H. K. (1911). The resistance of pure mercury at helium temperatures. Communications Physics Laboratory University of Leiden, 12, 120.Google Scholar
  2. 2.
    McMillan, W. L. (1968). Transition temperature of strong-coupled superconductors. Physical Review, 167, 331–344.Google Scholar
  3. 3.
    Bednorz, J. G., & Müller, K. A. (1986). Possible High \(T_{c}\) superconductivity in the Ba–La–Cu–O system. Zeitschrift für Physik B: Condensed Matter, 64, 189–193.Google Scholar
  4. 4.
    Schilling, A., Cantoni, M., Guo, J. D., & Ott, H. R. (1993). Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature, 363, 56–58.Google Scholar
  5. 5.
    Steglich, F., Aarts, J., Bredl, C. D., Lieke, W., Meschede, D., Franz, W., et al. (1979). Superconductivity in the presence of strong pauli paramagnetism: \({\rm CeCu}_{2}{\rm S}_{2}\). Physical Review Letters, 43, 1892–1896.Google Scholar
  6. 6.
    Ott, H. R., Rudigier, H., Fisk, Z. & Smith, J. L. (1983). \({\rm UBe}_{13}\): An unconventional actinide superconductor. Physical Review Letters, 50, 1595–1598.Google Scholar
  7. 7.
    Stewart, G. R., Fisk, Z., Willis, J. O., & Smith, J. L. (1984). Possibility of coexistence of bulk superconductivity and spin fluctuations in \({\rm UPt}_{3}\). Physical Review Letters, 52, 679–682.Google Scholar
  8. 8.
    Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., et al. (2006). Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 128, 10012–10013.Google Scholar
  9. 9.
    Kamihara, Y., Watanabe, T., Hirano, M., & Hosono, H. (2008). Iron-based layered superconductor \({\rm La}[{\rm O}_{1-x}{\rm F}_{x}]{\rm FeAs} (x = 0.05 - 0.12)\) with \(T_{c} = 26\;{\text{K}}\). Journal of the American Chemical Society, 130, 3296–3297.Google Scholar
  10. 10.
    Ren, Z.-A., Che, G.-C., Dong, X.-L., Yang, J., Lu, W., Yi, W., et al. (2008). Superconductivity and phase diagram in iron-based arsenic-oxides \({\rm ReFeAsO}_{1-\delta }\) (Re \(=\) rare-earth metal) without fluorine doping. EPL (Europhysics Letters), 83, 17002.Google Scholar
  11. 11.
    Rotter, M., Tegel, M., & Johrendt, D. (2008). Superconductivity at 38 K in the iron arsenide \(({\rm Ba}_{1-x}{\rm K}_{x}){\rm Fe}_{2}{\rm As}_{2}\). Physical Review Letters, 101, 107006.Google Scholar
  12. 12.
    Doiron-Leyraud, N., Proust, C., LeBoeuf, D., Levallois, J., Bonnemaison, J.-B., Liang, R., et al. (2007). Quantum oscillations and the Fermi surface in an underdoped high-\(T_{c}\) superconductor. Nature, 447, 565–568.Google Scholar
  13. 13.
    Yelland, E. A., Singleton, J., Mielke, C. H., Harrison, N., Balakirev, F. F., Dabrowski, B., et al. (2008). Quantum oscillations in the underdoped cuprate \({\rm YBa}_{2}{\rm Cu}_{4}{\rm O}_{8}\). Physical Review Letters, 100, 047003.Google Scholar
  14. 14.
    Bangura, A. F., Fletcher, J. D., Carrington, A., Levallois, J., Nardone, M., Vignolle, B., et al. (2008). Small Fermi surface pockets in underdoped high temperature superconductors: Observation of Shubnikov-de Haas oscillations in \({\rm YBa}_{2}{\rm Cu}_{4}{\rm O}_{8}\). Physical Review Letters, 100, 047004.Google Scholar
  15. 15.
    Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V., & Shylin, S. I. (2015). Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73–76.Google Scholar
  16. 16.
    Hicks, C. W., Brodsky, D. O., Yelland, E. A., Gibbs, A. S., Bruin, J. A. N., Barber, M. E., et al. (2014). Strong increase of \(T_{c}\) of \({\rm Sr}_{2}{\rm RuO}_{4}\) under both tensile and compressive strain. Science, 344, 283–285.Google Scholar
  17. 17.
    Hicks, C. W., Barber, M. E., Edkins, S. D., Brodsky, D. O., & Mackenzie, A. P. (2014). Piezoelectric-based apparatus for strain tuning. The Review of Scientific Instruments, 85, 065003.Google Scholar
  18. 18.
    Reddy, J. N. (2006). An introduction to the finite element method (3rd ed.). McGraw-Hill. ISBN 9780071267618 .Google Scholar
  19. 19.
    Cook, R. D., Malkus, D. S., Plesha, M. E., & Witt, R. J. (2001). Concepts and applications of finite element analysis fourth. Wiley. ISBN 9780471356059.Google Scholar
  20. 20.
    MATLAB 8.5. The MathWorks, Inc. (Natick, Massachusetts, United States).Google Scholar
  21. 21.
    Meingast, C., Kraut, O., Wolf, T., Wühl, H., Erb, A., & Müller-Vogt, G. (1991). Large a–b anisotropy of the expansivity anomaly at \(T_{c}\) in untwinned \({\rm YBa}_{2}{\rm Cu}_{3}{\rm O}_{7-\delta }\). Physical Review Letters, 67, 1634–1637.Google Scholar
  22. 22.
    Kraut, O., Meingast, C., Bräuchle, G., Claus, H., Erb, A., Müller-Vogt, G., et al. (1993). Uniaxial pressure dependence of \(T_{c}\) of untwined \({\rm YBa}_{2}{\rm Cu}_{3}{\rm O}_{x}\) single crystals for \(x=6.5-7\). Physica C: Superconductivity, 205, 139–146.Google Scholar
  23. 23.
    Wijngaarden, R. J., Eenige, E. N. V., Scholtz, J. J., & Griessen, R. (1990). High temperature superconductors under pressure: Experimental review and test on the RVB model. High Pressure Research, 3, 105–107.Google Scholar
  24. 24.
    Küchler, R., Bauer, T., Brando, M., & Steglich, F. (2012). A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction. The Review of Scientific Instruments, 83, 095102.Google Scholar
  25. 25.
    Welp, U., Grimsditch, M., Fleshler, S., Nessler, W., Downey, J., & Crabtree, G. W. (1992). Effect of uniaxial stress on the superconducting transition in \({\rm YBa}_{2}{\rm Cu}_{3}{\rm O}_{7}\). Physical Review Letters, 69, 2130–2133.Google Scholar
  26. 26.
    Takeshita, N., Sasagawa, T., Sugioka, T., Tokura, Y. & Takagi, H. (2004). Gigantic anisotropic uniaxial pressure effect on superconductivity within the \({\rm CuO}_{2}\) plane of \({\rm La}_{1.64}{\rm Eu}_{0.2}{\rm Sr}_{0.16}{\rm CuO}_{4}\): Strain control of stripe criticality. Journal of the Physics Society Japan, 73, 1123–1126.Google Scholar
  27. 27.
    Johnson, S. D., Zieve, R. J. & Cooley, J. C. (2011). Nonlinear effect of uniaxial pressure on superconductivity in \({\rm CeCoIn}_{5}\). Physical Review B, 83, 144510.Google Scholar
  28. 28.
    Dix, O. M., Swartz, A. G., Zieve, R. J., Cooley, J., Sayles, T. R., & Maple, M. B. (2009). Anisotropic dependence of superconductivity on uniaxial pressure in \({\rm CeIrIn}_{5}\). Physical Review Letters, 102, 197001.Google Scholar
  29. 29.
