• Mark Edward BarberEmail author
Part of the Springer Theses book series (Springer Theses)


The interactions between particles in nature can present a bewildering array of exotic states and phenomena, each fascinating in their own right, but also in terms of their potential applications. Condensed matter systems with as many as \(10^{22}\) atoms in a single cubic centimetre are a prime example. Of interest for this thesis are a group of materials in which the interactions between electrons are particularly strong, such that one must consider the behaviour of the electrons as correlated.


  1. 1.
    Yamada, K. (2004). Electron correlation in metals. Cambridge University Press. ISBN 9780521572323.Google Scholar
  2. 2.
    Laughlin, R. B., & Pines, D. (2000). The theory of everything. Proceedings of the National Academy of Sciences, 97, 28–31.Google Scholar
  3. 3.
    Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics. Saunders College Publishing. ISBN 9780030839931.Google Scholar
  4. 4.
    Kittel, C. (2004). Introduction to solid state physics eighth. Wiley. ISBN 9780471415268.Google Scholar
  5. 5.
    Singleton, J. (2001). Band theory and electronic properties of solids. Oxford University Press. ISBN 9780198506447.Google Scholar
  6. 6.
    Bergemann, C., Mackenzie, A. P., Julian, S. R., Forsythe, D., & Ohmichi, E. (2003). Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor \({\rm Sr}_2{\rm RuO}_4\). Advances in Physics, 52, 639–725.Google Scholar
  7. 7.
    Cox, P. A. (2010). Transition metal oxides: An introduction to their electronic structure and properties. Oxford University Press. ISBN 9780199588947.Google Scholar
  8. 8.
    Landau, L. D. (1956). The theory of a Fermi liquid. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 30, 1058–1064.Google Scholar
  9. 9.
    Landau, L. D. (1957). Oscillations in a Fermi liquid. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 32, 59–66.Google Scholar
  10. 10.
    Landau, L. D. (1958). On the theory of the Fermi liquid. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 8, 97–103.Google Scholar
  11. 11.
    Pines, D., & Nozières, P. (1999). The theory of quantum liquids. Westview Press. ISBN 9780738202297.Google Scholar
  12. 12.
    Schofield, A. J. (1999). Non-Fermi liquids. Contemporary Physics, 40, 95–115.Google Scholar
  13. 13.
    Landau, L. D., & Pomeranchuk, I. (1937). On the properties of metals at very low temperatures. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 7, 379.Google Scholar
  14. 14.
    Baber, W. G. (1937). The contribution to the electrical resistance of metals from collisions between electrons. Proceedings of The Royal Society of London A: Mathematical, Physical and Engineering Sciences, 158, 383–396.Google Scholar
  15. 15.
    Frings, P. H., Franse, J. J. M., de Boer, F. R., & Menovsky, A. (1983). Magnetic properties of \(\text{U}_{x}\text{ Pt }_{y}\) compounds. Journal of Magnetism and Magnetic Materials, 31, 240–242.Google Scholar
  16. 16.
    Stewart, G. R., Fisk, Z., Willis, J. O., & Smith, J. L. (1984). Possibility of coexistence of bulk superconductivity and spin fluctuations in \(\text{ UPt }_3\). Physical Review Letters, 52, 679–682.Google Scholar
  17. 17.
    Taillefer, L., & Lonzarich, G. G. (1988). Heavy-fermion quasiparticles in \(\text{ UPt }_3\). Physical Review Letters, 60, 1570–1573.Google Scholar
  18. 18.
    McMullan, G. J., Rourke, P. M. C., Norman, M. R., Huxley, A. D., Doiron-Leyraud, N., Flouquet, J., et al. (2008). The Fermi surface and f-valence electron count of \(\text{ UPt }_3\). New Journal of Physics, 10, 053029.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations