Advertisement

Concept on Landslides and Landslide Susceptibility

  • Sujit Mandal
  • Subrata Mondal
Chapter

Abstract

Landslide is one of the destructive environmental hazards which causes a lot of damages to human lives and properties. Various approaches and techniques have been applied to assess the spatial distribution of landslides all over the world. Amongst them physical models, slope stability models, statistical and probabilistic models are very much important in the study of landslide assessment and prediction. In the present study, to assess the spatial distribution of landslide susceptibility in Darjeeling Himalaya several statistical models, i.e. frequency ratio (FR) model, modified information value (MIV) model, logistic regression (LR) model, artificial neural network (ANN) model, weighted overlay analysis (WOA) model, certainty factor (CF) model, analytical hierarchy process (AHP) model and fuzzy logic (FL) approach have been incorporated and finally a comparison has been made between the models on the basis of model validation results. Physical models with regard to landslides dealt with the assessment of various physical parameters of rocks and soil, i.e. shear stress, shear strength, cohesion, friction angle, pore-water pressure, grain size of soil, depth of the soil, saturated soil depth, density of water and soil, etc. All these parameters help to perform slope stability model as well as to identify the vulnerable slope in the mountain environment. In Darjeeling Himalaya, debris slide, rock fall, and earth slides are three common types of landslides. Statistical models based on RS and GIS help to identify susceptible landslide locations with accuracy. To perform all the statistical models, a landslide inventory was made based on historical landslides data, toposheet, Google earth image, and field investigation with GPS survey. The data layers, i.e. elevation, slope aspect, slope angle, slope curvature, geology, soil, lineament density, distance to lineament, drainage density, distance to drainage, stream power index (SPI), topographic wetted index (TWI), rainfall, normalized differential vegetation index (NDVI) and land use and land cover (LULC) were integrated on GIS platform to assess pixel wise landslide susceptibility index, and finally a classification was made to prepare landslide susceptibility zonation map of Darjeeling Himalaya in connection to each model.

Keywords

Statistical models RS and GIS Landslide susceptibility Darjeeling Himalaya 

References

  1. Agarwal, A., & Narain, S. (1991). Floods, flood plain and environmental myths (State of India’s Environment: A Citizens’ Report, 3). New Delhi: Centre for Science and Environment.Google Scholar
  2. Akgun, A., & Turk, N. (2010). Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environmental Earth Sciences, 61, 595–611.CrossRefGoogle Scholar
  3. Akgun, A., Dag, S., & Bulut, F. (2007). Landslide susceptibility mapping for a landslide prone area (Findikli NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54, 1127–1143.CrossRefGoogle Scholar
  4. Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: Summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58, 21–44.CrossRefGoogle Scholar
  5. Amaral, C., & Palmeiro, F. (1997). Local landslide inventory of Rio de Janeiro: State of the art and access. In ABMS ABGE & ISSMGE (Ed.), 2nd Pan-American Symposium on Landslides (II PSL/ 2a COBRAE) (pp. 195–200), Rio de Janeiro.Google Scholar
  6. Anbalagan, R., Srivastava, N. C. N., & Jain, V. (2000). Slope stability studies of Vyasi dma reservoir area, Garhwal Himalaya, U.P. India. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 51–56). Cardiff: Thomas Telford.Google Scholar
  7. Aniya, M. (1985). Landslide-susceptibility mapping in the Amahata River basin, Japan. Annals of Argentina, Earth Surface Processes and Landforms, 29, 255–266.Google Scholar
  8. Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., & Reichenbach, P. (2002). Impact of mapping errors on the reliability of landslide hazard maps. Natural Hazards and Earth Systems Sciences, 2, 3–14.CrossRefGoogle Scholar
  9. Ayalew, L. (2000). Factors affecting slope stability in the Blue Nile Basin. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 101–106). Cardiff: Thomas Telford.Google Scholar
  10. Ayalew, L., & Yamagishi, H. (2005). The application of GIS based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65, 15–31.CrossRefGoogle Scholar
  11. Ayalew, L., Yamagishi, H., Marui, H., & Kanno, T. (2005). Landslides in Sado Island of Japan: Part II, GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81, 432–445.CrossRefGoogle Scholar
