Advertisement

Supply Chain Evaluation and Methodologies

  • Liliana Avelar-Sosa
  • Jorge Luis García-Alcaraz
  • Aidé Aracely Maldonado-Macías
Chapter
Part of the Management and Industrial Engineering book series (MINEN)

Abstract

This chapter discusses some of the most common supply chain evaluation methodologies in the industrial context. The chapter first addresses the use of multivariate techniques; then, we discuss the goal and the characteristics of the methods employed in this research, which include linear regression and factor analysis. The goal of this chapter is to better understand Chap.  9, which provides a comprehensive description of the methodology followed in this book to explore the impact of a series of critical success factors on supply chain performance, namely supply chain competitiveness.

References

  1. Akkermans HA, Bogerd P, Yücesan E, van Wassenhove LN (2003) The impact of ERP on supply chain management: exploratory findings from a European Delphi study. Eur J Oper Res 146(2):284–301.  https://doi.org/10.1016/S0377-2217(02)00550-7CrossRefzbMATHGoogle Scholar
  2. Arbuckle J (1997) Amos users’ guide, version 3.6. Marketing Division, SPSS Incorporated.Google Scholar
  3. Autry CW, Grawe SJ, Daugherty PJ, Richey RG (2010) The effects of technological turbulence and breadth on supply chain technology acceptance and adoption. J Oper Manag 28(6):522–536.  https://doi.org/10.1016/j.jom.2010.03.001CrossRefGoogle Scholar
  4. Avelar-Sosa L, García-Alcaraz JL, Cedillo-Campos MG (2014) Techniques and attributes used in the supply chain performance measurement: tendencies. In: García-Alcaraz JL, Maldonado-Macías AA, Cortes-Robles G (eds) Lean manufacturing in the developing world: methodology, case studies and trends from Latin America. Springer, Cham, pp 517–541.  https://doi.org/10.1007/978-3-319-04951-9_25CrossRefGoogle Scholar
  5. Barclay D, Higgins C, Thompson R (1995) The partial least squares (pls) approach to casual modeling: personal computer adoption ans use as an illustrationGoogle Scholar
  6. Batista JM, Coenders G (2000) Modelos de ecuaciones estructurales: modelos para el análisis de relaciones causales.Google Scholar
  7. Bentler PM (1985) Theory and implementation of EQS: a structural equations program. BMDP Statistical SoftwareGoogle Scholar
  8. Blalock H (1964) Causal inferences in nonexperimental research, University of North Carolina Press. citeulike-article-id:106824.Google Scholar
  9. Blome C, Paulraj A, Schuetz K (2014) Supply chain collaboration and sustainability: a profile deviation analysis. Int J Oper Prod Manag 34(5):639–663.  https://doi.org/10.1108/IJOPM-11-2012-0515CrossRefGoogle Scholar
  10. Bollen KA (1989) A new incremental fit index for general structural equation models. Sociol Methods Res 17(3):303–316.  https://doi.org/10.1177/0049124189017003004MathSciNetCrossRefGoogle Scholar
  11. Boudon R (1965) A method of linear causal analysis: dependence analysis. Am Sociol Rev 30(3):365–374.  https://doi.org/10.2307/2090717CrossRefGoogle Scholar
  12. Casas M (2002) Los modelos de ecuaciones estructurales y su aplicación en el Índice Europeo de Satisfacción del Cliente. In X Jornadas Madrid 2002-ASEPUMA. Madrid, España, pp 1–11Google Scholar
  13. Chan ATL, Ngai EWT, Moon KKL (2017) The effects of strategic and manufacturing flexibilities and supply chain agility on firm performance in the fashion industry. Eur J Oper Res 259(2):486–499.  https://doi.org/10.1016/j.ejor.2016.11.006MathSciNetCrossRefzbMATHGoogle Scholar
  14. Chin WW (1998) The partial least squares approach to structural equation modeling. Modern Methods bus Res 295(2):295–336Google Scholar
  15. Chin WW (2010) How to write up and report PLS analyses. Handbook of partial least squares, pp 655–690Google Scholar
  16. Chin WW, Marcolin BL, Newsted PR (2003) A partial least squares latent variable modeling approach for measuring interaction effects: results from a monte carlo simulation study and an electronic-mail emotion/adoption study. Inf Syst Res 14(2):189–217.  https://doi.org/10.1287/isre.14.2.189.16018CrossRefGoogle Scholar
  17. Chin WW, Newsted PR (1999) Structural equation modeling analysis with small samples using partial least squares. Statistical strategies for small sample research, 1(1):307–341Google Scholar
  18. Diamantopoulos A (2008) Formative indicators: introduction to the special issue. J Bus Res 61(12):1201–1202CrossRefGoogle Scholar
  19. Duncan OD (1966) Path analysis: sociological examples. Am J Sociol 72(1):1–16.  https://doi.org/10.1086/224256CrossRefGoogle Scholar
  20. Fornell C (1982) A second generation of multivariate analysis. 2. Measurement and evaluation, vol 2. PraegerGoogle Scholar
  21. Fornell C (1983) Issues in the application of covariance structure analysis: a comment. J Consum Res 9(4):443–448CrossRefGoogle Scholar
  22. Fornell C, Larcker DF (1981) Evaluating structural equation models with unobservable variables and measurement error. J Market Res 18(1):39–50.  https://doi.org/10.2307/3151312CrossRefGoogle Scholar
  23. García Ochoa JJ, León Lara JdD, Nuño de la Parra JP (2017) Propuesta de un modelo de medición de la competitividad mediante análisis factorial. Contaduría y Administración 62(3):775–791.  https://doi.org/10.1016/j.cya.2017.04.003CrossRefGoogle Scholar
  24. Gefen D, Straub D, Boudreau M-C (2000) Structural equation modeling and regression: guidelines for research practice. Commun Assoc Inf Syst 4(1):7Google Scholar
  25. Govindan K, Azevedo SG, Carvalho H, Cruz-Machado V (2015) Lean, green and resilient practices influence on supply chain performance: interpretive structural modeling approach. Int J Environ Sci Technol 12(1):15–34.  https://doi.org/10.1007/s13762-013-0409-7CrossRefGoogle Scholar
  26. Haenlein M, Kaplan AM (2004) A beginner’s guide to partial least squares analysis. Underst Stat 3(4):283–297.  https://doi.org/10.1207/s15328031us0304_4CrossRefGoogle Scholar
  27. Hair JF, Anderson RE, Hair JF, Tatham R (2009) Análisis multivariante, texto en línea, consultado el 4Google Scholar
  28. Hair JF, Anderson RE, Tatham RL, Black WC (1999) Análisis multivariante, vol 491. Prentice Hall MadridGoogle Scholar
  29. Hair JF, Ringle CM, Sarstedt M (2013) Partial least squares structural equation modeling: rigorous applications, better results and higher acceptance.CrossRefGoogle Scholar
  30. Hair JF, Sarstedt M, Ringle CM, Mena JA (2012) An assessment of the use of partial least squares structural equation modeling in marketing research. J Acad Market Sci 40(3):414–433.  https://doi.org/10.1007/s11747-011-0261-6CrossRefGoogle Scholar
  31. Jin Y, Vonderembse M, Ragu-Nathan TS, Smith JT (2014) Exploring relationships among IT-enabled sharing capability, supply chain flexibility, and competitive performance. International Journal of Production Economics 153 (Supplement C):24–34.  https://doi.org/10.1016/j.ijpe.2014.03.016CrossRefGoogle Scholar
  32. Jöreskog KG (1988) Analysis of covariance structures. In: Nesselroade JR, Cattell RB (eds) Handbook of multivariate experimental psychology. Springer US, Boston, MA, pp 207–230.  https://doi.org/10.1007/978-1-4613-0893-5_5CrossRefGoogle Scholar
  33. Jöreskog KG, Sörbom D (1986) LISREL VI: analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods. Scientific SoftwareGoogle Scholar
  34. Jöreskog KG, van Thillo M (1973) Lisrel: a general computer program for estimating a linear structural equation system.Google Scholar
  35. Kim D, Cavusgil ST, Cavusgil E (2013) Does IT alignment between supply chain partners enhance customer value creation? An empirical investigation. Indust Market Manag 42(6):880–889.  https://doi.org/10.1016/j.indmarman.2013.05.021CrossRefGoogle Scholar
  36. Kline RB (2005) Methodology in the social sciences. Principles and practice of structural equation modeling. Guilford Press, New YorkGoogle Scholar
  37. Lévy-Mangin JP, Varela J (2006) Modelización con estructuras de covarianzas en ciencias sociales. Temas esenciales, avanzados y aportaciones especiales. A Coruña, NetbibloCrossRefGoogle Scholar
  38. Lévy J-P, Varela J (2003) Análisis multivariable para las ciencias sociales. Editorial Pearson Educación, MadridGoogle Scholar
  39. Loehlin JC (1998) Latent variable models: an introduction to factor, path, and structural analysis. Lawrence Erlbaum Associates PublishersGoogle Scholar
  40. Loehlin JC, Beaujean AA (2016) Latent variable models: an introduction to factor, path, and structural equation analysis. Taylor & FrancisGoogle Scholar
  41. Lomax RG, Schumacker RE (2012) A beginner’s guide to structural equation modeling. Routledge Academic New York, NYzbMATHGoogle Scholar
  42. Lu C-S, K-h Lai, Cheng TCE (2007) Application of structural equation modeling to evaluate the intention of shippers to use Internet services in liner shipping. Eur J Oper Res 180(2):845–867.  https://doi.org/10.1016/j.ejor.2006.05.001CrossRefzbMATHGoogle Scholar
  43. Lu X-H, Huang L-H, Heng MSH (2006) Critical success factors of inter-organizational information systems—a case study of Cisco and Xiao Tong in China. Inf Manag 43(3):395–408.  https://doi.org/10.1016/j.im.2005.06.007CrossRefGoogle Scholar
  44. Mangla S, Madaan J, Sarma PRS, Gupta MP (2014) Multi-objective decision modelling using interpretive structural modelling for green supply chains. Int J Logistics Syst Manag 17(2):125–142CrossRefGoogle Scholar
  45. Montgomery DC, Peck EA, Vining G (2006) Introducción al análisis de regresión lineal.Google Scholar
  46. Pérez E, Medrano LA, Sánchez Rosas J (2013) El path analysis: conceptos básicos y ejemplos de aplicación. Revista Argentina de Ciencias del Comportamiento 5(1):52–66Google Scholar
  47. Prajogo D, Oke A, Olhager J (2016) Supply chain processes: linking supply logistics integration, supply performance, lean processes and competitive performance. Int J Oper Prod Manag 36(2):220–238.  https://doi.org/10.1108/IJOPM-03-2014-0129CrossRefGoogle Scholar
  48. Qrunfleh S, Tarafdar M (2014) Supply chain information systems strategy: impacts on supply chain performance and firm performance. International Journal of Production Economics 147 (Part B):340–350.  https://doi.org/10.1016/j.ijpe.2012.09.018CrossRefGoogle Scholar
  49. Ramanathan U, Gunasekaran A (2014) Supply chain collaboration: impact of success in long-term partnerships. International Journal of Production Economics 147 (Part B):252–259.  https://doi.org/10.1016/j.ijpe.2012.06.002CrossRefGoogle Scholar
  50. Ranganathan C, Teo TSH, Dhaliwal J (2011) Web-enabled supply chain management: Key antecedents and performance impacts. Int J Inf Manag 31(6):533–545.  https://doi.org/10.1016/j.ijinfomgt.2011.02.004CrossRefGoogle Scholar
  51. Reinartz W, Haenlein M, Henseler J (2009) An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int J Res Market 26(4):332–344.  https://doi.org/10.1016/j.ijresmar.2009.08.001CrossRefGoogle Scholar
  52. Ringle CM, Götz O, Wetzels M, Wilson B (2009a) On the use of formative measurement specifications in structural equation modeling: A Monte Carlo simulation study to compare covariance-based and partial least squares model estimation methodologies. http://dx.doi.org/10.2139/ssrn.2394054
  53. Ringle CM, Sinkovics RR, Henseler J (2009b) The use of partial least squares path modeling in international marketing. In: New Challenges to International Marketing, vol 20. Advances in International Marketing, vol 20. Emerald Group Publishing Limited, pp 277–319.  https://doi.org/10.1108/s1474-7979(2009)0000020014
  54. Roldán JL, Cepeda G (2013) Modelos de Ecuaciones Estructurales basados en la Varianza: Partial Least Squares (PLS) para investigadores en Ciencias Sociales. Universidad de Sevilla, Curso del ICEGoogle Scholar
