Subterranean Fauna of the Arid Zone

  • Stuart A. HalseEmail author


Subterranean fauna can be divided into two broad groups – stygofauna are aquatic and occur in groundwater, while troglofauna are air-breathing and occur in the unsaturated zone from depths of a metre or so below the ground surface down to the water table. Defining exactly which species are covered by the term subterranean fauna is quite complex, because of the different life histories of many vertebrate and invertebrate species, and the habitat differences between caves and the much more extensive, but less studied underground matrix outside caves. However, a useful starting point for understanding the general characteristics of subterranean species is provided by various schemes that categorise species according to their dependence on the underground environment. These schemes are discussed in detail by Sket (2008), but, in summary, species occurring only in the aphotic zone of caves or deep underground are classified as troglobites or stygobites (Table 1). The terms troglophiles and stygophiles are applied to species found in parts of caves where there is some penetration of light or to species that use surface habitats for one (usually short) part of their life history. Occasionally, troglophilic or stygophilic species may have some surface populations and some wholly subterranean populations. The third category, trogloxenes and stygoxenes, is applied to primarily surface species that regularly make use of caves or underground habitats, often as a refugium during periods of adverse conditions (such as drought) in their usual surface habitat.


  1. Aplin KP (1998) Three new blind snakes (Squamata, Typhlopidae) from north western Australia. Rec West Mus 19:1–12Google Scholar
  2. Asmyhr MG, Cooper SJB (2012) Difficulties barcoding in the dark; the case of crustacean stygofauna from Eastern Australia. Invertebr Syst 26:583–591CrossRefGoogle Scholar
  3. Asmyhr MG, Hose G, Graham P, Stow AJ (2013) Fine-scale genetics of subterranean syncarids. Freshw Biol 59:1–11CrossRefGoogle Scholar
  4. Baehr M, Main D (2016) New genera and species of subterranean anilline Bembidiini from the Pilbara, north-western Australia (Insecta: Coleoptera: Carabidae: Bembidiini: Anillina). Rec West Aust Mus 31:59–89CrossRefGoogle Scholar
  5. Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bergsten J, Bilton DT, Fujisawa T, Elliott M, Monaghan MT, Balke M, Hendrich L, Geijer J, Herrmann J, Foster GN, Ribera I, Nilsson AN, Barraclough TG, Vogler AP (2012) The effect of geographical scale of sampling on DNA barcoding. Syst Biol 61:851–869CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bond JE, Hedin MC, Ramirez MG, Opell BD (2001) Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Mol Ecol 10:899–910CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bradford T, Adams M, Humphreys WF, Austin AD, Cooper SJB (2010) DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Mol Ecol Resour 10:41–50CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bradford TM, Adams M, Guzik MT, Humphreys WF, Austin AD, Cooper SJ (2013) Patterns of population genetic variation in sympatric chiltoniid amphipods within a calcrete aquifer reveal a dynamic subterranean environment. Heredity 111:77–85CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brown L, Finston T, Humphreys G, Eberhard S, Pinder A (2015) Groundwater oligochaetes show complex genetic patterns of distribution in the Pilbara region of Western Australia. Invertebr Syst 29:405–420CrossRefGoogle Scholar
  11. Campos-Filho IS, Araujo PB, Bichuette ME, Trajano E, Taiti S (2014) Terrestrial isopods (Crustacea: Isopoda: Oniscidea) from Brazilian caves. Zool J Linnean Soc 172:360–425CrossRefGoogle Scholar
  12. Car CA, Short M, Huynh C, Harvey MS (2013) The millipedes of Barrow Island, Western Australia (Diplopoda). Rec West Aust Mus Suppl 83:209–219CrossRefGoogle Scholar
  13. Cho J-L (2005) A primitive representative of the Parabathynellidae (Bathynellacea, Syncarida) from the Yilgarn Craton of Western Australia. J Nat Hist 39:3422–3433Google Scholar
  14. Cho J-L, Humphreys WF (2010) Ten new species of the genus Brevisomabathynella Cho, Park and Ranga Reddy, 2006 (Malacostraca, Bathynellacea, Parabathynellidae) from Western Australia. J Nat Hist 44:993–1079CrossRefGoogle Scholar
  15. Cooper SJB, Hinze S, Leys R, Watts CHS, Humphreys WF (2002) Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from Central Western Australia. Invertebr Syst 16:589–598CrossRefGoogle Scholar
  16. Cooper SJB, Bradbury JH, Saint KM, Leys R, Austin AD, Humphreys WF (2007) Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from Central Western Australia. Mol Ecol 16:1533–1544CrossRefPubMedGoogle Scholar
  17. Cooper SJB, Harvey MS, Saint KM, Main BY (2011) Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: evidence for long-term refugia within refugia. Mol Ecol 20:3219–3236CrossRefPubMedPubMedCentralGoogle Scholar
  18. Creuzé d, Châtelliers M, Juget J, Lafont M, Martin P (2009) Subterranean aquatic Oligochaeta. Freshw Biol 54:678–690CrossRefGoogle Scholar
  19. Culver DC, ad Pipan T (2008) Superficial subterranean habitats – gateway to the subterranean realm? Cave Karst Sci 5:5–12Google Scholar
  20. Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 6:11–17Google Scholar
  21. Culver DC, Trontelj P, Zagmajster M, Pipan T (2013) Paving the way for standardized and comparable biodiversity studies. Subterranean Biol 10:43–50CrossRefGoogle Scholar
  22. Danielopol DL, Griebler C, Gunatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosystems. Environ Conserv 30:104–130CrossRefGoogle Scholar
  23. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dogramaci S, Skrzypek G, Dodson W, Grierson PF (2012) Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia. J Hydrol 475:281–293CrossRefGoogle Scholar
  25. Dole-Olivier M-J, Malard F, Martin D, Lefébure T, Gibert J (2009) Relationships between environmental variables and groundwater biodiversity at the regional scale. Freshw Biol 54:797–813CrossRefGoogle Scholar
  26. Eberhard S (2003) Nowranie Caves and the Camooweal Karst Area, Queensland: hydrology, geomorphology and speleogenesis, with notes on aquatic biota. Helicitite 38:27–38Google Scholar
  27. Eberhard SM, Halse SA, Humphreys WF (2005) Stygofauna in the Pilbara region, north-west Western Australia: a review. J R Soc West Aust 88:167–176Google Scholar
  28. Eberhard SM, Halse SA, Williams MR, Scanlon MD, Cocking JS, Barron HJ (2009) Exploring the relationship between sampling efficiency and short range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshw Biol 54:885–901CrossRefGoogle Scholar
  29. Eberhard SM, Watts CHS, Callan SK, Leijs R (2016) Three new subterranean diving beetles (Coleoptera: Dytiscidae) from the Yeelirrie groundwater calcretes, Western Australia, and their distribution between several calcrete deposits including a potential mine site. Rec West Aust Mus 31:27–40CrossRefGoogle Scholar
  30. Eco Logical (2015) Bylong coal project environmental impact statement: stygofauna impact assessment. Prepared for Hansen Bailey. Ecological Australia, Sutherland, NSWGoogle Scholar
  31. EPA (1997) Extensions to exmouth water supply borefield. Bulletin 843. Environmental Protection Authority, PerthGoogle Scholar
  32. EPA (1998) Newman satellite development; mining of Orebody 23 below the water table. Bulletin 888. Environmental Protection Authority, PerthGoogle Scholar
  33. EPA (2002) Iron ore mine, downstream processing (direct-reduced and hot-briquetted iron) and port, Cape Preston, WA. Bulletin 1056. Environmental Protection Authority, PerthGoogle Scholar
  34. EPA (2006) Gorgon gas development, Barrow Island Nature Reserve. Bulletin 1221. Environmental Protection Authority, PerthGoogle Scholar
  35. EPA (2007) Mesa A/Warramboo iron ore project. Bulletin 1251. Environmental Protection Authority, PerthGoogle Scholar
