Advertisement

Knowledge-Driven Statistical Approach for Landslide Susceptibility Assessment Using GIS and Fuzzy Logic (FL) Approach

  • Sujit Mandal
  • Subrata Mondal
Chapter

Abstract

The present study is dealt with the application of fuzzy logic and preparation of landslide susceptibility zonation map of Darjeeling Himalaya on GIS environment. To accomplish fuzzy logic, several data layers such as elevation, slope, aspect, curvature, drainage density, distance to drainage, lineament density, distance to lineament, lithology, land use and land cover, soil, stream power index (SPI), topographic wetness index (TWI), and rainfall were made in consultation with topographical map, Google earth images, satellite imageries, and some other authorized maps. For computing fuzzy membership value and developing the model frequency ratio and cosine amplitude, values were derived corresponding to each class of the landslide causative factor. Then, fuzzy gamma operator value of 0.975 was used to prepare landslide susceptibility zonation map of Darjeeling Himalaya considering frequency ratio and cosine amplitude membership value. The accuracy study based on ROC curve revealed that the FR membership value based fuzzy gamma operator and landslide susceptibility map having the accuracy result of 80.9% and cosine amplitude membership value based landslide susceptibility having the validation result of 67.9%.

Keywords

Landslide susceptibility Frequency ratio Cosine amplitude Fuzzy membership value Fuzzy gamma operator value 

References

  1. Atkinson, P. M., & Massari, R. (1998). Generalized linear modelling of susceptibility to land sliding in the central Apennines, Italy. Computer and Geosciences, 24, 373–385.CrossRefGoogle Scholar
  2. Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012). Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena, 96, 28–40.CrossRefGoogle Scholar
  3. Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., & Reichenbach, P. (1991). GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16, 427–452.CrossRefGoogle Scholar
  4. Champatiray, P. (2000). Perationalization of costeffective methodology for landslide hazard zonation using RS and GIS: IIRS initiative. In P. Roy, C. Van Westen, V. Jha, & R. Lakhera (Eds.), Natural disasters and their mitigation; Remote sensing and geographical information system perspectives (pp. 95–101). Dehradun, India: Indian Institute of Remote Sensing.Google Scholar
  5. Champatiray, P., Dimri, S., Lakhera, R., & Sati, S. (2007). Fuzzy based methods for landslide hazard assessment in active seismic zone of Himalaya. Landslides., 4, 101–110.  https://doi.org/10.1007/s1034600600686.CrossRefGoogle Scholar
  6. Dai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modelling usingGIS, Lantau Island, Hong Kong. Geomorphology, 42, 213–228.CrossRefGoogle Scholar
  7. Dai, F. C., Lee, C. F., Li, J., & Xu, Z. W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40, 381–391.CrossRefGoogle Scholar
  8. Ermini, L., Catani, F., & Casagli, N. (2005). Artificial neural network applied to landslide susceptibility assessment. Geomorphology, 66, 327–343.CrossRefGoogle Scholar
  9. Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85, 347–366.CrossRefGoogle Scholar
  10. Lepore, C., Kamal, S. A., Shanahan, P., & Bras, R. L. (2012). Rainfall induced landslide susceptibility zonation of Puerto Rico. Environmental Earth Sciences, 66, 1–15.CrossRefGoogle Scholar
  11. Liu, J. G., Mason, P. J., Clerici, N., Chen, S., Davis, A., Miao, F., Deng, F. L., & Liang, L. (2004). Landslide hazard assessment in the Three Gorges area of the Yangtze River using ASTER imagery: Zigui–Badong. Geomorphology, 61, 171–187.CrossRefGoogle Scholar
  12. Mitchell, T. M. (1997). Machine learning (p. 414). New York: McGraw-Hill.Google Scholar
  13. Montgomery, D. R., & Dietrich, W. E. (1989). Source areas, drainage density and channel initiation. Water Resources Research, 25(8), 1907–1918.CrossRefGoogle Scholar
  14. Montgomery, D. R., & Dietrich, W. E. (1994). A physically based model for the topographic control on shallow land sliding. Water Resources Research, 30(4), 1153–1171.CrossRefGoogle Scholar
  15. Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards.  https://doi.org/10.1007/s11069-012-0217-2.
  16. Pradhan, B. (2010). Application of an advanced fuzzy logic model for landslide susceptibility analysis. International Journal of Computational Intelligence Systems, 3(3), 370–381.CrossRefGoogle Scholar
  17. Pradhan, B. (2011). Manifestation of an advanced fuzzy logic model coupled with geoinformation techniques for landslide susceptibility analysis. Environmental and Ecological Statistics, 18(3), 471–493.  https://doi.org/10.1007/s10651-010-0147-7.CrossRefGoogle Scholar
  18. Pradhan, B., Lee, S., & Buchroithner, M. F. (2009). Use of geospatial data for the development of fuzzy algebraic operators to landslide hazard mapping: A case study in Malaysia. Applied Geomatics, 1, 3–15.CrossRefGoogle Scholar
  19. Remondo, J., & Oguchi, T. (2009). GIS and SDA applications in geomorphology. Geomorphology, 111, 1–3.CrossRefGoogle Scholar
  20. Ren, D., Fu, R., Leslie, L. M., & Dickinson, R. E. (2011). Predicting storm-triggered landslides. Bulletin of the American Meteorological Society, 92, 129–139.CrossRefGoogle Scholar
  21. Sezer, E. A., Pradhan, B., & Gokceoglu, C. (2011). Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Systems with Applications, 38(7), 8208–8219.CrossRefGoogle Scholar
  22. Sidle, R. C. (1991). A conceptual model of changes in root cohesion in response to vegetation management. Journal of Environmental Quality, 20(1), 43–52.CrossRefGoogle Scholar
  23. Tofani, V., Dapporto, S., Vannocci, P., & Casagli, N. (2006). Infiltration, seepage and slopeinstability mechanisms during the 20–21 November 2000 rainstorm in central Italy Tuscany. Natural Hazards and Earth System Sciences, 6, 1025–1033.  https://doi.org/10.5194/nhess-6-1025.
  24. Van Westen, C. J., Rengers, N., & Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30, 399–419.CrossRefGoogle Scholar
  25. Varnes, D., & IAEG. (1984). Landslide hazard zonation: A review of principle and practice (pp. 1–6). Paris: UNESCO.Google Scholar
  26. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8/3, 338–353.CrossRefGoogle Scholar
  27. Zezere, J., Ferreira, A., & Rodrigues, M. (1999). The role of conditioning and triggering factors in the occurrence of landslides: A case study in the area north of Lisbon (Portugal). Geomorphology, 30, 133–146.CrossRefGoogle Scholar
  28. Zhou, C. H., Lee, C. F., Li, J., & Xu, Z. W. (2002). On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology, 43, 197–207.CrossRefGoogle Scholar
  29. Zhu, A. X., Wang, R. X., Qiao, J., Chen, Y., Cai, Q., & Zhou, C. (2004). Mapping landslide susceptibility in the Three Gorges area, China using GIS, expert knowledge and fuzzy logic (pp. 385–391). In: Y. Chen (Ed.), GIS and remote sensing in hydrology. Water Resources and Environment, IAHS Publication 289 (IAHS Red Book), International Association of Hydrological Sciences, Wallingford, UK.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Sujit Mandal
    • 1
  • Subrata Mondal
    • 2
  1. 1.Department of GeographyDiamond Harbour Women’s UniversitySarishaIndia
  2. 2.University of Gour BangaMokdumpurIndia

Personalised recommendations