  12. Baeza, C., & Corominas, J. (2001). Assessment of shallow landslide susceptibility by Means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26, 1251–1263.CrossRefGoogle Scholar
  13. Basu, S. R., & De, S. K. (2003). Causes and consequences of Landslides in the Darjiling and Sikkim Himalayas. Geographia Polonica, 76(2), 37–57.Google Scholar
  14. Basu, S. R., & Ghatwar, L. (1988). Landslide and soil erosion in the Gish basin of the Darjiling Himalayas and their bearing on North Bengal Floods. Studia Geomorpholigica Carpatho-Balcanica (Vol. 22). Krakow.Google Scholar
  15. Basu, S. R., & Maiti, R. K. (2001). Unscientific mining and degradation of slopes in the Darjeeling Himalayas, Changing environment. Scenario of the Indian Subcontinent (Bd), 390–399.Google Scholar
  16. Basu, S. R., & Sarkar, S. (1985). Some consideration on recent landslides at Tindharia and their control. Indian Journal of Power and River Valley Development, 1985, 190–194.Google Scholar
  17. Barros, W. T., Amaral, C., & D’Orsi, R. N. (1991). Landslide susceptibility map of Rio de Janeiro, in D. H. Bell (Eds.), Landslides – Proceedings of the Sixth International Symposium, 10–14 February 1992 (Rotterdam: A. A. Balkema), 869–871.Google Scholar
  18. Basu, S. R., De, S. K., & Bera, B. (2009). Progress of research in landslide studies in India. In S. Singh, H. S. Sharma, S. K. De, H. S. Sharma, & V. S. Kale (Eds.), Geomorphology in India (pp. 171–198). Allahabad: Prayag Pustak Bhawan.Google Scholar
  19. Bhandari, R. K. (1987). Slope stability in the fragile Himalaya and strategy for development, Ninth IGS Lecture. Journal of the IGE, 17(1), 1–78.Google Scholar
  20. Bhattacharya, S. K. (1999). A constructive approach to landslides through susceptibility zoning and case study in the Rakti Basin of Eastern Himalaya, Transactions, Japanese Geomorphological.Google Scholar
  21. Binaghi, E., Luzi, L., Madella, P., Pergalani, F., & Rampini, A. (1998). Slope Instability Zonation: A comparison between certainty factor and Fuzzy Dempster-Shafer approaches. Natural Hazards, 17(1), 77–97.CrossRefGoogle Scholar
  22. Brabb, E. E., Guzzetti, F., Mark, R., & Simpson, R. W. (1989). The extent of landsliding in Northern New Mexico and similar semi-arid regions. In D. M. Sadler & P. M. Morton (Eds.), Landslides in a semi-arid environment (Vol. 2, pp. 163–173). Publications of the Inland Geological Society.Google Scholar
  23. Brardinoni, F., Slaymaker, O., & Hassan, M. A. (2003). Landslide inventory in a rugged forested watershed: A comparison between air-photo and field survey data. Geomorphology, 54, 179–195.  https://doi.org/10.1016/S0169-555X(02)00355-0.CrossRefGoogle Scholar
  24. Carrara, A. (1989). Landslide hazard mapping by statistical methods: A “black-box” model approach (pp. 205–224). In Proceedings International Workshop on Natural Disasters in European-Mediterranean Countries, Perugia, June 27–July 1, 1988, CNR-ESNSF.Google Scholar
  25. Carrara, A., Catalano, E., Sorriso Valvo, M., Reali, C., Merenda, L,. & Rizzo, V. (1977). Bulletin of the International Association of Engineering Geology, 16(1), 8–13.Google Scholar
  26. Carrara, A., Cardinali, M., Guzzetti, F., & Reichenbach, P. (1995). GIS technology in mapping landslide hazard. Geographical information systems in assessing natural hazards (pp. 135–175). Dordrecht: Kluwer Academic Publishers.Google Scholar
  27. Chakraborty, I., Ghosh, S., Bhattacharya, D., & Bora, A. (2011). Earthquake induced landslides in the Sikkim-Darjeeling Himalayas—An aftermath of the 18th September 2011 Sikkim earthquake. Geological Society of India.Google Scholar
  28. Champati ray, P. K., Dimri, S., Lakhera, R. C., & Sati, S. (2007). Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides, 4, 101–111.CrossRefGoogle Scholar
  29. Chandler, R. J. (1972). Lias clay: weathering processes and their effect on shear strength. Geotechnique, 15, 403–431.CrossRefGoogle Scholar
  30. Chang, J. C., & Slaymaker, O. (2002). Frequency and spatial distribution of landslides in a mountainous drainage basin: Western Foothills, Taiwan. Catena, 46, 285–307.CrossRefGoogle Scholar
  31. Chen, C. L. (1997). Debris-flow hazard mitigation: Mechanics, prediction and assessment. San-Francisco: American Society of Civil Engineers.Google Scholar
  32. Cheng, K. S., Wei, C., & Chang, S. C. (2004). Locating landslides using multi-temporal satellite images. Advances in Space Research, 33, 296–301.CrossRefGoogle Scholar