    Arumugam, S., & Mori, N. A. (2000). A simple uniaxial high pressure cell for electrical resistivity measurements. Physica C: Superconductivity, 341, 1559–1560.Google Scholar
  30. 30.
    Jin, D. S., Husmann, A., Rosenbaum, T. F., Steyer, T. E., & Faber, K. T. (1997). Controlled symmetry breaking in superconducting \({\rm UPt}_{3}\). Physical Review Letters, 78, 1775–1778.Google Scholar
  31. 31.
    Aso, N., Uwatoko, Y., Kimura, H., Noda, Y., Yoshida, Y., Ikeda, S.-I., et al. (2005). A uniaxial pressure cell for neutron diffraction investigation and its use in studying the single- crystalline \({\rm Sr}_{3}{\rm Ru}_{2}{\rm O}_{7}\) compound. Journal of Physics: Condensed Matter, 17, S3025.Google Scholar
  32. 32.
    Bourdarot, F., Martin, N., Raymond, S., Regnault, L.-P., Aoki, D., Taufour, V., et al. (2011). Magnetic properties of \({\rm URu}_{2}{\rm Si}_{2}\) under uniaxial stress by neutron scattering. Physical Review B, 84, 184430.Google Scholar
  33. 33.
    Shayegan, M., Karrai, K., Shkolnikov, Y. P., Vakili, K., De Poortere, E. P., & Manus, S. (2003). Low-temperature, in situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator. Applied Physics Letters, 83, 5235–5237.Google Scholar
  34. 34.
    Chu, J. -H., Kuo, H. -H., Analytis, J. G., & Fisher, I. R. (2012). Divergent nematic susceptibility in an iron arsenide superconductor. Science, 337, 710–712.Google Scholar
  35. 35.
    PICMA\(^{\textregistered }\)Stack Multilayer Piezo Actuators (2015). PI Ceramic GmbH.
  36. 36.
    Catalog: Piezoelectric Actuators (2014). PI Ceramic GmbH.
  37. 37.
    Simpson, A. M., & Wolfs, W. (1987). Thermal expansion and piezoelectric response of PZT Channel 5800 for use in low-temperature scanning tunneling microscope designs. Review of Scientific Instruments, 58, 2193–2195.Google Scholar
  38. 38.
    Kuo, H. -H., Shapiro, M. C., Riggs, S. C. & Fisher, I. R. (2013). Measurement of the elastoresistivity coefficients of the underdoped iron arsenide \({\rm Ba}({\rm Fe}_{0.975}{\rm Co}_{0.025})_{2}{\rm As}_{2}\). Physical Review B, 88, 085113.Google Scholar
  39. 39.
    Kuo, H. -H., Chu, J. -H., Palmstrom, J. C., Kivelson, S. A., & Fisher, I. R. (2016). Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science, 352, 958–962.Google Scholar
  40. 40.
    Shapiro, M. C., Hristov, A. T., Palmstrom, J. C., Chu, J. -H., & Fisher, I. R. (2016). Measurement of the \({\rm B}_{1g}\) and \({\rm B}_{2g}\) components of the elastoresistivity tensor for tetragonal materials via transverse resistivity configurations. Review of Scientific Instruments, 87, 063902.Google Scholar
  41. 41.
    Ni, Z. H., Yu, T., Lu, Y. H., Wang, Y. Y., Feng, Y. P., & Shen, Z. X. (2008). Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano, 2, 2301–2305.Google Scholar
  42. 42.
    Guinea, F., Katsnelson, M. I., & Geim, A. K. (2010). Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Physics, 6, 30–33.Google Scholar
  43. 43.
