Evolutionary History

  • Margaret ByrneEmail author
  • Leo Joseph
  • David K. Yeates
  • J. Dale Roberts
  • Danielle Edwards


Australia is a vast continent with a range of environments broadly differentiated into three major biomes. The best studied of these, the mesic biome, is confined to the eastern coast and the southeast and southwest corners and has pockets of ever-wet rainforest along the east coast. The monsoon tropics biome occurs in the northern part of the continent including Cape York Peninsula in the east, and the arid-zone biome covers the vast central and western parts of the continent, generally west of the Great Dividing Range. The arid zone is Australia’s largest biome, occupying approximately 70% of the entire continent (Fig. 1a) and broadly corresponding to the Eremaean and northern desert regions of the Australian Bioregionalisation Atlas (Ebach et al. 2015) (Fig. 1b). It covers a range of environments such as sandy deserts, gibber deserts and steppes, ranges and coastal plains and hosts a variety of vegetation types, shrub woodlands, acacia and mallee eucalypt shrublands, spinifex grasslands, tussock and hummock grasslands and chenopod shrublands. On average, the arid zone is only 300 m above sea level with low relief and a broad flat plain covering most of the central western area (Williams 1984; Pain et al. 2012; Pillans 2018).


  1. Adams M, Foster R, Hutchinson MN, Hutchinson RG, Donnellan SC (2003) The Australian scincid lizard Mentia greyii: a new instance of widespread vertebrate parthenogenesis. Evolution 57:2619–2627PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alley NF, Lindsay JM (1995) Tertiary. In: Drexel JF, Preiss WV (eds) The geology of South Australia. Vol. 2 The phanerozoic. South Australia Geological Survey, Bulletin 54, pp 151–217Google Scholar
  3. Alpers DL, Walker FM, Taylor AC, Sunnucks P, Bellman S, Hansen BD, Sherwin WB (2016) Evidence of subdivisions on evolutionary timescales in a large, declining marsupial distributed across a phylogeographic barrier. PLoS ONE 11(10):e0162789PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andersen AN (2016) Ant megadiversity and its origins in arid Australia. Aust Entomol 55:132–137CrossRefGoogle Scholar
  5. Anderson BM, Barrett MD, Krauss SL, Thiele K (2016) Untangling a species complex of arid zone grasses (Triodia) reveals patterns congruent with co-occurring animals. Mol Phylogenet Evol 101:142–152PubMedCrossRefPubMedCentralGoogle Scholar
  6. Andrew R, Miller JT, Peakall R, Crisp MD (2003) Genetic, cytogenetic and morphological patterns in a mixed mulga population: evidence for apomixis. Aust Syst Bot 16:69–80CrossRefGoogle Scholar
  7. Anstis M (2013) Tadpoles and frogs of Australia. New Holland, LondonGoogle Scholar
  8. Ariati SR, Murphy DJ, Udovicic F, Ladiges PY (2006) Molecular phylogeny of three groups of acacias (Acacia subgenus Phyllodineae) in arid Australia based on the internal and external transcribed spacer regions of nrDNA. Syst Biodivers 4:417–426CrossRefGoogle Scholar
  9. Barker WR, Greenslade PJM (1982) Evolution of the flora and fauna of arid Australia. Peacock Publications, AdelaideGoogle Scholar
  10. Barlow BA (1981) The Australian flora: its origin and evolution. Flora Aust 1:25–75Google Scholar
  11. Beheregaray LB, Pfeiffer LV, Attard CRM, Sandoval-Castillo J, Domingos FMCB, Faulks LK, Gilligan DM, Unmack PJ (2017) Genome-wide data delimits multiple climate-determined species ranges in a widespread Australian fish, the golden perch (Macquaria ambigua). Mol Phylogenet Evol 111:65–75PubMedCrossRefPubMedCentralGoogle Scholar
  12. Binks RM, Millar MA, Byrne M (2015) Not all rare species are the same contrasting patterns of genetic diversity and population structure in two narrow endemic sedges. Biol J Linn Soc 114:873–886CrossRefGoogle Scholar
  13. Bostock BM, Adams M, Laurenson LJB, Austin CM (2006) The molecular systematics of Leiopotherapon unicolor (Gunther, 1859): testing for cryptic speciation in Australia’s most widespread freshwater fish. Biol J Linn Soc 87:537–552CrossRefGoogle Scholar
  14. Bowler JM, Duller GAT, Perret N, Prescott JR, Wyrwoll K-H (1998) Hydrological changes in monsoonal climates of the last glacial cycle: stratigraphy and luminescence dating of Lake Woods, N.T., Australia. Palaeoclimates 3:179–207Google Scholar
  15. Bowler JM, Kotsonis A, Lawrence CR (2006) Environmental evolution of the Mallee region, Western Murray Basin. Proc Roy Soc Victoria 118:161–210Google Scholar
  16. Bradford T, Adams M, Humphreys WF, Austin AD, Cooper SJB (2010) DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Mol Ecol Resour 10:41–50PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brennan IG, Oliver PM (2017) Mass turnover and recovery dynamics of a diverse Australian continental radiation. Evolution 71:1352–1365PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brennan IG, Bauer AM, Jackman TR (2016) Mitochondrial introgression via ancient hybridization, and systematics of the Australian endemic pygopodid gecko genus Delma. Mol Phylogenet Evol 94:577–590PubMedCrossRefPubMedCentralGoogle Scholar
  19. Byrne M (2008) Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quat Sci Rev 27:2576–2585CrossRefGoogle Scholar
  20. Byrne M, Hopper SD (2008) Granite outcrops as ancient islands in old landscapes: evidence from the phylogeography and population genetics of Eucalyptus caesia in Western Australia. Biol J Linn Soc 93:177–188CrossRefGoogle Scholar
  21. Byrne M, Tischler G, Macdonald B, Coates DJ, McComb J (2001) Phylogenetic relationships between two rare acacias and their common, widespread relatives in south-western Australia. Conserv Genet 2:157–166CrossRefGoogle Scholar
  22. Byrne M, Macdonald B, Brand J (2003) Phylogeography and divergence in the chloroplast genome of Western Australian Sandalwood (Santalum spicatum). Heredity 91:389–395PubMedCrossRefPubMedCentralGoogle Scholar
  23. Byrne M, Yeates DK et al (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 17:4398–4417PubMedCrossRefGoogle Scholar
  24. Byrne M, Steane DA, Joseph L, Yeates DK, Jordan GJ, Crayn D, Aplin K, Cantrill DJ, Cook LG, Crisp MD, Keogh JS, Melville J, Moritz C, Porch N, Sniderman JMK, Sunnucks P, Weston P (2011) Decline of a biome: contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J Biogeogr 38:1635–1656CrossRefGoogle Scholar
  25. Byrne M, Millar MA, Coates DJ, Macdonald BM, McArthur S, Zhou M, van Leeuwen S (2017) Refining expectations for environmental characteristics of refugia: two ranges of differing elevation and topographical complexity are mesic refugia in an arid landscape. J Biogeogr 44:2539–2550CrossRefGoogle Scholar
  26. Cabrera J, Jacobs SWL, Kadereit G (2011) Biogeography of Camphorosmeae (Chenopodiaceae): tracking the Tertiary history of Australian aridification. Telopea 13:313–326CrossRefGoogle Scholar
  27. Cardillo M, Weston PH, Reynolds ZKM, Olde PM, Mast AR, Lemmon EM, Lemmon AR, Bromham L (2017) The phylogeny and biogeography of Hakea (Proteaceae) reveals the role of biome shifts in a continental plant radiation. Evolution 71:1928–1943PubMedCrossRefPubMedCentralGoogle Scholar
  28. Catullo RA, Keogh JS (2014) Aridification drove repeated episodes of diversification between Australian biomes: Evidence from a multi-locus phylogeny of Australian toadlets (Uperoleia: Myobatrachidae). Mol Phylogenet Evol 79:104–116CrossRefGoogle Scholar
  29. Catullo RA, Doughty P, Roberts JD, Keogh JS (2011) Multi-locus phylogeny and taxonomic revision of Uperoleia toadlets (Anura: Myobatrachidae) from the western arid zone of Australia, with a description of a new species. Zootaxa 2902:1–43Google Scholar
  30. Catullo RA, Lanfear R, Doughty P, Keogh JS (2014) The biogeographical boundaries of northern Australia: evidence from ecological niche models and a multi-locus phylogeny of Urperoleia toadlets (Anura: Myobatrachidae). J Biogeogr 41:659–672CrossRefGoogle Scholar
  31. Chan YL, Schanzenbach D, Hickerson MJ (2014) Detecting concerted demographic response across community assemblages using hierarchical Approximate Bayesian Computation. Mol Biol Evol 31:2501–2515PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chapple DG, Keogh JS (2004) Parallel adaptive radiations in arid and temperate Australia: molecular phylogeography and systematics of the Egernia whitii (Lacertilia: Scincidae) species group. Biol J Linn Soc 83:157–173CrossRefGoogle Scholar
  33. Chenoweth LB, Schwarz MP (2011) Biogeographical origins and diversification of the exoneurine allodapine bees of Australia (Hymenoptera, Apidae). J Biogeogr 38:1471–1483CrossRefGoogle Scholar
  34. Clarkson JJ, Dodsworth SD, Chase MW (2017) Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Plant Syst Evol 303:1001–1012CrossRefGoogle Scholar
  35. Cogger HG, Cameron EE (1984) Arid Australia. Australian Museum, SydneyGoogle Scholar
  36. Cooper SJB, Bradbury JH, Saint KM, Leys R, Austin AD, Humphreys WF (2007) Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Mol Ecol 16:1533–1544PubMedCrossRefGoogle Scholar
  37. Cooper SJB, Saint KM, Taiti S, Austin AD, Humphreys WF (2008) Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebr Syst 22:195–203CrossRefGoogle Scholar
  38. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, SunderlandGoogle Scholar
  39. Cracraft J (1986) Origin and evolution of continental biotas: speciation and historical congruence within the Australian avifauna. Evolution 40:977–996PubMedCrossRefPubMedCentralGoogle Scholar
  40. Cracraft J (1991) Patterns of diversification within continental biotas: heirarchical congruence among the areas of endemism of Australian vertebrates. Aust Syst Bot 4:211–227CrossRefGoogle Scholar
  41. Crayn DM, Rossetto M, Maynard DJ (2006) Molecular phylogeny and dating reveals an Oligo-Miocene radiation of dry-adapted shrubs (former Tremandraceae) from rainforest tree progenitors (Elaeocarpaceae) in Australia. Am J Bot 93:1328–1342PubMedCrossRefPubMedCentralGoogle Scholar
  42. Criscione F, Köhler F (2016) Snails in the desert: Assessing the mitochondrial and morphological diversity and the influence of aestivation behavior on lineage differentiation in the Australian endemic Granulomelon Iredale, 1933 (Stylommatophora: Camaenidae). Mol Phylogenet Evol 94:101–112PubMedCrossRefGoogle Scholar
  43. Crisp MD, Cook LG (2007) A congruent molecular signature of vicariance across multiple plant lineages. Mol Phylogenet Evol 43:1106–1117PubMedCrossRefPubMedCentralGoogle Scholar
  44. Crisp MD, Isagi Y, Kato Y, Cook LG, Bowman DMS (2010) Livistona palms in Australia: ancient relics or opportunistic immigrants? Mol Phylogenet Evol 54:512–523PubMedCrossRefPubMedCentralGoogle Scholar
  45. Crowther MS, Blacket MJ (2003) Biogeography and speciation in the Dasyuridae: why are there so many Dasyurids? In: Jones ME, Dickman C, Archer M (eds) Predators with pouches: the biology of carnivorous marsupials. CSIRO Publishing, Melbourne, pp 124–130Google Scholar
  46. Dawson TJ, Dawson L (2006) Evolution of arid Australia and consequences for vertebrates. In: Merrick JR, Archer M, Hickey GM, Lee MSY (eds) Evolution and biogeography of Australasian vertebrates. Australian Scientific Publishing, Oatlands, pp 51–71Google Scholar
  47. de Boer HJ, Drake PL, Wendt E, Price CA, Schulze E, Turner NC, Nicolle D, Veneklaas EJ (2017) Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats. Plant Physiol 172:2286–2299CrossRefGoogle Scholar
  48. Dolman G, Joseph L (2012) A species assemblage approach to comparative phylogeography of birds in southern Australia. Ecol Evol 2:354–369PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dolman G, Joseph L (2015) Evolutionary history of birds across southern Australia: structure, history and taxonomic implications of mitochondrial DNA diversity in an ecologically diverse suite of species. Emu 115:35–48CrossRefGoogle Scholar
  50. Dolman G, Joseph L (2016) Multi-locus sequence data reveal Pleistocene speciation in semi-arid southern Australian birds (Cinclosoma spp.) was associated with increased genetic drift. BMC Evol Biol 16:226PubMedPubMedCentralCrossRefGoogle Scholar
  51. Donnellan SC, Mahony MJ, Bertozzi T (2012) A new species of Pseudophryne (Anura: Myobatrachidae) from the central Australian ranges. Zootaxa 3476:69–85Google Scholar
  52. Driskell AC, Norman JA, Pruett-Jones S, Mangall E, Sonsthagen S, Christidis L (2011) A multigene phylogeny examining evolutionary and ecological relationships in the Australo-papuan wrens of the subfamily Malurinae (Aves). Mol Phylogenet Evol 60:480–485PubMedCrossRefPubMedCentralGoogle Scholar
  53. Duncan FD, Dickman CR (2009) Respiratory strategies of tenebrionid beetles in arid Australia: does physiology beget nocturnality? Physiol Entomol 34:52–60CrossRefGoogle Scholar
  54. Ebach MC, Murphy DJ, Gonzalez-Orozco CE, Miller JT (2015) A revised area taxonomy of phytogeographical regions within the Australian Bioregionalisation Atlas. Phytotaxa 208:261–277CrossRefGoogle Scholar
  55. Edwards DL, Melville J (2011) Extensive phylogeographic and morphological diversity in Diporiphora nobbi (Agamidae) leads to taxonomic review and a new species description. J Herpetol 45:530–546CrossRefGoogle Scholar
  56. Edwards DL, Keogh JS, Knowles LL (2012) Effects of vicariant barriers, habitat stability, population isolation and environmental features on species divergence in the south-western Australian coastal reptile community. Mol Ecol 21:3809–3822PubMedCrossRefPubMedCentralGoogle Scholar
  57. Edwards DL, Melville J, Joseph L, Keogh JS (2015) Ecological divergence, adaptive diversification, and the evolution of social signaling traits: An empirical study in arid Australian lizards. Am Nat 186:E144–E161PubMedCrossRefPubMedCentralGoogle Scholar
  58. Engelhard D, Joseph L, Toon A, Pedler L, Wilke T (2015) Rise (and demise?) of subspecies in the Galah (Eolophus roseicapilla), a widespread and abundant Australian cockatoo. Emu 115:289–301CrossRefGoogle Scholar
  59. Finston TL, Francis CJ, Johnson MS (2009) Biogeography of the stygobitic isopod Pygolabis (Malacostraca: Tainisopidae) in the Pilbara, Western Australia: Evidence for multiple colonisations of the groundwater. Mol Phylogenet Evol 52:448–460PubMedCrossRefPubMedCentralGoogle Scholar
  60. Foster I (2018) Climate change. In: Lambers H (ed) On the ecology of Australia’s arid zone. Springer Nature, Dordrecht pp 375–388Google Scholar
  61. Fujioka T, Chappell J, Honda M, Yatsevich I, Fifield K, Fabel D (2005) Global cooling initiated stony deserts in central Australia 2-4 Ma, dated by cosmogenic 21Ne-10Be. Geology 33:993–996CrossRefGoogle Scholar
  62. Fujioka T, Chappell J, Fifield LK, Rhodes EJ (2009) Australian desert dune fields initiated with Pliocene-Pleistocene global climatic shift. Geology 37:51–54CrossRefGoogle Scholar
  63. Fujita MK, McGuire JA, Donnellan SC, Moritz C (2010) Diversification and persistence at the arid-monsoonal interface: Australia-wide biogeography of the Bynoe’s gecko (Heteronotia binoei; Gekkonidae). Evolution 64:2293–2314PubMedPubMedCentralGoogle Scholar
  64. Gibson N, Meissner R, Markey AS, Thompson WA (2012) Patterns of plant diversity in ironstone ranges in arid south western Australia. J Environ 77:25–31Google Scholar
  65. Gilbert JDJ (2014) Thrips domiciles protect larvae from desiccation in an arid environment. Behav Ecol 25:1338–1346PubMedPubMedCentralCrossRefGoogle Scholar
  66. Goldie X, Gillman L, Crisp M, Wright S (2010) Evolutionary speed limited by water in Australia. Proce R Soc B Biol Sci 277:2645–2653CrossRefGoogle Scholar
  67. Gonzalez-Orozco CE, Laffan S, Knerr N, Miller JT (2013) A biogeographical regionalization of Australian Acacia species. J Biogeogr 40:2156–2166CrossRefGoogle Scholar
  68. Guzik MT, Cooper SJB, Humphreys WF, Austin AD (2009) Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Mol Ecol 18:3683–3698PubMedCrossRefGoogle Scholar
  69. Guzik MT, Austin AD et al (2011a) Is the Australian subterranean fauna uniquely diverse? Invertebr Syst 24:407–418CrossRefGoogle Scholar
  70. Guzik MT, Cooper SJB, Humphreys WF, Ong S, Kawakami T, Austin AD (2011b) Evidence for population fragmentation within a subterranean aquatic habitat in the Western Australian desert. Heredity 107:215–230PubMedPubMedCentralCrossRefGoogle Scholar
  71. Guzik MT, Adams MA, Murphy NP, Cooper SJB, Austin AD (2012) Desert springs: deep phylogeographic structure in an ancient endemic crustacean (Phreatomerus latipes). PLoS ONE 7:e37642PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hammer T, Davis R, Thiele K (2015) A molecular framework phylogeny for Ptilotus (Amaranthaceae): Evidence for the rapid diversification of an arid Australian genus. Taxon 64:272–285CrossRefGoogle Scholar
  73. Harrison SE, Guzik MT, Harvey MS, Austin AD (2014) Molecular phylogenetic analysis of Western Australian troglobitic chthoniid pseudoscorpions (Pseudoscorpiones: Chthoniidae) points to multiple independent subterranean clades. Invertebr Syst 28:386–400Google Scholar
  74. Hassiotou F, Evans JR, Ludwig M, Veneklaas EJ (2009) Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant Cell Environ 32:1596–1611PubMedCrossRefPubMedCentralGoogle Scholar
  75. He Q, Edwards DL, Knowles LL (2013) Integrative testing of how environments from the past to the present shape genetic structure across landscapes. Evolution 67:3386–3402PubMedCrossRefPubMedCentralGoogle Scholar
  76. Heterick BE, Castalanelli M, Shattuck SO (2017) Revision of the ant genus Melophorus (Hymenoptera, Formicidae). ZooKeys 700:1–420CrossRefGoogle Scholar
  77. Hewitt G (2001) Speciation, hybrid zones and phylogeography- or seeing genes in space and time. Mol Ecol 10:537–549PubMedCrossRefPubMedCentralGoogle Scholar
  78. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quarternary. Philos Trans R Soc Lond Ser B 359:183–195CrossRefGoogle Scholar
  79. Hill RS (1994) The history of selected Australian taxa. In: Hill RS (ed) History of the Australian vegetation: cretaceous to recent. Cambridge Unversity Press, Cambridge, pp 390–419Google Scholar
  80. Hocknull SA, Zhao J, Feng Y, Webb GE (2007) Responses of Quaternary rainforest vertebrates to climate change in Australia. Earth Planet Sci Lett 264:317–331CrossRefGoogle Scholar
  81. Holman JE, Playford J (2000) Molecular and morphological variation in the Senna artemisoides complex. Aust J Bot 48:569–579CrossRefGoogle Scholar
  82. Hugall AF, Foster R, Hutchinson M, Lee MSY (2008) Phylogeny of Australian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography. Biol J Linn Soc 93:343–358CrossRefGoogle Scholar
  83. Ingham JA, Forster PI, Crisp MD, Cook LG (2013) Ancient relicts or recent dispersal: how long have cycads been in central Australia? Divers Distrib 19:307–316CrossRefGoogle Scholar
  84. Jabaily RS, Shepherd KA, Gardner AG, Gustafsson MHG, Howarth DG, Motley TJ (2014) Historical biogeography of the predominantly Australian plant family Goodeniaceae. J Biogeogr 41:2057–2067CrossRefGoogle Scholar
  85. Javidkar M, Cooper SJB, King RA, Humphreys WF, Bertozzi T, Stevens MI, Austin AD (2016) Molecular systematics and biodiversity of oniscidean isopods in the groundwater calcretes of central Western Australia. Mol Phylogenet Evol 104:93–98CrossRefGoogle Scholar
  86. Jordan GJ, Weston PH, Carpenter RJ, Dillon RA, Brodribb TJ (2008) The evolutionary relations of sunken, covered and encrypted stomata to dry habitats in Proteaceae. Am J Bot 95:521–530PubMedCrossRefPubMedCentralGoogle Scholar
  87. Joseph L, Wilke T (2006) Molecular resolution of population history, systematics and historical biogeography of the Australian ringneck parrots Barnardius: are we there yet? Emu 106:49–62CrossRefGoogle Scholar
  88. Joseph L, Wilke T (2007) Lack of phylogeographic structure in three widespread Australian birds reinforces emerging challenges in Australian historical biogeography. J Biogeogr 34:612–624CrossRefGoogle Scholar
  89. Joseph L, Wilke T, Alpers D (2002) Reconciling genetic expectations from host specificity with historical population dynamics in an avian brood parasite, Horsfield’s Bronze-Cuckoo Chalcites basalis of Australia. Mol Ecol 11:829–837PubMedCrossRefPubMedCentralGoogle Scholar
  90. Joseph L, Wilke T, Have JT, Chesser RT (2006) Implications of mitochondrial DNA polyphyly in two ecologically undifferentiated but morphologically distinct migratory birds, the masked and white-browed woodswallows Artamus spp. of inland Australia. J Avian Biol 37:625–636CrossRefGoogle Scholar
  91. Joseph L, Toon A, Schirtzinge EE, Wright TF (2011) Molecular systematics of two enigmatic genera Psittacella and Pezoporus illuminate the ecological radiation of Australo-Papuan parrots (Aves: Psittaciformes). Mol Phylogenet Evol 59:675–684PubMedCrossRefPubMedCentralGoogle Scholar
  92. Joseph L, Toon A, Nyári ÁS, Trueman J, Gardner J (2014) A new synthesis of the molecular systematics and biogeography of honeyeaters (Passeriformes: Meliphagidae) highlights biogeographical complexity of a spectacular avian radiation. Zool Scr 43:235–248CrossRefGoogle Scholar
  93. Kadereit G, Freitag H (2011) Molecular phylogeny of Camphorosmeae (Camphorosmoideae, Chenopodiaceae): implications for biogeography, evolution of C-4-photosynthesis and taxonomy. Taxon 60:51–78Google Scholar
  94. Kadereit G, Mavrodiev EV, Zacharias EH, Sukhorukov AP (2010) Molecular phylogeny of Atripliceae (Chenopodioideae, Chenoopodiaceae): Implications for systematics, biogeogrpahy, flower and fruit evolution, an dthe origion of C4 photosymthesis. Am J Bot 97:1664–1687PubMedCrossRefPubMedCentralGoogle Scholar
  95. Karanovic T, Cooper SJB (2012) Explosive radiation of the genus Schizopera on a small subterranean island in Western Australia (Copepoda: Harpacticoida): unravelling the cases of cryptic speciation, size differentiation and multiple invasions. Invertebr Syst 26:115–192CrossRefGoogle Scholar
  96. Kear BP, Aplin KP, Westerman M (2016) Bandicoot fossils and DNA elucidate lineage antiquity amongst xeric-adapted Australasian marsupials. Sci Rep 6:37537PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kearney M, Blacket MJ (2008) The evolution of sexual and parthenogenetic Warramaba: a window onto Plio–Pleistocene diversification processes in an arid biome. Mol Ecol 17:5257–5275PubMedCrossRefPubMedCentralGoogle Scholar
  98. Kearns A, Joseph L, Double M, Edwards S (2008) Inferring the phylogeography and evolutionary history of the Splendid Fairy-wren (Malurus splendens) from mitochondrial DNA and spectrophotometry. J Avian Biol 40:7–17CrossRefGoogle Scholar
  99. Kearns A, Joseph L, Cook L (2010) The impact of Pleistocene climatic and landscape changes on Australian birds: a test using the pied butcherbird (Cracticus nigrogularis). Emu-Aust Ornithol 110:285–295CrossRefGoogle Scholar
  100. Kearns A, Joseph L, Toon A, Cook L (2014) Australia’s arid-adapted butcherbirds experienced range expansions during Pleistocene glacial maxima. Nat Commun 5:3994PubMedCrossRefPubMedCentralGoogle Scholar
  101. Kergoat GJ, Bouchard P, Clamens A-L, Abbate JL, Jourdan H, Jabbour-Zahab R, Genson G, Soldati L, Condamine FL (2014) Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family. BMC Evol Biol 14(220):1–13Google Scholar
  102. King RA, Bradford T, Austin AD, Humphreys WF, Cooper SJB (2012) Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. J Crustac Biol 32:465–488CrossRefGoogle Scholar
  103. Krajewski C, Wroe S, Westerman M (2000) Molecular evidence for the pattern and timing of cladogenesis in dasyurid marsupials. Zool J Linn Soc 130:375–404CrossRefGoogle Scholar
  104. Kuch U, Keogh JS, Weigel J, Smith LA, Mebs D (2005) Phylogeography of Australia’s king brown snake (Pseudechis australis) reveals Pliocene divergence and Pleistocene dispersal of a top predator. Naturwissenschaften 92:121–127PubMedCrossRefPubMedCentralGoogle Scholar
  105. Ladiges P, Parra-O C, Gibbs A, Udovicic F, Nelson G, Bayly M (2011a) Historical biogeographical patterns in continental Australia: congruence among areas of endemism of two major clades of eucalypts. Cladistics 27:29–41CrossRefGoogle Scholar
  106. Ladiges PY, Marks CE, Nelson G (2011b) Biogeography of Nicotiana section Suaveolentes (Solanaceae) reveals geographical tracks in arid Australia. J Biogeogr 38:2066–2077CrossRefGoogle Scholar
  107. Lamb AM, Gan HM, Greening C, Joseph L, Lee YP, Morán-Ordóñez A, Sunnucks P, Pavlova A (2018) Climate-driven mitochondrial selection: a test in Australian birds. Mol Ecol 27:898–918PubMedCrossRefPubMedCentralGoogle Scholar
  108. Lanier HC, Edwards DL, Knowles LL (2013) Phylogenetic structure of vertebrate communities across the Australian arid zone. J Biogeogr 40:1059–1070CrossRefGoogle Scholar
  109. Larter M, Pfautsch S, Domec J-C, Trueba S, Nagalingum N, Delzon S (2017) Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. New Phytol 215:97–112PubMedCrossRefPubMedCentralGoogle Scholar
  110. Laver RJ, Nielsen SV, Rosauer DF, Oliver PM (2017) Trans-biome diversity in Australian grass-specialist lizards (Diplodactylidae: Strophurus). Mol Phylogenet Evol 115:62–70PubMedCrossRefPubMedCentralGoogle Scholar
  111. Lee J-Y, Joseph L, Edwards S (2012) A species tree for the Australo-Papuan fairy-wrens and their allies (Aves: Maluridae). Syst Biol 61:253–271PubMedCrossRefPubMedCentralGoogle Scholar
  112. Lee MSY, Skinner A, Camacho A (2013) The relationship between limb reduction, body elongation and geographical range in lizards (Lerista, Scincidae). J Biogeogr 40:1290–1297CrossRefGoogle Scholar
  113. Levy E, Byrne M, Coates DJ, Macdonald BM, McArthur S, van Leeuwen S (2016) Contrasting influences of geographic range and ditsribution of populations on patterns of genetic diversity in two sympatric Pilbara acacias. PLoS One 11(10):e0163995PubMedPubMedCentralCrossRefGoogle Scholar
  114. Leys R, Watts CHS, Cooper SJB, Humphreys WF (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834PubMedGoogle Scholar
  115. Liu Q, Brubaker CL, Green AG, Marshall DR, Sharp PJ, Singh SP (2001) Evolution of the FAD2-1 fatty acid desaturase 5’ UTR intron and the molecular systematics of Gossypium (Malvaceae). Am J Bot 88:92–102PubMedCrossRefPubMedCentralGoogle Scholar
  116. López-López A, Hudson P, Galián J (2016) Islands in the desert: species delimitation and evolutionary history of Pseudotetracha tiger beetles (Coleoptera: Cicindelidae: Megacephalini) from Australian salt lakes. Mol Phylogenet Evol 101:279–285PubMedCrossRefPubMedCentralGoogle Scholar
  117. Mable BK, Roberts JD (1997) Mitochondrial DNA evolution of tetraploids in the genus Neobatrachus (Anura: Myobatrachidae). Copeia 1997:680–689CrossRefGoogle Scholar
  118. Maddock ST, Childerstone A, Fry BG, Williams DJ, Barlow A, Wüster W (2017) Multi-locus phylogeny and species delimitation of Australo-Papuan blacksnakes (Pseudechis Wagler, 1830: Elapidae: Serpentes). Mol Phylogenet Evol 107:48–55PubMedCrossRefPubMedCentralGoogle Scholar
  119. Mahony MJ, Robinson ES (1980) Polyploidy in the Australian Leptodactylid frog genus Neobatrachus. Chromosoma 81:199–212PubMedCrossRefPubMedCentralGoogle Scholar
  120. Mahony MJ, Donnellan SC, Roberts JD (1996) An electrophoretic investigation of relationships of diploid and tetraploid species of Australian desert frogs Neobatrachus (Anuira: Mypbatrachidae). Aust J Zool 4:639–650CrossRefGoogle Scholar
  121. Martin HA (2006) Cenozoic climatic changes and the development of the arid vegetation of Australia. J Arid Environ 66:533–563CrossRefGoogle Scholar
  122. Mast AR, Olde PM, Makinson RO, Jones R, Kubes A, Miller ET, Weston PH (2015) Paraphyly changes understanding of timing and tempo of diversification in subtribe Hakeinae (Proteaceae), a giant Australian plant radiation. Am J Bot 102:1634–1646PubMedCrossRefPubMedCentralGoogle Scholar
  123. Matthews EG (2000) Origins of Australian arid-zone tenebrionid beetles. Invertebr Taxon 14:941–951CrossRefGoogle Scholar
  124. McElroy K, Beattie K, Symonds M, Joseph L (2018) Mitogenomic diversity in the Mulga Parrot of the Australian arid-zone: cryptic subspecies and tests for selection. Aust Ornithol 118:22CrossRefGoogle Scholar
  125. McGowran B, Holdgate GR, Li Q, Gallagher SJ (2004) Cenozoic stratigraphic succession in southeastern Australia. Aust J Earth Sci 51:459–496CrossRefGoogle Scholar
  126. McLaren S, Wallace MW (2010) Plio-Pleistocene climate change and the onset of aridity in southeastern Australia. Glob Planet Chang 71:55–72CrossRefGoogle Scholar
  127. McLean CA, Mousalli A, Sass S, Stuart-Fox D (2013) Taxonomic assessment of the Ctenophorus decresii complex (Reptilia: Agamidae) reveals a new species of dragon lizard from western New South Wales. Rec Aust Mus 65:51–63CrossRefGoogle Scholar
  128. McLean CA, Stuart-Fox D, Mousalli A (2014) Phylogeographic structure, demographic history and morph composition in a colour polymorphic lizard. J Evol Biol 27:2123–2137PubMedCrossRefPubMedCentralGoogle Scholar
  129. McLean A, Toon A, Schmidt D, Hughes J, Joseph L (2017) Phylogeography and geno-phenotypic discordance in a widespread Australian bird, the variegated fairy-wren, Malurus lamberti (Aves: Maluridae). Biol J Linn Soc 121:655–669CrossRefGoogle Scholar
  130. McLeish MJ (2011) Speciation in gall-inducing thrips on Acacia in arid and non-arid areas of Australia. J Arid Environ 75:793–801CrossRefGoogle Scholar
  131. McLeish MJ, Chapman TW, Schwarz MP (2007) Host driven diversification of gall inducing Acacia thrips and the aridification of Australia. BMC Biol 5:1–13CrossRefGoogle Scholar
  132. McLeish MJ, Schwarz MP, Chapman TW (2011) Gall inducers take a leap: host-range differences explain speciation opportunity (Thysanoptera: Phlaeothripidae). Aust J Entomol 50:405–417CrossRefGoogle Scholar
  133. Melville J, Schulte JA, Larson A (2001) A molecular phylogenetic study of ecological diversification in the Australian lizard genus Ctenophorus. J Exp Zool 291:339–353PubMedCrossRefPubMedCentralGoogle Scholar
  134. Melville J, Ritchie EG, Chapple SNJ, Glor RE, Schulte JAI (2011) Evolutionary origins and diversification of dragon lizards in Australia’s tropical savannas. Mol Phylogenet Evol 58:257–270PubMedCrossRefPubMedCentralGoogle Scholar
  135. Melville J, Hines ML, Hale J, Chapple S, Ritchie EG (2016) Concordance in phylogeography and ecological niche modelling identify dispersal corridors for reptiles in arid Australia. J Biogeogr 43:1844–1855CrossRefGoogle Scholar
  136. Millar MA, Coates DJ, Byrne M (2013) Genetic connectivity and diversity in inselberg populations of Acacia woodmaniorum, a rare endemic plant of the Yilgarn Craton Banded Iron Formations. Heredity 111:437–444PubMedPubMedCentralCrossRefGoogle Scholar
  137. Millar MA, Byrne M, Coates DJ, Roberts JD (2016) Contrasting diversity and demographic signals in sympatric narrow-range endemic shrubs of the south-west Western Australian semi-arid zone. Biol J Linn Soc 118:315–329CrossRefGoogle Scholar
  138. Millar MA, Byrne M, Coates DJ, Roberts JD (2017) Comparative analysis indicates historical persistence and contrasting contemporary structure in sympatric woody perennials of semi-arid southwest Western Australia. Biol J Linn Soc 120:771–787Google Scholar
  139. Miller GH, Fogel ML, Magee JW, Gagan MK (2016) Disentangling the impacts of climate and human colonization on the flora and fauna of the Australian arid zone over the past 100 ka using stable isotopes in avian eggshell. Quat Sci Rev 151:27–57CrossRefGoogle Scholar
  140. Mitchell KJ, Pratt RC et al (2014) Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol Biol Evol 31:2322–2330PubMedCrossRefPubMedCentralGoogle Scholar