  33. Cheng, T. A., Lateh, H., & Peng, K. S. (2008). Intelligence explanation system on landslide dissemination: A case study in Malaysia (pp. 330–333). In Proceedings of the first world landslide forum report: Implementing the 2006 Tokyo action plan on the international program on landslides (IPL).Google Scholar
  34. Cherkez, Y., Kozlova, V., Shmourakto, V., Kharitonov, V., & Karavan, A. (2000). Landslide in the North-Western Black sea region. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 251–254). Cardiff: Thomas Telford.Google Scholar
  35. Choi, J., Oh, H. J., Lee, H., Lee, C., & Lee, S. (2011). Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using aster images and GIS. Engineering Geology, 124, 12–23.CrossRefGoogle Scholar
  36. Chung, C. F., & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65(12), 1389–1399.Google Scholar
  37. Chung, C.-J. F., Fabbri, A. G., & van Westen, C. J. (1995). Multivariate regression analysis for landslide hazard zonation. In A. Carrara & F. Guzzetti (Eds.), Geographical information systems.Google Scholar
  38. Claessens, L., Verburg, P. H., Schoorl, J. M., & Veldkamp, A. (2006). Contribution of topographically based landslide hazard modelling to the analysis of the spatial distribution and ecology of kauri (Agathis australis). Landscape Ecology, 21, 63–76.CrossRefGoogle Scholar
  39. Committee on the Review of the National Landslide Hazards Mitigation Strategy. (2004). Partnerships for reducing landslide risk, assessment of the National Landslide Hazards Mitigation Strategy, Board on Earth Sciences and Resources, Division on Earth and Life Studies, The National Academic Press, Washington, D.C. (p. 143).Google Scholar
  40. Coussot, P., Laigle, D., Arattano, M., Deganutti, A. M., & Marchi, L. (1998). Direct determination of rheological characteristics of debris-flow. Journal of Hydraulic Engineering, 124, 865–868.CrossRefGoogle Scholar
  41. Crovelli, R. A. (2000). Probability Models for estimation of number and costs of landslides, United States Geological Survey Open –File Report, 00–249.Google Scholar
  42. Cuesta, M. J. D., Sánchez, M. J., & García, A. R. (1999). Press archives as temporal records of landslides in the North of Spain: Relationships between rainfall and instability slope events. Geomorphology, 30, 125–132.CrossRefGoogle Scholar
  43. Dai, F. C., & Lee, C. F. (2001). Terrain-based mapping of landslide susceptibility using a geographical information system: A case study. Canadian Geotechnical Journal, 38, 911–923.CrossRefGoogle Scholar
  44. Dai, F. C., & Lee, C. F. (2002). Landslides on natural terrain—Physical characteristics and susceptibility mapping in Hong Kong. Mountain Research and Development, 22, 40–47.CrossRefGoogle Scholar
  45. Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64, 65–87.CrossRefGoogle Scholar
  46. Das, I., Kumar, G., Stein, A., Bagchi, A., & Dadhwal, V. K. (2011). Stochastic landslide vulnerability modeling in space and time in a part of the northern Himalayas, India. Environmental Monitoring and Assessment, 178, 25–37.CrossRefGoogle Scholar
  47. De Jaeger, C. (2000). Influence on landsliding and slope development of the particular environment of the Dead Sea region: A case study for the Wadi Mujib Canyon (Jordan). In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 421–426). Cardiff: Thomas Telford.Google Scholar
  48. Dehn, M., Burger, G., Buma, J., & Gasparetto, P. (2000). Impact of climate change on slope stability using expanded downscaling. Engineering Geology, 55, 193–204.CrossRefGoogle Scholar
  49. Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., Dhital, M. R., & Althuwaynee, O. F. (2013). Landslide susceptibility mapping using certainty factor index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards, 65, 135–165.CrossRefGoogle Scholar
  50. Dhakal, A. S., Amada, T., & Aniya, M. (2000). Landslide hazard mapping and its evaluation using GIS: An investigation of sampling schemes for a grid-cell based quantitative method. Photogrammetric Engineering & Remote Sensing, 66, 981–989.Google Scholar
  51. Dikau, R., Brunsden, D., Schrott, L., & Ibsen, M. L. (Eds.). (1996). Landslide recognition: Identification, movement, and causes (p. 210). New York: Wiley.Google Scholar
  52. Donati, L., & Turrini, M. C. (2002). An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: Application to an area of the Apennines (Valnerina; Perugia, Italy). Engineering Geology, 63, 277–289.CrossRefGoogle Scholar
  53. Doratti, M., McColl, C., & Tweeddale, C. (2002). Landslide prediction study BCIT, Geographical Information Systems advanced diploma. giswww1bcitca/giscentre/projects/projects2002/prj_09_final_reportpdf.Google Scholar
  54. Erickson, G. E., Ramirez, C. F., Concha, J. F., Tisnado, G. M., & Urquidi, F. B. (1989). Landslide hazards in the central and southern Andes. In E. E. Brabb & B. L. Harrod (Eds.), Landslides: extent and economic significance (pp. 111–118). Rotterdam: A.A. Balkema.Google Scholar
  55. Evans, S. G., & DeGraff, J. V. (Eds.). (2002). Catastrophic landslides, reviews in engineering geology. Boulder: Geological Society of America.Google Scholar
  56. Evans, S. G., & Hungr, O. (1993). The assessment of rock fall hazards at the base of talus slopes. Canadian Geotechnical Journal, 30, 620–636.CrossRefGoogle Scholar
  57. Fabbri, A. G., Chung, C.-J., Napolitano, P., Remondo, J., & Zêzere, J. L. (2002). Prediction rate functions of landslide susceptibility applied in the Iberian Peninsula, In C. A. Brebbia (Ed.), Third International Conference on Risk Analysis, 19–21 June 2002, Sintra, Portugal, pp. 703–718.Google Scholar
  58. Fernandez-Steeger, T. M., Rohn, J., & Czurda, K. (2002). Identification of landslide areas with neural networks for hazard analysis. Landslides. In: Proceedings of the first European conference on landslides, (pp. 163–168). Prague, Czech Republic; Rotterdam, Balkema.Google Scholar
  59. Garfi, G., & Bruno, D. E. (2007). Fan morphodynamics and slope instability in the Mucone River basin (Sila Massif southern Italy): Significance of weathering and role of land use changes. Catena, 50, 181–196.CrossRefGoogle Scholar
  60. Ghosh, S., Van Westen, C. J., Carranza, E., & Jetten, V. (2009). Generation of event-based landslide inventory maps in a data-scarce environment; case study around Kurseong, Darjiling District, West Bengal, India. In P. Malet, A. Remaitre, & T. Bogaard (Eds.), Landslide processes: From geomorphologic mapping to dynamic modeling: Proceedings of the landslide processes (pp. 37–44). Strasbourg: European Centre on Geomorphological Hazards (CERG).Google Scholar
  61. Giannecchini, R., Duccio Naldini, D., Avanzi, G. D., & Puccinelli, A. (2007). Modelling of the initiation of rainfall-induced debris flows in the Cardoso basin (Apuan Alps, Italy). Quaternary International, 171, 108–117.CrossRefGoogle Scholar
  62. Glade, T. (1997). The temporal and spatial occurrence of rainstorm-triggered landslide events in New Zealand. PhD Thesis, Victoria University of Wellington, Wellington.Google Scholar
  63. Glade, T. (2001). Landslide hazard assessment and historical landslide data—An inseparable couple? In T. Glade, F. Frances, & P. Albini (Eds.), The use of historical data in natural hazard assessments (Vol. 7, pp. 153–168). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  64. Gorsevski, P. V., Jankowski, P., & Gessler, P. E. (2006). An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control and Cybernetics, 35(1), 121–146.Google Scholar
  65. Gupta, S. K. (2000). 1897 Great Assam earthquake-generated landslides: Distribution, pattern and correlation with landslide potentiality of Northeastern India. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (Vol. 2, pp. 677–682). Cardiff: Thomas Telford.Google Scholar
  66. Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study central Italy. Geomorphology, 31(1–4), 181–216.CrossRefGoogle Scholar
  67. Guzzetti, F., Crosta, G., Detti, R., & Agliardi, F. (2002). STONE: A computer programme for the three-dimensional simulation of rock-falls. Computers and Geosciences, 28, 1079–1093.CrossRefGoogle Scholar
  68. Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic Landslide hazard assessment at the basin scale. Geomorphology, 72, 272–299.CrossRefGoogle Scholar
  69. Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., & Cardinali, M. (2006). Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Science 6(1):115–131.Google Scholar
  70. Hayne, M. C., & Gordon, D. (2001). Regional landslide hazard estimation, a GIS/decision tree analysis: Southeast Queensland, Australia. In K. K. S. Ho & K. S. Li (Eds.), Geotechnical Engineering–Meeting Society’s Needs, Proceedings of the 14th Southeast Asian Geotechnical Conference,10–14 December 2001 (pp. 115–121). Hong Kong: A.A. Balkema.Google Scholar
  71. Heckerman, D. E. (1986). Probabilistic interpretation of MYCIN’s certainty factors. In Reading in uncertain reasoning (pp. 298–312). San Francisco: Morgan Kaufmann Publishers Inc.Google Scholar
  72. Highland, L. M., & Bobrowsky, P. (2008). The landslide handbook—A guide to understanding landslides (p. 129). Reston: U.S. Geological Survey Circular 1325.Google Scholar
  73. Holm, K., Bovis, M., & Jakob, M. (2004). The landslide response of alpine basins to post-Lille Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology, 57, 201–216 Honolulu, HI. Gen. Tech. Rep. WO-26. Washington, DC: U.S. Department of Agriculture, Forest Service: 401–420.CrossRefGoogle Scholar
  74. Hungr, O. (2005). Classification and terminology. In M. Jakob & O. Hungr (Eds.), Debris flow hazard and related phenomena. Heidelberg: Springer.Google Scholar
  75. Hutchinson, J. N. (1995). Landslide hazard assessment (Vol. 1, pp. 1805–1842). In Proc VI Int Symp on Landslides, Christchurch.Google Scholar
  76. Hutchinson, J. N., & Bromhead, E. N. (2002). Isle of Wight landslides. In R. G. McInnes & J. Jakeways (Eds.), Instability planning and management (pp. 3–72). Isle of Wight: Thomas Telford.Google Scholar
  77. Jibson, R. (2000). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58, 271–289.CrossRefGoogle Scholar
  78. Jibson, R. W., Harp, E. L., & Michael, J. A. (2000). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58, 271–289.CrossRefGoogle Scholar
  79. Jonasson, C., Nyberg, R., & Rapp, A. (1997). Dating of rapid mass movements in Scandinavia: Talus rockfalls, large rockslides, debris flows and slush avalanches. In J. A. Matthews, D. Brunsden, B. Frenzel, B. Gläser, & M. M. Weiß (Eds.), Rapid mass movement as a source of climatic evidence for the Holocene (Vol. 12, pp. 267–282). Stuttgart, Jena, Lübeck and Ulm: Gustav Fischer Verlag.Google Scholar
  80. Jones, C. L., Higgins, J. D., & Andrew, R. D. (2000). Colorado rockfall simulation programme. Denver: Colorado Department of Transportation.Google Scholar
  81. Kamai, T., Kobayashi, Y., Jinbo, C., & Shuzui, H. (2000). Earthquake risk assessments of fill-slope instability in urban residential areas in Japan. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.).Google Scholar
  82. Kanungo, D. P., Arora, M. K., Sarkar, B. S., & Gupta, R. P. (2006). A comparative study of conventional ANN black box fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85, 347–366.CrossRefGoogle Scholar
  83. Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398–408.CrossRefGoogle Scholar
  84. Kim, W. Y., Chae, B. G., Kim, K. S., & Cho, Y. C. (2001). Approach to quantitative prediction of landslides on natural mountain slopes, Korea. In K. K. S. Ho & K. S. Li (Eds.), Geotechnical Engineering—Meeting Society’s Needs, Proceedings of the 14th Southeast Asian Geotechnical Conference, 10–14 December 2001 (pp. 795–799). Hong Kong: A.A. Balkema.Google Scholar
  85. Korup, O. (2003). Landslide-induced river disruption—Geomorphic imprints and scaling effects in alpine catchments of South Westland and Fiordland, New Zealand. Unpubl. PhD thesis. Victoria, University of Wellington, p. 314.Google Scholar
  86. Larsen, M. C., & Torres-Sanchez, A. J. (1998). The frequency and distribution of recent landslides.Google Scholar
  87. Lee, E. M., & Clark, A. R. (2000). The use of archive records in landslide risk assessment: historical landslide events on the Scarborough coast, UK. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 905–910). Cardiff: Thomas Telford.Google Scholar
  88. Lee, S., & Pradhan, B. (2006). Probabilistic landslide hazard and risk mapping on Penang Island, Malaysia. Journal of Earth System Science, 115, 661–672.  https://doi.org/10.1007/s12040-006-0004-0.CrossRefGoogle Scholar
  89. Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.CrossRefGoogle Scholar
  90. Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50, 847–855.CrossRefGoogle Scholar
  91. Lee, C. F., Ye, H., Yeung, M. R., Shan, X., & Chen, G. (2001). AIGIS-based methodology for natural terrain landslide susceptibility mapping in Hong Kong. Episodes, 24(3), 150–159.Google Scholar
  92. Lee, S., Chwae, U., & Min, K. D. (2002). Landslide susceptibility mapping by correlation between topography and geological structure: The Janghung area, Korea. Geomorphology, 46, 149–162.CrossRefGoogle Scholar
  93. Lee, S., Ryu, J. H., Min, K. D., & Won, J. S. (2003). Landslide susceptibility analysis using GIS and artificial neural network. Earth Surface Processes and Landforms, 27, 1361–1376.CrossRefGoogle Scholar
  94. Lee, S., Choi, J., & Woo, I. (2004). The effect of spatial resolution on the accuracy of landslide susceptibility mapping: A case study in Boun, Korea. Geosciences Journal, 8, 51–60.CrossRefGoogle Scholar
  95. Lee, S., Ryu, J. H., & Kim, I. S. (2007). Landslide susceptibility analysis and its verification using likelihood ratio logistic regression and artificial neural network models: Case study of Youngin Korea. Landslides, 4, 327–338.CrossRefGoogle Scholar
  96. Li, C., Ma, T., Sun, L., Li, W., & Zheng, A. (2011). Application and verification of fractal approach to landslide susceptibility mapping. Natural Hazards. https://doi.org/101007/s11069-011-9804-x.