    Locquet, J.-P., Perret, J., Fompeyrine, J., Mächler, E., Seo, J.W., & Van Tendeloo, G. (1998). Doubling the critical temperature of \({\rm La}_{1.9}{\rm Sr}_{0.1}{\rm CuO}_{4}\) using epitaxial strain. Nature, 394, 453–456.Google Scholar
  44. 44.
    Mackenzie, A. P., & Maeno, Y. (2003). The superconductivity of \({\rm Sr}_{2}{\rm RuO}_{4}\) and the physics of spin-triplet pairing. Reviews of Modern Physics, 75, 657–712.Google Scholar
  45. 45.
    Sigrist, M., & Ueda, K. (1991). Phenomenological theory of unconventional superconductivity. Reviews of Modern Physics, 63, 239–311.Google Scholar
  46. 46.
    Walker, M. B., & Contreras, P. (2002). Theory of elastic properties of \({\rm Sr}_{2}{\rm RuO}_{4}\) at the superconducting transition temperature. Physical Review B, 66, 214508.Google Scholar
  47. 47.
    Ekin, J. (2006). Experimental techniques for low-temperature measurements: Cryostat design, material properties and superconductor critical-current testing. Oxford University Press. ISBN 9780198570547.Google Scholar
  48. 48.
    Hicks, C. W. (2013). Private communication.Google Scholar
  49. 49.
    Ojeda, C. E., Oakes, E. J., Hill, J. R., Aldi, D., & Forsberg, G. A. (2011). Temperature effects on adhesive bond strengths and modulus for commonly used spacecraft stuctural adhesives. Technical report, Jet Propulsion Laboratory, Pasadena, CA, USA.
  50. 50.
    Hashimoto, T., & Ikushima, A. (1980). Mechanical properties of Stycast-1266 at low temperatures. Review of Scientific Instruments, 51, 378–379.Google Scholar
  51. 51.
    Paglione, J., Lupien, C., MacFarlane, W. A., Perz, J. M., Taillefer, L., Mao, Z. Q., et al. (2002). Elastic tensor of \({\rm Sr}_{2}{\rm RuO}_{4}\). Physical Review B, 65, 220506.Google Scholar
  52. 52.
    Van de Camp, W., Dhallé, M. M. J., Wessel, W. A. J., Warnet, L., Atli-Veltin, B., van der Putten, S., et al. (2015). Cryogenic fatigue and stress-strain behavior of a fibre metal laminate. Physics Procedia, 67, 1043–1048.Google Scholar
  53. 53.
    Geuzaine, C., & Remacle, J. -F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79, 1309–1331.Google Scholar
  54. 54.
    American Institute of Steel Construction. (2011). Steel construction manual Fourteenth. American Institute of Steel Construction. ISBN 9781564240606.Google Scholar
  55. 55.
    EPO-TEK\(^{\textregistered }\) (2010). H74 technical data sheet. EPOXY TECHNOLOGY, INC.
  56. 56.
    EPO-TEK\(^{\textregistered }\) (2015). H20E technical data sheet. EPOXY TECHNOLOGY, INC.
  57. 57.
    Araldite\(^{\textregistered }\) (2015). Technical data sheet. Huntsman Advanced Materials GmbH.Google Scholar
  58. 58.
    MasterBond\(^{\textregistered }\) (2015). EP29LPSP technical data sheet. Master Bond Inc.Google Scholar
  59. 59.
    Bergemann, C., Mackenzie, A. P., Julian, S. R., Forsythe, D., & Ohmichi, E. (2003). Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor \({\rm Sr}_{2}{\rm RuO}_{4}\). Advances in Physics, 52, 639–725.Google Scholar
  60. 60.
    Lei, M., Sarrao, J. L., Visscher, W. M., Bell, T. M., Thompson, J. D., Migliori, A., et al. (1993). Elastic constants of a monocrystal of superconducting \({\rm YBa}_{2}{\rm Cu}_{3}{\rm O}_{7-\delta }\). Physical Review B, 47, 6154–6156.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations