Gravitaxis in Flagellates and Ciliates

  • Donat-Peter Häder
  • Ruth Hemmersbach
Part of the SpringerBriefs in Space Life Sciences book series (BRIEFSSLS)


Motile microorganisms such as flagellates and ciliates use the gravity vector of the Earth to adjust their position in the water column. Oriented movement by gravity is called gravitaxis and can be positive (downward swimming) or negative (upward swimming). In addition, some ciliates modify their velocity according to the swimming direction (gravikinesis). Earth-bound research and experimentation under simulated and real microgravity have revealed that a heavy mass such as a statolith or the whole cell content presses onto a gravireceptor which perceives the signal. In some cases mechanosensitive ion channels have been identified as gravireceptors. The activation of the receptor results in a cascade of reactions which amplify the signal and result in a steering response changing the direction of movement.


Ciliates Flagellates Gravitaxis Gravikinesis Mechanosensitive ion channels Sensory transduction chain 


  1. Adler EM (2013) Bacteria under pressure, calcium channel internalization, and why cockroaches avoid glucose-baited traps. J Gen Physiol 142:1–2PubMedPubMedCentralCrossRefGoogle Scholar
  2. Barlow PW (1995) Gravity perception in plants: a multiplicity of systems derived by evolution? Plant Cell Environ 18:951–962PubMedCrossRefGoogle Scholar
  3. Batschelet E (1981) Circular statistics in biology. Academic Press, LondonGoogle Scholar
  4. Bräucker R, Cogoli A, Hemmersbach R (2001) Graviperception and graviresponse at the cellular level. In: Baumstark-Khan C, Horneck G (eds) Astrobiology: the quest for the conditions of life. Springer Verlag, Berlin, pp 284–297Google Scholar
  5. Cai Y, Nagel DJ, Zhou Q, Cygnar KD, Zhao H, Li F, Pi X, Knight PA, Yan C (2015) Role of cAMP-phosphodiesterase 1C signaling in regulating growth factor receptor stability, vascular smooth muscle cell growth, migration, and neointimal hyperplasia. Circ Res 116:1120–1132PubMedPubMedCentralCrossRefGoogle Scholar
  6. Callow ME, Callow JA, Pickett-Heaps JD, Wetherbee R (1997) Primary adhesion of Enteromorpha (Chlorophyta, Ulvales) propagules: quantitative settlement studies and video microscopy. J Phycol 33:938–947CrossRefGoogle Scholar
  7. Cameron R, Baillie GS (2012) cAMP-specific phosphodiesterases: modulation, inhibition, and activation. In: Botana LM, Loza M (eds) Therapeutic targets: modulation, inhibition, and activation. Wiley, Hoboken, NJ, p 1Google Scholar
  8. Chang SC, Kaufman PB (2000) Effects of staurosporine, okadaic acid and sodium fluoride on protein phophorylation in graviresponding oat shoot pulvini. Plant Physiol Biochem 38:315–323PubMedCrossRefGoogle Scholar
  9. Clegg MR, Maberly SC, Jones RI (2003) Chemosensory behavioural response of freshwater phytoplanktonic flagellates. Plant Cell Environ 27:123–135CrossRefGoogle Scholar
  10. Daiker V, Häder D-P, Lebert M (2010) Molecular characterization of calmodulins involved in the signal transduction chain of gravitaxis in Euglena. Planta 231:1229–1236PubMedCrossRefGoogle Scholar
  11. Daiker V, Häder D-P, Richter RP, Lebert M (2011) The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis. Planta 233:1055–1062PubMedCrossRefGoogle Scholar
  12. Dennison DS, Shropshire W Jr (1984) The gravireceptor of Phycomyces. Its development following gravity exposure. J Gen Physiol 84:845–859PubMedCrossRefGoogle Scholar
  13. Eggersdorfer B, Häder D-P (1991) Phototaxis, gravitaxis and vertical migrations in the marine dinoflagellate Prorocentrum micans. FEMS Microbiol Ecol 85:319–326CrossRefGoogle Scholar
  14. Favaro E, Granata R, Miceli I, Baragli A, Settanni F, Perin PC, Ghigo E, Camussi G, Zanone M (2012) The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK) 1/2 and cAMP/protein kinase a (PKA) signalling pathways. Diabetologia 55:1058–1070PubMedPubMedCentralCrossRefGoogle Scholar
  15. Fenchel T, Finlay BJ (1984) Geotaxis in the ciliated protozoon Loxodes. J Exp Biol 110:17–33Google Scholar
  16. Fenchel T, Finlay BJ (1986) The structure and function of Müller vesicles in loxodid ciliates. J Protozool 33:69–76CrossRefGoogle Scholar
  17. Fenchel T, Finlay BJ (1990) Oxygen toxicity, respiration and behavioural responses to oxygen in free-living anaerobic ciliates. J Gen Microbiol 136:1953–1959CrossRefGoogle Scholar
  18. Fiedler B, Börner T, Wilde A (2005) Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors. Photochem Photobiol 81:1481–1488PubMedCrossRefGoogle Scholar
  19. Finlay BJ, Tellez C, Esteban G (1993) Diversity of free-living ciliates in the sandy sediment of a Spanish stream in winter. J Gen Microbiol 139:2855–2863CrossRefGoogle Scholar
  20. Fraenkel GS, Gunn DL (1961) The orientation of animals (Kineses, taxes and compass reactions). Dover Publication, New YorkGoogle Scholar
  21. Friedrich ULD, Joop O, Pütz C, Willich G (1996) The slow rotating centrifuge microscope NIZEMI – a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science. J Biotechnol 47:225–238PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fukui K, Asai H (1985) Negative geotactic behavior of Paramecium caudatum is completely described by the mechanism of buoyancy-oriented upward swimming. Biophys J 47:479–482PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gebauer M, Watzke D, Machemer H (1999) The gravikinetic response of Paramecium is based on orientation-dependent mechanotransduction. Naturwissenschaften 86:352–356PubMedCrossRefGoogle Scholar
  24. Häder D-P (1991) Strategy of orientation in flagellates. In: Riklis E (ed) Photobiology. Springer, Boston, MA, pp 497–510CrossRefGoogle Scholar
  25. Häder D-P (1997) Gravitaxis and phototaxis in the flagellate Euglena studied on TEXUS missions. In: Cogoli A, Friedrich U, Mesland D, Demets R (eds) Life science experiments performed on sounding rockets (1985–1994). ESA Publications Division, Noordwijk, pp 77–79Google Scholar
  26. Häder D-P (2017) Image analysis for bioassays – the basics. In: Häder D-P, Erzinger GS (eds) Bioassays: advanced methods and applications. Elsevier, Atlanta, GA, pp 69–98Google Scholar
  27. Häder D-P, Erzinger GS (2015) Advanced methods in image analysis as potent tools in online biomonitoring of water resources. Recent Pat Top Imaging 5:112–118CrossRefGoogle Scholar
  28. Häder D-P, Hemmersbach R (1997) Graviperception and graviorientation in flagellates. Planta 203:7–10CrossRefGoogle Scholar
  29. Häder D-P, Iseki M (2017) Photomovement in Euglena. In: Schwartzbach S, Shigeoka S (eds) Euglena: biochemistry, cell and molecular biology. Springer, Cham, pp 207–235CrossRefGoogle Scholar
  30. Häder D-P, Lebert M (1985) Real time computer-controlled tracking of motile microorganisms. Photochem Photobiol 42:509–514PubMedCrossRefPubMedCentralGoogle Scholar
  31. Häder D-P, Lebert M (1998) Mechanism of gravitactic signal perception and signal transduction of Euglena gracilis. Micrograv News 11:14Google Scholar
  32. Häder D-P, Lebert M (2000) Real-time tracking of microorganisms. In: Häder D-P (ed) Image analysis: methods and applications. CRC Press, Boca Raton, pp 393–422CrossRefGoogle Scholar
  33. Häder D-P, Lebert M (2001) Graviperception and gravitaxis in algae. Adv Space Res 27:861–870PubMedCrossRefPubMedCentralGoogle Scholar
  34. Häder D-P, Lebert M (2002) Graviorientation in flagellates. Proceedings 2nd China-Germany workshop on microgravity sciences, National Microgravity Laboratory, Chinese Academy of Sciences, Dunhuang, Beijing, China, September 1–3, 2002Google Scholar
  35. Häder D-P, Liu SM (1990) Effects of artificial and solar UV-B radiation on the gravitactic orientation of the dinoflagellate, Peridinium gatunense. FEMS Microbiol Ecol 73:331–338CrossRefGoogle Scholar
  36. Häder D-P, Vogel K (1991) Simultaneous tracking of flagellates in real time by image analysis. J Math Biol 30:63–72CrossRefGoogle Scholar
  37. Häder D-P, Vogel K, Schäfer J (1990) Responses of the photosynthetic flagellate, Euglena gracilis, to microgravity. Appl Micrograv Technol 3:110–116Google Scholar
  38. Häder D-P, Rosum A, Schäfer J, Hemmersbach R (1996) Graviperception in the flagellate Euglena gracilis during a shuttle space flight. J Biotechnol 47:261–269PubMedCrossRefPubMedCentralGoogle Scholar
  39. Häder D-P, Porst M, Tahedl H, Richter P, Lebert M (1997) Gravitactic orientation in the flagellate Euglena gracilis. Microgravity Sci Technol 10:53–57Google Scholar
  40. Häder D-P, Lebert M, Richter P (1999) Gravitaxis and graviperception in flagellates and ciliates. Proceedings 14th ESA symposium on European rocket and balloon programmes and related research (ESA SP-437), Potsdam, GermanyGoogle Scholar
  41. Häder D-P, Lebert M, Richter P, Ntefidou M (2003) Gravitaxis and graviperception in flagellates. Adv Space Res 31:2181–2186PubMedCrossRefGoogle Scholar
  42. Häder D-P, Hemmersbach R, Lebert M (2005a) Gravity and the behavior of unicellular organisms. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Häder D-P, Richter P, Daiker V, Lebert M (2005b) Molecular transduction chain for graviorientation in flagellates. ELGRA News 24:74Google Scholar
  44. Häder D-P, Richter P, Ntefidou M, Lebert M (2005c) Gravitational sensory transduction chain in flagellates. Adv Space Res 36:1182–1188CrossRefGoogle Scholar
  45. Häder D-P, Richter P, Lebert M (2006) Signal transduction in gravisensing of flagellates. Signal Transduct 6:422–431CrossRefGoogle Scholar
  46. Häder D-P, Richter P, Schuster M, Daiker V, Lebert M (2009) Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: involvement of a transient receptor potential-like channel and a calmodulin. Adv Space Res 43:1179–1184CrossRefGoogle Scholar
  47. Häder D-P, Faddoul J, Lebert M, Richter P, Schuster M, Richter R, Strauch SM, Daiker V, Sinha R, Sharma N (2010) Investigation of gravitaxis and phototaxis in Euglena gracilis. In: Sinha R, Sharma NK, Rai AK (eds) Advances in life sciences. IK International Publishing House, New Delhi, pp 117–131Google Scholar
  48. Haupt W (1962) Geotaxis. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie. Springer-Verlag, Berlin, pp 390–395Google Scholar
  49. Hemmersbach R, Bräucker R (2002) Gravity-related behaviour in ciliates and flagellates. Adv Space Biol Med 8:59–75PubMedCrossRefGoogle Scholar
  50. Hemmersbach R, Braun M (2006) Gravity-sensing and gravity-related signaling pathways in unicellular model systems of protists and plants. Signal Transduct 6:432–442CrossRefGoogle Scholar
  51. Hemmersbach R, Donath R (1995) Gravitaxis of Loxodes and Paramecium. Eur J Protistol 31:433Google Scholar
  52. Hemmersbach R, Häder D-P (1999) Graviresponses of certain ciliates and flagellates. FASEB J 13:S69–S75PubMedCrossRefGoogle Scholar
  53. Hemmersbach R, Voormanns R, Briegleb W, Rieder N, Häder D-P (1996) Influence of accelerations on the spatial orientation of Loxodes and Paramecium. J Biotechnol 47:271–278PubMedCrossRefGoogle Scholar
  54. Hemmersbach R, Voormanns R, Bromeis B, Schmidt N, Rabien H, Ivanova K (1998) Comparative studies of the graviresponses of Paramecium and Loxodes. Adv Space Res 21:1285–1289PubMedCrossRefGoogle Scholar
  55. Hemmersbach R, Volkmann D, Häder D-P (1999) Graviorientation in protists and plants. J Plant Physiol 154:1–15PubMedCrossRefGoogle Scholar
  56. Hemmersbach-Krause R, Häder D-P (1990) Negative gravitaxis (geotaxis) of Paramecium – demonstrated by image analysis. Appl Micrograv Technol 4:221–223Google Scholar
  57. Hemmersbach-Krause R, Briegleb W, Häder D-P (1991) Dependence of gravitaxis in Paramecium on oxygen. Eur J Protistol 27:278–282PubMedCrossRefGoogle Scholar
  58. Hemmersbach-Krause R, Briegleb W, Häder D-P, Vogel K, Grothe D, Meyer I (1993) Orientation of Paramecium under the conditions of weightlessness. J Eukaryot Microbiol 40:439–446CrossRefPubMedGoogle Scholar
  59. Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida C, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051PubMedCrossRefGoogle Scholar
  60. Jarman AP, Groves AK (2013) The role of atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 24:438–447PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kessler JO, Hill NA (1997) Complementarity of physics, biology and geometry in the dynamics of swimming micro-organisms. In: Physics of biological systems. Springer, Berlin, pp 325–340CrossRefGoogle Scholar
  62. Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239:1–26PubMedCrossRefGoogle Scholar
  63. Köhler O (1921) Über die Geotaxis von Paramecium. Verhandlungen der Deutschen Zoologischen Gesellschaft 26:69–71Google Scholar
  64. Krause M (1999) Elektrophysiologie, Mechanosensitivität und Schwerkraftbeantwortung von Bursaria truncatella Diploma thesis, Fakultät für Biologie der Ruhr-Universität BochumGoogle Scholar
  65. Krause M, Bräucker R, Hemmersbach R (2010) Gravikinesis in Stylonychia mytilus is based on membrane potential changes. J Exp Biol 213:161–171PubMedCrossRefGoogle Scholar
  66. Lebert M, Häder D-P (1996) How Euglena tells up from down. Nature 379:590PubMedCrossRefGoogle Scholar
  67. Lebert M, Richter P, Porst M, Häder D-P (1996) Mechanism of gravitaxis in the flagellate Euglena gracilis. Proceedings of the 12th C.E.B.A.S.workshops. Annual issue 1996, Ruhr-University of Bochum, Bochum, GermanyGoogle Scholar
  68. Lebert M, Richter P, Häder D-P (1997) Signal perception and transduction of gravitaxis in the flagellate Euglena gracilis. J Plant Physiol 150:685–690CrossRefGoogle Scholar
  69. Lebert M, Porst M, Häder D-P (1999a) Circadian rhythm of gravitaxis in Euglena gracilis. J Plant Physiol 155:344–349PubMedCrossRefGoogle Scholar
  70. Lebert M, Porst M, Richter P, Häder D-P (1999b) Physical characterization of gravitaxis in Euglena gracilis. J Plant Physiol 155:338–343PubMedCrossRefGoogle Scholar
  71. Machemer H (1994) Gravity-dependent modulation of swimming rate in ciliates. Acta Protozool 33:53–57Google Scholar
  72. Machemer H, Bräucker R (1992) Gravireception and graviresponses in ciliates. Acta Protozool 31:185–214PubMedGoogle Scholar
  73. Machemer-Röhnisch S, Bräucker R, Machemer H (1998) Graviresponses of gliding and swimming Loxodes using step transition to weightlessness. J Eukaryot Microbiol 45:411–418PubMedCrossRefGoogle Scholar
  74. Maree AFM, Panfilov AV, Hogeweg P (1999) Migration and thermotaxis of Dictyostelium discoideum slugs, a model study. J Theor Biol 199:297–309CrossRefGoogle Scholar
  75. Moore A (1903) Some facts concerning geotropic gatherings of paramecia. Am J Physiol 9:238–244Google Scholar
  76. Naccache PH (1985) Neutrophil activation and calmodulin antagonists. In: Hidaka H, Hartshorne DJ (eds) Calmodulin antagonists and cellular physiology. Academic Press, Orlando, pp 149–160CrossRefGoogle Scholar
  77. Nasir A, Strauch S, Becker I, Sperling A, Schuster M, Richter P, Weißkopf M, Ntefidou M, Daiker V, An Y (2014) The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. Plant Biol 16:113–119PubMedCrossRefPubMedCentralGoogle Scholar
  78. Neugebauer DC, Machemer-Röhnisch S, Nagel U, Bräucker R, Machemer H (1998) Evidence of central and peripheral gravireception in the ciliate Loxodes striatus. J Comp Physiol A 183:303–311CrossRefGoogle Scholar
  79. Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464:425–458PubMedCrossRefPubMedCentralGoogle Scholar
  80. Ntefidou M, Richter P, Streb C, Lebert M, Häder D-P (2002) High light exposure leads to a sign change in gravitaxis of the flagellate Euglena gracilis. Life in space for life on earth. 8th European symposium on life sciences research in space. 23rd annual international gravitational physiology meeting, Karolinska Institutet, Stockholm, Sweden, ESA SP-501Google Scholar
  81. Piazena H, Häder D-P (1995) Vertical distribution of phytoplankton in coastal waters and its detection by backscattering measurements. Photochem Photobiol 62:1027–1034CrossRefGoogle Scholar
  82. Platt JB (1899) On the specific gravity of Spirostomum, Paramecium and the tadpole in relation to the problem of geotaxis. Am Nat 33:31CrossRefGoogle Scholar
  83. Raymont JE (2014) Plankton & Productivity in the oceans: volume 1: phytoplankton. Pergamon Press, OxfordGoogle Scholar
  84. Renart MF, Sebastian J, Mato JM (1981) Adenylate cyclase activity in permeabilized cells from Dictyostelium discoideum. Cell Biol Int Rep 5:1045–1054PubMedCrossRefGoogle Scholar
  85. Rhiel E, Häder D-P, Wehrmeyer W (1988) Diaphototaxis and gravitaxis in a freshwater Cryptomonas. Plant Cell Physiol 29:755–760PubMedGoogle Scholar
  86. Richter P, Lebert M, Korn R, Häder D-P (2001) Possible involvement of the membrane potential in the gravitactic orientation of Euglena gracilis. J Plant Physiol 158:35–39PubMedCrossRefGoogle Scholar
  87. Richter P, Ntefidou M, Streb C, Lebert M, Häder D-P (2002a) Physiological characterization of gravitaxis in Euglena gracilis. J Gravit Physiol 9:279–280Google Scholar
  88. Richter PR, Ntefidou M, Streb C, Faddoul J, Lebert M, Häder D-P (2002b) High light exposure leads to a sign change of gravitaxis in the flagellate Euglena gracilis. Acta Protozool 41:343–351Google Scholar
  89. Richter PR, Schuster M, Wagner H, Lebert M, Häder D-P (2002c) Physiological parameters of gravitaxis in the flagellate Euglena gracilis obtained during a parabolic flight campaign. J Plant Physiol 159:181–190PubMedCrossRefGoogle Scholar
  90. Richter P, Börnig A, Streb C, Ntefidou M, Lebert M, Häder D-P (2003a) Effects of increased salinity on gravitaxis in Euglena gracilis. J Plant Physiol 160:651–656PubMedCrossRefGoogle Scholar
  91. Richter P, Ntefidou M, Streb C, Lebert M, Häder D-P (2003b) The role of reactive oxygen species (ROS) in signaling of light stress. Recent Res Dev Biochem 4:957–970Google Scholar
  92. Richter PR, Streb C, Ntefidou M, Lebert M, Häder D-P (2003c) High light-induced sign change of gravitaxis in the flagellate Euglena gracilis is mediated by reactive oxygen species. Acta Protozool 42:197–204Google Scholar
  93. Richter PR, Schuster M, Meyer I, Lebert M, Häder D-P (2006) Indications for acceleration-dependent changes of membrane potential in the flagellate Euglena gracilis. Protoplasma 229:101–108PubMedCrossRefGoogle Scholar
  94. Richter PR, Häder D-P, Gonçalves RJ, Marcoval MA, Villafañe VE, Helbling EW (2007) Vertical migration and motility responses in three marine phytoplankton species exposed to solar radiation. Photochem Photobiol 83:810–817PubMedCrossRefGoogle Scholar
  95. Roberts AM (1970) Geotaxis in motile micro-organisms. J Exp Biol 53:687–699PubMedGoogle Scholar
  96. Russo E, Salzano M, De Falco V, Mian C, Barollo S, Secondo A, Bifulco M, Vitale M (2014) Calcium/calmodulin-dependent protein kinase II and its endogenous inhibitor α in medullary thyroid cancer. Clin Cancer Res 20:1513–1520PubMedCrossRefGoogle Scholar
  97. Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. In: Blaustein MP, Greger R, Grunicke H et al (eds) Reviews of physiology and biochemistry and pharmacology. Springer-Verlag, Berlin, pp 1–78Google Scholar
  98. Schwer CI, Lehane C, Guelzow T, Zenker S, Strosing KM, Spassov S, Erxleben A, Heimrich B, Buerkle H, Humar M (2013) Thiopental inhibits global protein synthesis by repression of eukaryotic elongation factor 2 and protects from hypoxic neuronal cell death. PLoS One 8:e77258PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sebastian C, Scheuerlein R, Häder D-P (1994) Graviperception and motility of three Prorocentrum strains impaired by solar and artificial ultraviolet radiation. Mar Biol 120:1–7CrossRefGoogle Scholar
  100. Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 70:6230–6239PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sineshchekov O, Lebert M, Häder D-P (2000) Effects of light on gravitaxis and velocity in Chlamydomonas reinhardtii. J Plant Physiol 157:247–254PubMedCrossRefGoogle Scholar
  102. Son YK, Li H, Jung ID, Park Y-M, Jung W-K, Kim HS, Choi I-W, Park WS (2014) The calmodulin inhibitor and antipsychotic drug trifluoperazine inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 443:321–325PubMedCrossRefGoogle Scholar
  103. Stallwitz E, Häder D-P (1994) Effects of heavy metals on motility and gravitactic orientation of the flagellate, Euglena gracilis. Eur J Protistol 30:18–24PubMedCrossRefGoogle Scholar
  104. Steck R, Hill S, Robison RA, O'Neill KL (2014) Pharmacological reversal of caffeine-mediated phagocytic suppression. Cancer Res 74:4861CrossRefGoogle Scholar
  105. Streb C, Richter P, Ntefidou M, Lebert M, Häder D-P (2002) Sensory transduction of gravitaxis in Euglena gracilis. J Plant Physiol 159:855–862CrossRefGoogle Scholar
  106. Sultana H, Neelakanta G, Rivero F, Blau-Wasser R, Schleicher M, Noegel AA (2012) Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells. BMC Dev Biol 12:3PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tahedl H, Richter P, Lebert M, Häder D-P (1998) cAMP is involved in gravitaxis signal transduction of Euglena gracilis. Microgravity Sci Technol 11:173–178Google Scholar
  108. Taylor F (1967) The occurrence of Euglena deses on the sands of the Sierra Leone peninsula. J Ecol 55:345–359CrossRefGoogle Scholar
  109. Toda H, Yazawa M, Yagi K (1992) Amino acid sequence of calmodulin from Euglena gracilis. Eur J Biochem 205:653–660PubMedCrossRefGoogle Scholar
  110. Vogel K, Häder D-P (1990) Simultaneuos tracking of flagellates in real time by image analysis. Proceedings of the fourth European symposium on life science research in space (ESA SP-307)Google Scholar
  111. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037PubMedCrossRefGoogle Scholar
  112. Wager H (1911) On the effect of gravity upon the movements and aggregation of Euglena viridis, Ehrb., and other micro-organisms. Philos Trans R Soc Lond B 201:333–390CrossRefGoogle Scholar
  113. Wang J, Sun Y, Tomura H, Okajima F (2012) Ovarian cancer G-protein-coupled receptor 1 induces the expression of the pain mediator prostaglandin E2 in response to an acidic extracellular environment in human osteoblast-like cells. Int J Biochem Cell Biol 44:1937–1941PubMedCrossRefGoogle Scholar
  114. Winet H, Jahn TL (1974) Geotaxis in protozoa: I. A propulsion-gravity model for Tetrahymena (Ciliata). J Theor Biol 46:449–465PubMedCrossRefGoogle Scholar
  115. Yoshimura K (2011) Stimulus perception and membrane excitation in unicellular alga Chlamydomonas. In: Coding and decoding of calcium signals in plants. Springer, Berlin, pp 79–91CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Donat-Peter Häder
    • 1
  • Ruth Hemmersbach
    • 2
  1. 1.Emeritus from Friedrich-Alexander UniversityErlangen-NürnbergGermany
  2. 2.Institute of Aerospace Medicine, Gravitational Biology, German Aerospace Center (DLR)CologneGermany

Personalised recommendations