  141. Moritz C (1993) The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): Synthesis. Genetica 90:269–280CrossRefGoogle Scholar
  142. Mossop KD, Adams M, Unmack PJ, Smith Date KL, Wong BBM, Chapple DG (2015) Dispersal in the desert: ephemeral water drives connectivity and phylogeography of an arid-adapted fish. J Biogeogr 12:2374–2388CrossRefGoogle Scholar
  143. Mummenhoff K, Bruggemann H, Bowman JL (2001) Chloroplast DNA phylogeny and biogeography of Lepidium (Brassicaceae). Am J Bot 88:2051–2063PubMedCrossRefGoogle Scholar
  144. Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee JY, Franzke A (2004) Molecular evidence for bicontinental hybridogenous genomic constitution in Lepidium senu stricto (Brassicaceae) species from Australia and New Zealand. Am J Bot 91:254–261PubMedCrossRefGoogle Scholar
  145. Murphy DJ, Miller JT, Bayer RJ, Ladiges PY (2003) Molecular phylogeny of Acacia subgenus Phyllodineae (Mimosoideae: Leguminosae) based on DNA sequences of the internal transcribed spacer region. Aust Syst Bot 16:19–26CrossRefGoogle Scholar
  146. Murphy NP, Breed MF, Guzik MT, Cooper SJB, Austin AD (2012) Trapped in desert springs: phylogeography of Australian desert spring snails. J Biogeogr 39:1573–1582CrossRefGoogle Scholar
  147. Murphy NP, Guzik MT, Cooper SJB, Austin AD (2015) Desert spring refugia: museums of diversity or evolutionary cradles? Zool Scr 44:693–701CrossRefGoogle Scholar
  148. Nguyen TTT, Austin CM, Meewan MM, Schultz MB, Jerry DR (2004) Phylogeography of the freshwater crayfish Cherax destructor Clark (Parastacidae) in inland Australia: historical fragmentation and recent range expansion. Biol J Linn Soc 83:539–550CrossRefGoogle Scholar
  149. Nielsen SV, Oliver PM, Laver R, Bauer AM, Noonan BP (2016) Stripes, jewels and spines: further investigations into the evolution of defensive strategies in a chemically defended gecko radiation (Strophurus, Diplodactylidae). Zool Scr 45:481–493CrossRefGoogle Scholar
  150. Nistelberger H, Byrne M, Coates DJ, Roberts JD (2014) Strong phylogeographic structure in a millipede indicates Pleistocene vicariance between populations on banded iron formations in semi-arid Australia. PLOS One 9:e93038PubMedPubMedCentralCrossRefGoogle Scholar
  151. Nistelberger HM, Byrne M, Coates DJ, Roberts JD (2015a) Genetic drift drives evolution in the bird pollinated terrestrial island endemic Grevillea georgeana (Proteaceae). Bot J Linn Soc 178:155–168CrossRefGoogle Scholar
  152. Nistelberger HM, Byrne M, Coates DJ, Roberts JD (2015b) Phylogeography and population differentiation in terrestrial island populations of Banksia arborea (Proteaceae). Biol J Linn Soc 114:860–872CrossRefGoogle Scholar
  153. Nyari A, Joseph L (2012) Evolution in Australasian mangrove forests: multilocus phylogenetic analysis of the Gerygone warblers (Aves: Acanthizidae). PLoS ONE 7:e31840PubMedPubMedCentralCrossRefGoogle Scholar
  154. Oliver P, Bauer A (2011) Systematics and evolution of the Australian knob-tail geckos (Nephrurus, Carphodactylidae, Gekkota): pleisomorphic grades and biome shifts through the Miocene. Mol Phylogenet Evol 59:664–674PubMedCrossRefGoogle Scholar
  155. Oliver PM, McDonald PJ (2016) Young relicts and old relicts: a novel palaeoendemic vertebrate from the Australian Central Uplands. R Soc Open Sci 3:160018PubMedPubMedCentralCrossRefGoogle Scholar
  156. Oliver PM, Adams M, Lee MSY, Hutchinson MN, Doughty P (2009) Cryptic diversity in vertebrates: molecular data double estimates of species diversity in a radiation of Australian lizards (Diplodactylus, Gekkota). Proc R Soc B 276:2001–2007PubMedCrossRefPubMedCentralGoogle Scholar
  157. Oliver PM, Adams M, Doughty P (2010) Molecular evidence for ten species and Oligo-Miocene vicariance within a nominal Australian gecko species (Crenadactylus ocellatus, Diplodactylidae). BMC Evol Biol 10:386PubMedPubMedCentralCrossRefGoogle Scholar
  158. Oliver PM, Smith KL, Laver RJ, Doughty P, Adams M (2014) Contrasting patterns of persistence and diversification in vicars of a widespread Australian lizard lineage (the Oedura marmorata complex). J Biogeogr 41:2068–2079CrossRefGoogle Scholar
  159. Oliver PM, Couper PJ, Pepper M (2016) Independant transitions between monsoonal and arid biomes revealed by systematic revision of a complex of Australian geckos (Diplodactylus; Diplodactylidae). PLoS ONE 9(12):e11895Google Scholar
  160. Onstein RE, Jordan GJ, Sauquet H, Weston PH, Bouchenak-Khelladi Y, Carpenter RJ, Linder HP (2017) Evolutionary radiations of Proteaceae are triggered by the interaction between traits and climates in open habitats. Glob Ecol Biogeogr 25:1239–1251CrossRefGoogle Scholar
  161. Owen CL, Marshall DC, Hill KBR, Simon C (2017) How the aridification of Australia structured the biogeography and influenced the diversification of a large lineage of Australian cicadas. Syst Biol 66:569–589PubMedGoogle Scholar
  162. Pain CF, Pillans BJ, Roach IC, Worrall L, Wilford JR (2012) Old, flat and red – Australia’s distinctive landscape. In: Blewett RS (ed) Shaping a nation: a geology of Australia. Geoscience Australia and ANU E Press, Canberra, pp 227–275Google Scholar
  163. Pepper M, Keogh JS (2014) Biogeography of the Kimberley, Western Australia: a review of landscape evolution and biotic response in an ancient refugium. J Biogeogr 41:1443–1455CrossRefGoogle Scholar
  164. Pepper M, Doughty P, Arculus R, Keogh JS (2008) Landforms predict phylogenetic structure on one of the world’s most ancient surfaces. BMC Evol Biol 8:152PubMedPubMedCentralCrossRefGoogle Scholar
  165. Pepper M, Fujita MK, Moritz C, Keogh JS (2011a) Palaeoclimate change drove diversification among isolated mountain refugia in the Australian arid zone. Mol Ecol 20:1529–1545PubMedCrossRefPubMedCentralGoogle Scholar
  166. Pepper M, Ho S, Fujita MK, Keogh JS (2011b) The genetic legacy of aridification: Miocene refugia fostered diversification while Pleistocene climatic cycles erased diversity in desert lizards. Mol Phylogenet Evol 61:750–759PubMedCrossRefPubMedCentralGoogle Scholar
  167. Pepper M, Doughty P, Fujita MK, Moritz C, Keogh JS (2013a) Speciation on the rocks: integrated systematics of the Heteronotia spelea species complex (Gekkota; Reptilia) from Western and central Australia. PLoS ONE 11:e78110CrossRefGoogle Scholar