  55. Romero SJ, Ponsoda V, Ximénez C (2006) Validación de la estructura cognitiva del test de signos mediante modelos de ecuaciones estructurales. Psicothema 18(4):835–840Google Scholar
  56. Ruiz MA, Pardo A, San Martín R (2010) Modelos de ecuaciones estructurales. Papeles del Psicólogo 31(1):34–45Google Scholar
  57. Schumacker RE, Lomax RG (2004) A beginner’s guide to structural equation modeling. Psychology PressGoogle Scholar
  58. Silva C, Schiattino I (2008) Modelos de ecuaciones estructurales¿ qué es eso? Cienc Trab 10(29):106–110Google Scholar
  59. Sosik J, Kahai S, Piovoso M (2009) Silver bullet or voodoo statistics? A primer for using the partial least squares data analytic technique in group and organization research. Group Organ Manag 34(1):5–36.  https://doi.org/10.1177/1059601108329198CrossRefGoogle Scholar
  60. Su Y-f, Yang C (2010a) A structural equation model for analyzing the impact of ERP on SCM. Expert Syst Appl 37(1):456–469.  https://doi.org/10.1016/j.eswa.2009.05.061CrossRefGoogle Scholar
  61. Su Y-f, Yang C (2010b) Why are enterprise resource planning systems indispensable to supply chain management? Eur J Oper Res 203(1):81–94.  https://doi.org/10.1016/j.ejor.2009.07.003CrossRefGoogle Scholar
  62. Subramanian N, Gunasekaran A, Yu J, Cheng J, Ning K (2014) Customer satisfaction and competitiveness in the Chinese E-retailing: structural equation modeling (SEM) approach to identify the role of quality factors. Expert Syst Appl 41(1):69–80.  https://doi.org/10.1016/j.eswa.2013.07.012CrossRefGoogle Scholar
  63. Swafford PM, Ghosh S, Murthy N (2006) The antecedents of supply chain agility of a firm: scale development and model testing. J Oper Manag 24(2):170–188.  https://doi.org/10.1016/j.jom.2005.05.002CrossRefGoogle Scholar
  64. Swafford PM, Ghosh S, Murthy N (2008) Achieving supply chain agility through IT integration and flexibility. Int J Prod Econ 116(2):288–297.  https://doi.org/10.1016/j.ijpe.2008.09.002CrossRefGoogle Scholar
  65. Tarafdar M, Qrunfleh S (2017) Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and information systems capability for agility. Int J Prod Res 55(4):925–938.  https://doi.org/10.1080/00207543.2016.1203079CrossRefGoogle Scholar
  66. Valencia JB, Torres AIZ, Paniagua CFO (2017) Variables e Índices de Competitividad de las Empresas Exportadoras, utilizando el PLS. CIMEXUS 10(2):13–32Google Scholar
  67. Weston R, Gore JPA (2006) A brief guide to structural equation modeling. Couns Psychol 34(5):719–751.  https://doi.org/10.1177/0011000006286345CrossRefGoogle Scholar
  68. Williams LJ, Vandenberg RJ, Edwards JR (2009) Structural equation modeling in management research: a guide for improved analysis. Acad Manag Annals 3(1):543–604CrossRefGoogle Scholar
  69. Wold H (1985) Systems analysis by partial least squares. In Nijkamp P, Leitner H, Wrigley N (eds) Measuring the unmeasurable. Dordrecht, the Netherlands: Martinus Nijhoff, pp 221–252CrossRefGoogle Scholar
  70. Wright S (1932) The roles of mutation, inbreeding, crossbreeding, and selection in evolution, vol 1. na,Google Scholar
  71. Wright S (1971) Path coefficients and path regressions: alternative or complementary concepts. Causal models in the social sciences 101–114Google Scholar
  72. Zhang C, Dhaliwal J (2009) An investigation of resource-based and institutional theoretic factors in technology adoption for operations and supply chain management. Int J Prod Econ 120(1):252–269.  https://doi.org/10.1016/j.ijpe.2008.07.023CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Liliana Avelar-Sosa
    • 1
  • Jorge Luis García-Alcaraz
    • 1
  • Aidé Aracely Maldonado-Macías
    • 1
  1. 1.Department of Industrial Engineering and Manufacturing, Institute of Engineering and TechnologyUniversidad Autónoma de Ciudad JuárezCiudad JuárezMexico

Personalised recommendations