  36. EPA (2015) Increase in abstraction and reinjection at Cloubreak mine. Report 1547. Environmental Protection Authority, PerthGoogle Scholar
  37. EPA (2016a) Yeelirrie uranium project. Report 1574. Environmental Protection Authority, PerthGoogle Scholar
  38. EPA (2016b) Environmental factor guideline: subterranean fauna. Environmental Protection Authority, PerthGoogle Scholar
  39. Erickson TE, Merritt DJ (2016) Introduction to plant diversity of the Pilbara. In: Erickson TE, Barrett RL, Merritt DJ, Dixon KW (eds) Pilbara seed atlas and field guide: plant restoration in Australia’s arid northwest. CSIRO, Melbourne, pp 1–5Google Scholar
  40. Ferguson JWH (2002) On the use of genetic divergence for identifying species. Biol J Linn Soc 75:509–516CrossRefGoogle Scholar
  41. Finston TL, Bradbury JH, Johnson MS, Knott B (2004) When morphology and molecular markers conflict: a case history of subterranean amphipods from the Pilbara, Western Australia. Anim Biodivers Conserv 27:83–94Google Scholar
  42. Finston TL, Johnson MS, Humphreys WF, Eberhard SM, Halse SA (2007) Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Mol Ecol 16:355–365CrossRefPubMedGoogle Scholar
  43. Finston TL, Johnson MS, Eberhard SE, Cocking JS, McRae JM, Halse SA, Knott B (2011) New genus and species of groundwater paramelitid amphipods from the Pilbara, Western Australia: a combined molecular and morphological approach. Rec West Aust Mus 26:154–178CrossRefGoogle Scholar
  44. Galassi DMP, Huys R, Reid JW (2009) Diversity, ecology and evolution of groundwater copepods. Freshw Biol 54:691–708CrossRefGoogle Scholar
  45. Goonan P, Jenkins C, Hill R, Klainig T (2015) Subsurface groundwater ecosystems: a briefing report on the current knowledge, monitoring considerations and future plans for South Australia. Environment Protection Authority, AdelaideGoogle Scholar
  46. Greenslade P (2002) Systematic composition and distribution of Australian cave collembolan faunas with notes on exotic taxa. Helicite 38:11–15Google Scholar
  47. Griebler C, Avramov M (2015) Groundwater ecosystem services: a review. Freshw Sci 34:355–367CrossRefGoogle Scholar
  48. Grimes KG (1988) The Barkly karst region, north-west Queensland. In: Pearson L (ed) 17th biennial conference of the Australian Speleological Federation, TROPICON, Lake Tinaroo, Cairns. Australian Speleological Federation, pp 16–24Google Scholar
  49. Guzik MT, Abrams KM, Cooper SJB, Humphreys WF, Cho J-L, Austin AD (2008) Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebr Syst 22:205–216CrossRefGoogle Scholar
  50. Guzik MT, Cooper SJB, Humphreys WF, Austin AD (2009) Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Mol Ecol 18:3683–3698CrossRefPubMedGoogle Scholar
  51. Guzik MT, Austin AD, Cooper SJB, Harvey MS, Humphreys WF, Bradford T, Eberhard SM, King RA, Leys R, Muirhead KA, Tomlinson M (2010) Is the Australian subterranean fauna uniquely diverse? Invertebr Syst 24:407–418CrossRefGoogle Scholar
  52. Hahn HJ, Fuchs A (2009) Distribution patterns of groundwater communities across aquifer types in south-western Germany. Freshw Biol 54:848–860CrossRefGoogle Scholar
  53. Halse SA (2015) Subterranean biodiversity in the Pilbara provides difficulties for environmental assessment. In: Abstracts, invertebrate biodiversity and conservation conference 2015, Fremantle. Society of Australian Systematic Biologists and Western Australian Museum, p 12Google Scholar
  54. Halse SA, Pearson GB (2014) Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterranean Biol 13:17–34CrossRefGoogle Scholar
  55. Halse SA, Scanlon MD, Cocking JS (2002) Do springs provide a window to the groundwater fauna of the Australian arid zone? In: Yinfoo D (ed) Balancing the groundwater budget: proceedings of an international groundwater conference, Darwin 2002. International Association of Hydrogeologists, pp 1–12Google Scholar
  56. Halse SA, Scanlon MD, Cocking JS, Barron HJ, Richardson JB, Eberhard SM (2014) Pilbara stygofauna: deep groundwater of an arid landscape contains globally significant radiation of biodiversity. Rec West Aust Mus Suppl 78:443–483CrossRefGoogle Scholar