  168. Pepper M, Doughty P, Keogh JS (2013b) Geodiversity and endemism in the iconic Australian Pilbara region: a review of landscape evolution and biotic response in an ancient refugium. J Biogeogr 40:1225–1239CrossRefGoogle Scholar
  169. Perez KE, Ponder WF, Colgan DJ, Clark SA, Lydeard C (2005) Molecular phylogeny and biogeography of spring-associated hydrobiid snails of the Great Artesian Basin, Australia. Mol Phylogenet Evol 34:545–556PubMedCrossRefPubMedCentralGoogle Scholar
  170. Pillans B (2018) Seeing red: some aspects of the geological and climatic history of the Australian arid zone. In: Lambers H (ed) On the ecology of Australia’s arid zone. Springer Nature, Dordrecht pp 5–43Google Scholar
  171. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA Taxonomy of undescribed insects. Syst Biol 55:595–609PubMedCrossRefPubMedCentralGoogle Scholar
  172. Prideaux G, Long J et al (2007) An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia. Nature 445:422–425PubMedCrossRefGoogle Scholar
  173. Pyron RA, Wiens JJ (2011) A large scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders and caecilians. Mol Phylogenet Evol 61:543–583PubMedCrossRefPubMedCentralGoogle Scholar
  174. Rabosky DL, Donnellan SC, Talaba AL, Lovette IJ (2007) Exceptional among-lineage variation in diversification rates during the radiation of Australia’s most diverse vertebrate clade. Proc R Soc Lond Ser B 274:2915–2923CrossRefGoogle Scholar
  175. Randell BR (1970) Adaptations in the genetic system of Australian arid zone Cassia species (Leguminosae, Caesalpinioideae). Aust J Bot 18:77–97CrossRefGoogle Scholar
  176. Revel-Rolland M, De Deckker P, Delmonte B, Hesse PP, Magee JM, Basile-Doelsch I, Grousset F, Bosch D (2006) Eastern Australia: A possible source of dust in East Antarctica interglacial ice. Earth Planet Sci Lett 249:1–13CrossRefGoogle Scholar
  177. Rix MG, Harvey MS (2012) Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: Evidence for Miocene speciation within Tertiary refugia. Mol Phylogenet Evol 62:375–396PubMedCrossRefPubMedCentralGoogle Scholar
  178. Rix MG, Cooper SJB, Meusemann K, Klopfstein S, Harrison SE, Harvey MS, Austin AD (2017) Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Mol Phylogenet Evol 109:302–320PubMedCrossRefPubMedCentralGoogle Scholar
  179. Roberts JD, Edwards DL (2018) The evolution, physiology and ecology of the Australian arid zone frog fauna. In: Lambers H (ed) On the ecology of Australia’s arid zone. Springer Nature, Dordrecht pp 149–180Google Scholar
  180. Roth-Nebelsick A, Hassiotou F, Veneklaas EJ (2009) Stomatal crypts have small effects on transpiration: a numerical model analysis. Plant Physiol 151:2018–2027PubMedPubMedCentralCrossRefGoogle Scholar
  181. Sakaguchi S, Bowman DMJS, Prior LD, Crisp MD, Linde CC, Tsumura Y, Isagi Y (2013) Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia. Proc R Soc B Biol Sci 280:2013182CrossRefGoogle Scholar
  182. Sampson JF, Byrne M (2012) Genetic diversity and multiple origins of polyploid Atriplex nummularia Lindl. (Chenopodiaceae). Biol J Linn Soc 105:218–230CrossRefGoogle Scholar
  183. Sanders KL, Lee MSY, Leijs R, Foster R, Keogh JS (2008) Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): Evidence from seven genes for rapid evolutionary radiations. J Evol Biol 21:882–895CrossRefGoogle Scholar
  184. Schmidt S, Walter GH (2014) Young clades in an old family: Major evolutionary transitions and diversification of the eucalypt-feeding pergid sawflies in Australia (Insecta, Hymenoptera, Pergidae). Mol Phylogenet Evol 74:111–121PubMedCrossRefPubMedCentralGoogle Scholar
  185. Schmidt-Lebuhn AN, Smith KJ (2016) From the desert it came: evolution of the Australian paper daisy genus Leucochrysum (Asteracaea; Gnaphalieae). Aust Syst Bot 29:176–184CrossRefGoogle Scholar
  186. Schodde R (1982) Origin, adaptation and evolution of birds in arid Australia. In: Barker WR, Greenslade PJM (eds) Evolution of the flora and fauna of arid Australia. Peacock Publications, Adelaide, pp 191–224Google Scholar
  187. Schodde R (2006) Australasia’s bird fauna today-origins, and evolutionary development. In: Merrick JR, Archer M, Hickey GM, Lee MSY (eds) Evolution and biogeography of Australasian vertebrates. Auscipub, Sydney, pp 413–458Google Scholar
  188. Schweizer M, Güntert M, Hertwig S (2012) Phylogeny and biogeography of the parrot genus Prioniturus (Aves: Psittaciformes). J Zool Syst Evol Res 50:145–156CrossRefGoogle Scholar
  189. Schweizer M, Wright TF, Penalba J, Schirtzinger EE, Joseph L (2015) Molecular phylogenetics suggests a New Guinean origin and frequent episodes of founder-event speciation in the nectarivorous lories and lorikeets (Aves: Psittaciformes). Mol Phylogenet Evol 90:34–48PubMedCrossRefPubMedCentralGoogle Scholar
  190. Schwentner M, Timms BV, Richter S (2012) Flying with the birds? Recent large-area dispersal of four Australian Limnadopsis species (Crustacea: Branchiopoda: Spinicaudata). Ecol Evol 2:1605–1626PubMedPubMedCentralCrossRefGoogle Scholar
  191. Scott KD, McIntyre CL, Playford J (2000) Molecular analyses suggest a need for a significant rearrangement of Rutaceae subfamilies and a major reassessment of species relationships within Flindersia. Plant Syst Evol 223:15–27CrossRefGoogle Scholar
  192. Seelanan T, Brubaker CL, Stewart JM, Craven LA, Wendel JE (1999) Molecular systematics of Australian Gossypium section Grandicalyx (Malvaceae). Syst Bot 24:183–208CrossRefGoogle Scholar
  193. Sheedy EM, Ryberg M, Lebel T, May TW, Bougher NL, Matheny B (2016) Dating the emergence of truffle-like fungi in Australia, by using an augmented meta-analysis. Aust Syst Bot 29:284–302CrossRefGoogle Scholar
  194. Shepherd KA, Waycott M, Calladine A (2004) Radiation of the Australian Salicornioideae (Chenopodiaceae) – based on evidence from nuclear and chloroplast DNA sequences. Am J Bot 91:1387–1397PubMedCrossRefPubMedCentralGoogle Scholar
  195. Shoo LP, Rose R, Doughty P, Austin JJ, Melville J (2008) Diversification patterns of pebble-mimic dragons are consistent with historical disruption of important habitat corridors in arid Australia. Mol Phylogenet Evol 48:528–542PubMedCrossRefPubMedCentralGoogle Scholar
  196. Sistrom MJ, Hutchinson MN, Hutchinson RG, Donnellan SC (2009) Molecular phylogeny of Australian Gehyra (Squamata:Gekkonidae) and taxonomic revision of Gehyra variegata in south-eastern Australia. Zootaxa 2277:14–32Google Scholar