  97. Lorente, A., Garcia-Ruiz, J. M., Begueria, S., & Arnaez, J. (2002). Factors explaining the spatial distribution of hill slope debris flow: A case study in the flysch sector of the central Spanish Pyrenees. Mountain Research and Development, 22, 32–39.CrossRefGoogle Scholar
  98. Maharaj, R. J. (1993). Landslide processes and landslide susceptibility analysis from an upland watershed: A case study from St. Andrew, Jamaica, West Indies. Engineering Geology, 34, 53–79.CrossRefGoogle Scholar
  99. Maiti, R. (2007). Identification of potential slope failure zones of shiv-khola watershed; Darjiling Himalaya, through critical analysis of slope instability—A step towards rational and scientific management of land, soil and water. UGC sponsored minor research project [F.31-210/2005 (31.03.2007)].Google Scholar
  100. Mancini, F., Ceppi, C., & Ritrovato, G. (2010). GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Natural Hazards and Earth System Sciences, 10, 1851–1864.  https://doi.org/10.5194/nhess-10-1851-2010.CrossRefGoogle Scholar
  101. Mandal, S., & Maiti, R. (2013). Integrating the Analytical Hierarchy Process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed, Darjeeling Himalaya. International Journal of Disaster Risk Science, 4(4), 200–212.CrossRefGoogle Scholar
  102. Mandal, B., & Mandal, S. (2016). Assessment of mountain slope instability in the Lish River basin of Eastern Darjeeling Himalaya using frequency ratio model (FRM). Modeling Earth Systems and Environment, 2, 121.CrossRefGoogle Scholar
  103. Mansouri Daneshvar, M. R. (2014). Landslide susceptibility zonation using analytical hierarchy process and GIS for the Bojnurd region, northeast of Iran. Landslides, 11, 1079–1091.CrossRefGoogle Scholar
  104. Mark, R. K., & Ellen, S. D. (1995). Statistical and Simulation Models for mapping Debris-flow hazard. In A. Carrara & F. Guzzetti (Eds.), Geographical information systems in assessing natural hazards (Vol. 5, pp. 93–106). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  105. Martinez, J. M., Avila, G., Agudelo, A., Schuster, R. L., Casadevall, T. J., & Scott, K. M. (1995). Landslides and debris flows triggered by the 6 June 1994 Paez earthquake, southwestern Columbia. Landslide News, 9, 13–15.Google Scholar
  106. Meng, X., Derbyshire, E., & Du, Y. (2000). Landslide hazard in the eastern part of Gansu Province, China. Zeitschrift der Geologischen Gesellschaft, 151, 31–47.Google Scholar
  107. Moeyersons, J., Tre’fois, P. H., Lavreau, J., Alimasi, D., Badriyo, I., Mitima, B., Mundala, M., Munganga, D. O., & Nahimana, L. (2004). A geomorphological assessment of landslide origin at Bukavu, Democratic Republic of the Congo. Engineering Geology, 72, 73–87.CrossRefGoogle Scholar
  108. Mondal, S., & Maiti, R. (2012). Landslide susceptibility analysis of Shiv-Khola watershed, Darjiling: A remote sensing & GIS based Analytical Hierarchy Process (AHP). Journal of the Indian Society of Remote Sensing, 40, 483–496.CrossRefGoogle Scholar
  109. Mondal, S., & Mandal, S. (2017). Application of frequency ratio (FR) model in spatial prediction of landslides in the Balason River Basin, Darjeeling Himalaya. Spatial Information Research, 25(3), 337–350.  https://doi.org/10.1007/s41324-017-0101-y.CrossRefGoogle Scholar
  110. Monma, K., Kojima, S., & Kobayashi, T. (2000). Rock slope monitoring and rock fall prediction. Landslide News, 13, 33–35.Google Scholar
  111. Moreiras, S. (2004). Landslide incidence zonation in the Rio Mendoza valley, Mendoza Province, morphometry and typology in two zones, Calabria, Italy. Bulletin of the International Association of Engineering Geology, 16, 8–13.Google Scholar
  112. Moser, M. (2002). Geotehnical aspects of landslides in the Alps. In J. Rybar, J. Stemberk, & P. Wagner (Eds.), Landslides, 24–26 June 2002, Prague, Czech Republic (pp. 23–44). Rotterdam: A.A.Balkema.Google Scholar
  113. Mousavi, S. Z., Kavian, A., Soleimani, K., Mousavi, S. R., & Shirzadi, A. (2011). GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics Natural Hazards and Risk, 2, 33–50.CrossRefGoogle Scholar
  114. Naranjo, J. L., van Westen, C. J., & Soeters, R. (1994). Evaluating the use of training areas in bivariate statistical landslide hazard analysis—A case study in Columbia. ITC Journal, 3.Google Scholar
  115. NDMA. (2009). Management of Landslides and Snow Avalanches, National Disaster Management Authority (NDMA) Government of India New Delhi, 144.Google Scholar
  116. Page, M. J., Trustrum, N. A., & Dymond, J. R. (1994). Sediment budget to assess the geomorphic effect of a cyclonic storm, New Zealand. Geomorphology, 9, 169–188.CrossRefGoogle Scholar
  117. Panizza, M., Pasuto, A., Silvano, S., & Soldati, M. (1996). Temporal occurrence and activity of Perugia, 27 June–1 July 1988 (CNR-ESNSF), 205-224.Google Scholar
  118. Pistocchi, A., Luzi, L., & Napolitano, P. (2002). The use of predictive modeling techniques for optimal exploitation of spatial databases: A case study in landslide hazard mapping with expert system-like methods. Environmental Geology, 41, 765–775.CrossRefGoogle Scholar