  57. Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13:98–111CrossRefGoogle Scholar
  58. Harms D, Halse S, McRae J, Scanlon M, Curran M (2016) Biodiversity in complex subterranean systems: a tale of arachnids in arid Western Australia. In: Abstracts, international conference on subterranean biology 2016, Fayetteville, Arkansas. International Society for Subterranean Biology, p 36Google Scholar
  59. Harvey MS (2001) New cave-dwelling schizomids (Schizomida: Hubbardiidae) from Australia. Rec West Aust Mus Suppl 64:171–185CrossRefGoogle Scholar
  60. Harvey MS, Berry O, Edward KL, Humphreys G (2008) Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia. Invertebr Syst 22:167–194CrossRefGoogle Scholar
  61. Hoch H (1993) A new troglobitic plant hopper species (Hemiptera: Fulgoroidea: Meenoplidae) from Western Australia. Rec West Aust Mus 16:393–398Google Scholar
  62. Hose GC, Fryirs KA, Bailey J, Ashby N, White T, Stumpp C (2017) Different depths, different fauna: habitat influences on 1 the distribution of groundwater invertebrates. Hydrobiologia 791:145–157CrossRefGoogle Scholar
  63. Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389CrossRefGoogle Scholar
  64. Humphreys WF (1999) Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages. In: Ponder W, Lunney D (eds) The other 99%: the conservation and biodiversity on invertebrates. Royal Zoological Society of New South Wales, Sydney, pp 219–227CrossRefGoogle Scholar
  65. Humphreys WF (2001) Groundwater calcrete aquifers in the Australian arid zone: the context of an unfolding plethora of stygal biodiversity. Rec West Aust Mus Suppl 64:63–83CrossRefGoogle Scholar
  66. Humphreys WF (2008) Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebr Syst 22:85–101CrossRefGoogle Scholar
  67. Humphreys WF (2009) Hydrogeology and groundwater ecology: does each inform the other? Hydrogeol J 17:5–21CrossRefGoogle Scholar
  68. Humphreys WF (2016) Australasian subterranean biogeography. In: Ebach MC (ed) Handbook of Australasian biogeography. CRC Press, Baca Raton, pp 269–293Google Scholar
  69. Humphreys WF, Watts CHS, Cooper SJB, Leijs R (2009) Groundwater estuaries of salt lakes: buried pools of endemic biodiversity on the western plateau, Australia. Hydrobiologia 626:79–95CrossRefGoogle Scholar
  70. Javidkar M, Cooper SJB, King RA, Humphreys WF, Bertozzi T, Stevens MI, Austin AD (2016) Molecular systematics and biodiversity of oniscidean isopods in the groundwater calcretes of central Western Australia. Mol Phylogenet Evol 104:83–98CrossRefPubMedPubMedCentralGoogle Scholar
  71. Juberthie C (1983) Le milieu souterrain: étendu et compositon. Mémoires de Biospéologie 10:17–65Google Scholar
  72. Karanovic I (2007) Candoninae (Ostracoda) from the Pilbara region in Western Australia. Crustaceana Monogr 7:1–432Google Scholar
  73. Karanovic T, Cooper SJB (2011) Molecular and morphological evidence for short range endemism in the Kinnecaris solitaria complex (Copepoda: Parastenocarididae), with descriptions of seven new species. Zootaxa 3026:1–64Google Scholar
  74. Karanovic T, Cooper SJB (2012) Explosive radiation of the genus Schizopera on a small subterranean island in Western Australia (Copepoda : Harpacticoida): unravelling the cases of cryptic speciation, size differentiation and multiple invasions. Invertebr Syst 26:115–192CrossRefGoogle Scholar
  75. Karanovic T, Eberhard SM, Perina G, Callan S (2013) Two new subterranean ameirids (Crustacea : Copepoda : Harpacticoida) expose weaknesses in the conservation of short-range endemics threatened by mining developments in Western Australia. Invertebr Syst 27:540–566CrossRefGoogle Scholar
  76. Karanovic T, Djurakic M, Eberhard SM (2015) Cryptic species or inadequate taxonomy? Implementation of 2D geometric morphometrics based on integumental organs as landmarks for delimitation and description of copepod taxa. Syst Biol 65:304–327CrossRefPubMedPubMedCentralGoogle Scholar