  197. Sistrom M, Hutchinson M, Bertozzi T, Donnellan S (2014) Evaluating evolutionary history in the face of high gene tree discordance in Australian Gehyra (Reptilia: Gekkonidae). Heredity 113:52–63PubMedPubMedCentralCrossRefGoogle Scholar
  198. Skinner A, Lee MSY (2009) Body-form evolution in the Scincid lizard clade Lerista and the mode of macroevolutionary transitions. Evol Biol 36:292–300CrossRefGoogle Scholar
  199. Skinner A, Hugal lAF, Hutchinson MN (2011) Lygosomine phylogeny and the origins of Australian scincid lizards. J Biogeogr 38:1044–1058CrossRefGoogle Scholar
  200. Smith KL, Harmon LJ, Shoo LP, Melville J (2011) Evidence of constrained phenotypic evolution in a cryptic species complex of agamid lizards. Evolution 65:976–992PubMedCrossRefPubMedCentralGoogle Scholar
  201. Sniderman JMK, Pillans B, O’Sullivan PB, Kershaw AP (2007) Climate and vegetation in southeastern Australia respond to Southern Hemisphere insolation forcing in the late Pliocene-early Pleistocene. Geology 35:41–44CrossRefGoogle Scholar
  202. Sniderman JMK, Woodhead JD, Hellstrom J, Jordan GJ, Drysdale RN, Tyler JJ, Porch N (2016) Pliocene reversal of late Neogene aridification. Proc Natl Acad Sci USA 113:1999–2004PubMedCrossRefPubMedCentralGoogle Scholar
  203. Stafford Smith DM, Morton SR (1990) A framework for the ecology of arid Australia. J Arid Environ 18:255–278Google Scholar
  204. Strasburg JL, Kearney M (2005) Phylogeography of sexual Heteronotia binoei (Gekkonidae) in the Australian arid zone: climatic cycling and repetitive hybridisation. Mol Ecol 14:2755–2772PubMedCrossRefPubMedCentralGoogle Scholar
  205. Tapper S-L, Byrne M, Yates CJ, Keppel G, Hopper SD, Van Niel K, Schut AGT, Mucina L, Wardell-Johnson GW (2014a) Isolated with persistence or dynamically connected? Genetic patterns in a common granite outcrop endemic. Divers Distrib 20:987–1001CrossRefGoogle Scholar
  206. Tapper S-L, Byrne M, Yates CJ, Keppel G, Hopper SD, Van Niel K, Schut AGT, Mucina L, Wardell-Johnson GW (2014b) Prolonged isolation and persistence of a common endemic on granite outcrops in both mesic and semi-arid environments in southwestern Australia. J Biogeogr 41:2032–2044CrossRefGoogle Scholar
  207. Thornhill AH, Mishler BD, Knerr NJ, Gonz_alez-Orozco CE, Costion CM, Crayn DM, Laffan SW, Miller JT (2016) Continental-scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. J Biogeogr 43:2085–2309CrossRefGoogle Scholar
  208. Toon A, Mather P, Baker A, Durrant K, Hughes J (2007) Pleistocene refugia in an arid landscape: analysis of a widely distributed Australian passerine. Mol Ecol 16:2525–2541PubMedCrossRefPubMedCentralGoogle Scholar
  209. Toon A, Austin J, Dolman G, Pedler L, Joseph L (2012) Evolution of arid zone birds in Australia: leapfrog distribution patterns and mesic-arid connections in quail-thrush. Mol Phylogenet Evol 62:286–295PubMedCrossRefPubMedCentralGoogle Scholar
  210. Toon A, Joseph L, Burbidge A (2013) Genetic analysis of the Australian whipbirds and wedgebills illuminates the evolution of their plumage and vocal diversity. Emu 113:359–366CrossRefGoogle Scholar
  211. Toon A, Crisp MD, Gamage H, Mant J, Morris DC, Schmidt S, Cook LG (2015) Key innovation or adaptive change? A test of leaf traits in Triodiinae in Australia. Sci Rep 5:12398PubMedPubMedCentralCrossRefGoogle Scholar
  212. Toussaint EFA, Condamine FL, Hawlitschek O, Watts CH, Porch N, Hendrich L, Balke M (2015a) Unveiling the diversification dynamics of Australasian predaceous diving beetles in the Cenozoic. Syst Biol 64:3–24PubMedCrossRefPubMedCentralGoogle Scholar
  213. Toussaint EFA, Tänzler R, Rahmadi C, Balke M, Riedel A (2015b) Biogeography of Australasian flightless weevils (Curculionidae, Celeuthetini) suggests permeability of Lydekker’s and Wallace’s Lines. Zool Scr 44:632–644CrossRefGoogle Scholar
  214. Travouillon KJ, Legendre S, Archer M, Hand SJ (2009) Palaeoecological analyses of Riversleigh’s Oligo-Miocene sites: implications for Oligo-Miocene climate change in Australia. Palaeogeogr Palaeoclimatol Palaeoecol 276:24–37CrossRefGoogle Scholar
  215. Watanabe K, Kosuge K, Shimamura R, Konishi N, Taniguchi K (2006) Molecular systematics of Australian Calotis (Asteraceae: Astereae). Aust Syst Bot 19:155–168CrossRefGoogle Scholar
  216. Williams MAJ (1984) Cenozoic evolution of arid Australia. In: Cogger HG, Cameron EE (eds) Arid Australia. Australian Museum, Sydney, pp 59–78Google Scholar
  217. Williams MAJ (2000) Quaternary Australia: extremes in the last glacial-interglacial cycle. In: Veevers JJ (ed) Billion-year earth history of Australia and neighbours in Gondwanaland. GEMOC Press, Sydney, pp 55–59Google Scholar
  218. Williams MAJ (2001) Morphoclimatic maps at 18 ka, 9 ka, & 0 ka. In: Veevers JJ (ed) Atlas of billion-year earth history of Australia and neighbours in Gondwanaland. GEMOC Press, Sydney, pp 45–48Google Scholar
  219. Williams M, Diunkerley D, De Dekker P, Kershaw P, Chappell J (1998) Quaternary Environments, 2nd edn. Arnold, LondonGoogle Scholar
  220. Winterfeld G, Schneider J, Röser M (2009) Allopolyploid origin of Mediterranean species in Helictotrichon (Poaceae) and its consequences for karyotype repatterning and homogenisation of rDNA repeat units. Syst Biodivers 7:277–295CrossRefGoogle Scholar
  221. Wright T, Schirtzinger E et al (2008) A multi-locus molecular phylogeny of the parrots (Psittaciformes): Support for a Gondwanan origin during the Cretaceous. Mol Biol Evol 25:2141–2156PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Margaret Byrne
    • 1
    • 2
    Email author
  • Leo Joseph
    • 3
  • David K. Yeates
    • 4
  • J. Dale Roberts
    • 5
  • Danielle Edwards
    • 6
  1. 1.Biodiversity and Conservation Science, Department of Biodiversity, Conservation and AttractionsKensingtonAustralia
  2. 2.School of Biological SciencesThe University of Western AustraliaPerthAustralia
  3. 3.Australian National Wildlife Collection, CSIRO National Facilities and CollectionsCanberraAustralia
  4. 4.Australian National Insect Collection, CSIRO National Research Collections AustraliaCanberraAustralia
  5. 5.Centre for Excellence in Natural Resource ManagementThe University of Western AustraliaAlbanyAustralia
  6. 6.Life and Environmental SciencesUniversity of CaliforniaMercedUSA

Personalised recommendations