  119. Pradhan, B. (2010). Remote sensing and GIS-based landslide hazard analysis and cross validation using multivariate logistic regression model on three test areas in Malaysia. Advances in Space Research, 45, 1244–1256.CrossRefGoogle Scholar
  120. Pradhan, B., & Lee, S. (2009). Delineation of landslide hazard areas using frequency ratio logistic regression and artificial neural network model at Penang Island Malaysia. Environmental Earth Science, 60, 1037–1054.CrossRefGoogle Scholar
  121. Rautelal, P., & Lakheraza, R. C. (2000). Landslide risk analysis between Giri and Tons Rivers in Himachal Himalaya, India. International Journal of Applied Earth Observation and Geoinformation, 2, 153–160.CrossRefGoogle Scholar
  122. Rickenmann, D., & Chen, C. L. (2003). Debris-flow hazard mitigation: Mechanics, prediction and assessment, 10–12 September 2003, Davos, Switzerland (p. 1335). Rotterdam: Millpress.Google Scholar
  123. Saaty, T. L. (1980). The analytical hierarchy process (p. 350). New York: McGraw Hill.Google Scholar
  124. Saaty, T. L. (1990). The analytical hierarchy process: planning, priority setting, resource allocation (1st ed.p. 502). Pittsburgh: RWS Publication.Google Scholar
  125. Saaty, T. L. (1994). Fundamentals of decision making and priority theory with analytic hierarchy process (1st ed.p. 527). Pittsburgh: RWS Publication.Google Scholar
  126. Sabto, M. (1991). Probabilistic modeling applied to landslides in Central Colombia using GIS procedures. Unpublished MSc thesis, ITC, Enschede, Netherlands, p. 26.Google Scholar
  127. Saha, A. K., Gupta, R. P., Sarkar, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides, 2, 61–69.CrossRefGoogle Scholar
  128. Sarkar, S. (1999a). Landslides in Darjeeling Himalayas, India. Transactions, Japanese Geomorphological Union, 20, 299–315.Google Scholar
  129. Sarkar, S. (1999b). Landslides in Darjiling Himalayas. Transactions, Japanese Geomorphological Union, 20(3), 299–315.Google Scholar
  130. Sarkar, S., Kanungo, D., Patra, A., & Kumar, P. (2006). Disaster mitigation of debris flows, slope failures and landslides, GIS based landslide susceptibility mapping—A case study in Indian Himalaya (pp. 617–624). Tokyo: Universal Academy Press.Google Scholar
  131. Schmidt, K. H., & Beyer, I. (2001). Factors controlling mass movement susceptibility on the Wellenkalk-scarp in Hesse and Thuringia. Zeitschrift für Geomorphologie, Supplementband, 125, 43–63.Google Scholar
  132. Schmidt, K. H., & Beyer, I. (2003). High magnitude landslide-events on a limestone-scarp in central Germany—Morphometric characteristics and climatic controls. Geomorphology, 49, 323–342.CrossRefGoogle Scholar
  133. Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R. & Schaub, T. (2001). Root cohesion variability and shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal 38(1): 995–1024.Google Scholar
  134. Schoeneich, P., & Bouzou, I. (1996). Landslides in Niger (West Africa). In Senneset (Ed.), Landslides (pp. 1967–1972). Rotterdam: Balkema.Google Scholar
  135. Sharpe, C. F. S. (1938). Landslides and related phenomena. New York: Columbia University Press.Google Scholar
  136. Shorthliffe, E. H., & Buchanan, G. G. (1975). A model of inexact reasoning in medicine. Mathematical Biosciences, 23, 351–379.CrossRefGoogle Scholar
  137. Shroder, J. F., & Bishop, M. P. (1998). Mass Movement in the Himalaya: New insights and research directions. Geomorphology, 26, 13–35.CrossRefGoogle Scholar
  138. Soeters, R., & van Westen, C. J. (1996). Slope instability, recognition, analysis and zonation. In A. K. Turner & R. L. Schuster (Eds.), Landslide: investigations and mitigation. Special Report 247. Transportation Research Board. National Research Council (pp. 129–177). Washington, D.C.: National Academy Press.Google Scholar
  139. Song, Y., Gong, J., Gao, S., Wang, D., Cui, T., Li, Y., & Wei, B. (2012). Susceptibility assessment of earthquake induced landslides using Bayesian network: A case study in Beichuan China. Computational Geosciences, 42, 189–199.CrossRefGoogle Scholar
  140. Spang, R. M., & Sonser, T. (1995). Optimized rockfall protection by ‘Rockfall’. In T. Fuji (Ed.), 8, International Congress on Rock Mechanics (Tokyo, Japan) (pp. 1233–1242).Google Scholar
  141. Starkel, L. (1972). The role of catastrophic rainfall in the shaping of the relief of the Lower Himalaya (Darjeeling Hills). Geographia Polonica, 21, 103–147.Google Scholar
  142. Starkel, L., & Basu, S. R. (2000). Rains, landslides and floods in the Darjiling Himalayas. New Delhi: Indian Science Academy.Google Scholar
  143. Stead, D. S., Eberhardt, E., Coggan, J., & Bemko, B. (2001). Advanced numerical techniques in rock slope stability analysis—Application and limitations. In M. Kuhne, H. H. Einstein, E. Krauter, H. Klapperich, & R. Pottler (Eds.), Landslides-causes, impacts and counter measures, 17–21 June 2001. Davos: Verlag Gluckauf Essen.Google Scholar