  77. King RA, Bradford T, Austin AD, Humphreys WF, Cooper SJB (2012) Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. J Crustac Biol 32:465–488CrossRefGoogle Scholar
  78. Knott B, Halse SA (1999) Pilbarophreatoicus platyarthricus n.gen., n.sp. (Isopoda: Phreatoicidae: Amphisopodidae) from the Pilbara region of Western Australia. Rec Aust Mus 51:33–42CrossRefGoogle Scholar
  79. Korbel KL, Hose GC (2011) A tiered framework for assessing groundwater ecosystem health. Hydrobiologia 661:329–349CrossRefGoogle Scholar
  80. Kováč Ľ, Parimuchová A, Miklisová D (2016) Distributional patterns of cave Collembola (Hexapoda) in association with habitat conditions, geography and subterranean refugia in the Western Carpathians. Biol J Linn Soc 119:571–592CrossRefGoogle Scholar
  81. Larson HK, Foster R, Humphreys WF, Stevens MI (2013) A new species of the blind cave gudgeon Milyeringa (Pisces: Gobioidei, Eleotridae) from Barrow Island, Western Australia, with a redescription of M. veritas Whitley. Zootaxa 3616:135–150CrossRefPubMedPubMedCentralGoogle Scholar
  82. Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42(Suppl 1):S3–S15CrossRefGoogle Scholar
  83. Leys R, Watts CHS, Cooper SJB, Humphreys WF (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae, Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834PubMedGoogle Scholar
  84. Mammola S, Giachino PM, Piano E, Jones A, Barberis M, Badino G, Isaia M (2016) Ecology and sampling techniques of an understudied subterranean habitat: the milieu souterrain superficiel (MSS). Sci Nat 103:1–24CrossRefGoogle Scholar
  85. Maurice L, Bloomfield J (2012) Stygobitic invertebrates in groundwater – a review from a hydrogeological perspective. Fr Rev 5:51–71Google Scholar
  86. Monjaraz-Ruedas R (2013) A new species of Protoschizomus (Schizomida: Protoschizomidae) from a cave in Guerrero, Mexico. J Arachnol 41:420–424CrossRefGoogle Scholar
  87. Moulds T, Bannink P (2012) Preliminary notes on the cavernicolous arthropod fauna of Judbarra/Gregory karst area, northern Australia. Helictite 41:75–85Google Scholar
  88. Nevill JC, Hancock PJ, Murray BR, Ponder WF, Humphreys WF, Phillips ML, Groom PK (2010) Groundwater-dependent ecosystems and the dangers of groundwater overdraft: a review and an Australian perspective. Pac Conserv Biol 16:187–208CrossRefGoogle Scholar
  89. Niemiller ML, Zigler KS (2013) Patterns of cave biodiversity and endemism in the Appalachians and interior plateau of Tennessee, USA. PLoS One 8:e64177CrossRefPubMedPubMedCentralGoogle Scholar
  90. Ornelas-Garcia CP, Dominguez-Dominguez O, Doadrio I (2008) Evolutionary history of the fish genus Astyanax Baird & Girard (1854) (Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies. BMC Evol Biol 8:340. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Ortuño VM, Gilgado JD, Jiménez-Valverde A, Sendra A, Pérez-Suárez G, Herrero-Borgoñón JJ (2013) The “alluvial mesovoid shallow substratum”, a new subterranean habitat. PLoS One 8:e76311CrossRefPubMedPubMedCentralGoogle Scholar
  92. Outback Ecology (2012) Lake Maitland uranium project: stygofauna assessment. Outback Ecology Services, JolimontGoogle Scholar
  93. Perina G, Camacho AI, Huey J, Horwitz P, Koenders A (2018) Understanding subterranean variability: the first genus of Bathynellidae (Bathynellacea, Crustacea) from Western Australia described through a morphological and multigene approach. Invertebr Syst 32:423–447CrossRefGoogle Scholar
  94. Pesce GL, de Laurentiis P, Humphreys WF (1996) Copepods from ground waters of Western Australia. I. The genera Metacyclops, Mesocyclops, Microcyclops and Apocyclops (Crustacea: Copepoda: Cyclopidae). Rec West Aust Mus 18:67–76Google Scholar
  95. Pinder AM (2008) Phreodrilidae (Clitellata: Annelida) in north-western Australia with descriptions of two new species. Rec West Aust Mus 24:459–468CrossRefGoogle Scholar
  96. Pinder AM, Halse SA, McRae JM, Shiel RJ (2005) Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity. Hydrobiologia 543:1–24CrossRefGoogle Scholar
  97. Pinder AM, Halse SA, Shiel RJ, McRae JM (2010) An arid zone awash with diversity: patterns in the distribution of aquatic invertebrates in the Pilbara region of Western Australia. Rec West Aust Mus Suppl 78:205–246CrossRefGoogle Scholar
  98. Reboleira ASPS, Goncalves F, Oromi P (2013) Literature survey, bibliographic analysis and a taxonomic catalogue of subterranean fauna from Portugal. Subterranean Biol 10:51–60CrossRefGoogle Scholar
  99. Reeves JM, De Deckker P, Halse SA (2007) Groundwater ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585:99–118CrossRefGoogle Scholar
  100. Richards AM (1971) An ecological study of the cavernicolous fauna of the Nullarbor Plain Southern Australia. J Zool 164:1–60CrossRefGoogle Scholar
  101. Ross HA, Murugan S, Li WLS (2008) Testing the reliability of genetic methods of species identification via simulation. Syst Biol 57:216–230CrossRefPubMedPubMedCentralGoogle Scholar
  102. Roth LM (1991) A new cave-dwelling cockroach from Western Australia (Blattaria: Nocticolidae). Rec West Aust Mus 15:17–21Google Scholar
  103. Schön I, Martens K, Halse S (2010) Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae) – little variability down-under. Hydrobiologia 641:59–70CrossRefGoogle Scholar
  104. Silva M, Martins R, Ferreira R (2011) Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic rain forest. Biodivers Conserv 20:1713–1729CrossRefGoogle Scholar
  105. Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563CrossRefGoogle Scholar
  106. Sket B, Paragamian K, Tontelj P (2004) A census of the obligate subterranean fauna of the Balkan Peninsula. In: Griffith HI (ed) Balkan biodiversity. Kluwer Academic, Dordrecht, pp 309–322CrossRefGoogle Scholar
  107. Sorensen JPR, Maurice L, Edwards FK, Lapworth DJ, Read DS, Allen D, Butcher AS, Newbold LK, Townsend BR, Williams PJ (2013) Using boreholes as windows into groundwater ecosystems. PLoS ONE 8:e70264CrossRefPubMedPubMedCentralGoogle Scholar
  108. Steube C, Richter S, Griebler C (2009) First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeol J 17:23–35CrossRefGoogle Scholar
  109. Taiti S (2014) New subterranean Armadillidae (Crustacea, Isopoda, Oniscidea) from Western Australia. Trop Zool 27:153–164CrossRefGoogle Scholar
  110. Trajano E, Bichuette ME (2010) Diversity of Brazilian subterranean invertebrates, with a list of troglomorphic taxa. Subterranean Biol 7:1–16Google Scholar
  111. Trontelj P, Douady CJ, Fišer C, Gibert J, Gorički Š, Lefébure T, Sket B, Zakšek V (2009) A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744CrossRefGoogle Scholar
  112. Trotter AJ, McRae JM, Main DC, Finston TL (2017) Speciation in fractured rock landforms: towards understanding the diversity of subterranean cockroaches (Dictyoptera: Nocticolidae: Nocticola) in Western Australia. Zootaxa 4232:361–375CrossRefGoogle Scholar
  113. Vandel A (1965) Biospeleology: the biology of cavernicolous animals. Pergamon Press, LondonGoogle Scholar
  114. Watts CHS, Humphreys WF (2006) Twenty-six new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot and Nirripirti Watts and Humphreys, from underground waters in Australia. Trans R Soc Aust 130:123–185Google Scholar
  115. Watts CHS, Humphreys WF (2009) Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp, and Exocelina Broun from underground waters in Australia. Trans R Soc S Aust 133:62–107Google Scholar
  116. Watts CHS, McRae JM (2013) Limbodessus bennetti sp. nov.: first stygobitic Dytiscidae from the Pilbara region of Western Australia. Rec West Aust Mus 28:141–143CrossRefGoogle Scholar
  117. Webb JA, James JM (2006) Karst evolution of the Nullarbor plain, Australia. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology, and geochemistry. Geological society of America special paper, pp 65–78Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bennelongia Environmenatl ConsultantsJolimontAustralia

Personalised recommendations