  144. Swanson, F. J., & Dyrness, C. T. (1975). Impact of clearcutting and road construction on soil erosion by Landslides in the Western Cascade Range, Oregon. Geology, 3, 393–396.CrossRefGoogle Scholar
  145. Tang, C., & Grunert, J. (1999). Inventory of landslides triggered by the 1996 Lijiang earthquake, Yunnan Province, China. Transactions, Japanese Geomorphological Union, 20, 335–349.Google Scholar
  146. Tavares, A. O., & Soares, A. F. (2002). Instability relevance on land use planning in Coimbra municipality (Portugal). In R. G. McInnes & J. Jakeways (Eds.), Instability planning and management (pp. 177–184). Isle of Wight: Thomas Telford.Google Scholar
  147. Tazik, E., Jahantab, Z., Bakhtiari, M., Rezaei, A., & Alavipanah, S. K. (2014). Landslide susceptibility mapping by combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process in Dozain basin, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W3, 2014. In 1st ISPRS International Conference on Geospatial Information Research, 15–17 November 2014, Iran: Tehran.Google Scholar
  148. The Hindu. (2015). 30 killed in Darjeeling landslides. New Delhi: The Hindu.Google Scholar
  149. Tibaldi, A., Ferrari, L., & Pasquare, G. (1995). Landslides triggered by earthquakes and their relations with faults and mountain slope geometry—An example from Ecuador. Geomorphology, 11, 215–226.CrossRefGoogle Scholar
  150. Twidale, C. R. (2000). The Lochiel landslip, a mass movement developing in 1974 but originating 600–700 million years earlier. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in union (Vol. 20, pp. 317–333).Google Scholar
  151. Uromeihy, A. (2000). Use of landslide hazard zonation map in the evaluation of slope instability in the Jiroft-dam watershed. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 1501–1508). Cardiff: Thomas Telford.Google Scholar
  152. van Westen, C. J., & Getahun, L. F. (2003). Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology, 54, 77–89.CrossRefGoogle Scholar
  153. van Westen, C. J., Rengers, N., Terlien, M. T. J., & Soeters, R. (1997). Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geologische Rundschau, 86(2), 404–414.CrossRefGoogle Scholar
  154. van Westen, C. J., Van Asch, T. W. J., & Soeters, R. (2006). Landslide zonation and risk hazard—Why is it still so difficult? Bulletin Engineering Geology and Environment, 65, 167–184.Google Scholar
  155. Varnes, D. J. (1978). Slope movement types and processes. In: Schuster, R. L, & Krizek, R. J. (Eds.), Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, (pp. 11–33). Washington, DC.Google Scholar
  156. Varnes, D. J. (1984). Landslide Hazard Zonation: A review of principles and practice, Commission on Landslides of the IAEG, UNESCO. Natural Hazards, 3, 61.Google Scholar
  157. Wan, S. (2012) Entropy-based particle swarm optimization with clustering analysis on landslide susceptibility mapping. Environmental Earth Sciences. https://doi.org/101007/s12665-012-1832-7.
  158. Wieczorek, G. F., & Naeser, N. D. (2000). Proceeding of the Second International Conference on Debris-flow hazard mitigation, 16-18 August 2000 Debris-flow hazard mitigation: Mechanics, prediction and Assessment, Taipei, Taiwan (p. 608). Rotterdam: Balkema.Google Scholar
  159. Wu, C. H., & Chen, S. C. (2009). Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy process method. Geomorphology, 11, 190–204.CrossRefGoogle Scholar
  160. Xie, M., Esaki, T., & Cai, M. (2004). A GIS-based method for locating the critical 3D slip surface in a slope. Computers and Geotechnics, 31, 267–277.CrossRefGoogle Scholar
  161. Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed China. Geomorphology, 145–146, 70–80.CrossRefGoogle Scholar
  162. Yamagami, T., Jiang, J. C., & Yokino, K. (2001). An identification of DEM parameters for rock fall analysis. In K. K. S. Ho & K. S. Li (Eds.), Geotechnical Engineering-Meeting Society’s Needs, Proceedings of the 14th South East Asian Geotechnical Conference, 10–14 December 2001 (pp. 953–958). Hong Kong: A.A. Balkema.Google Scholar
  163. Yu, F. C., Che, T. C., Lin, K. L., Chen, C. Y., & Yu, W. H. (2006). Landslides and rainfall characteristics analysis in Taipei city during the Typhoon Nari event. Natural Hazards, 37, 153–167.CrossRefGoogle Scholar
  164. Zezere, J. L. (2002). Landslide susceptibility assessment considering landslide typology, a case study in the area north of Lisbon (Portugal). Natural Hazards and Earth System Sciences, 2, 73–82.CrossRefGoogle Scholar
  165. Zhou, C. H., Lee, C. F., Li, J., & Xu, Z. W. (2002). On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology, 43, 197–207.CrossRefGoogle Scholar
  166. Zorn, M., & Komac, B. (2004). Deterministic modeling of landslide and rockfall risk. Acta Geographica Slovenica, 44, 53–100.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Sujit Mandal
    • 1
  • Subrata Mondal
    • 2
  1. 1.Department of GeographyDiamond Harbour Women’s UniversitySarishaIndia
  2. 2.University of Gour BangaMokdumpurIndia

Personalised recommendations