Advertisement

Adaptive BDDC and FETI-DP Methods with Change of Basis Formulation

  • Hyea Hyun KimEmail author
  • Eric T. ChungEmail author
  • Junxian WangEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

In this paper, BDDC (Balancing Domain Decomposition by Constraints) and FETI-DP (Dual-Primal Finite Element Tearing and Interconnecting) algorithms with a change of basis for adaptive primal constraints are analyzed.

Notes

Acknowledgements

The first author was supported by the National Research Foundation of Korea(NRF) grants funded by NRF20151009350, the second author was supported by the Hong Kong RGC General Research Fund (Project 14317516) and the CUHK Direct Grant for Research 2016–2017, and the third author was supported by the National Natural Science Foundation of China (Grant No. 11201398) and Open Foundation of Guangdong Provincial Engineering Technology Research Center for Data Science(2016KF07).

References

  1. 1.
    W.N. Anderson Jr., R.J. Duffin, Series and parallel addition of matrices. J. Math. Anal. Appl. 26, 576–594 (1969)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.G. Calvo, O.B. Widlund, An adaptive choice of primal constraints for BDDC domain decomposition algorithms. Electron. Trans. Numer. Anal. 45, 524–544 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    C.R. Dohrmann, C. Pechstein, Modern domain decomposition solvers: BDDC, deluxe scaling, and an algebraic approach, 2013. http://people.ricam.oeaw.ac.at/c.pechstein/pechstein-bddc2013.pdf
  4. 4.
    V. Dolean, F. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12(4), 391–414 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    H.H. Kim, E. Chung, J. Wang, BDDC and FETI-DP mathods with enriched coarse spaces for elliptic problems with oscillatory and high contrast coefficients, in Domain Decomposition Methods in Science and Engineering XXIII. Lecture Notes in Computer Science and Engineering, vol. 116 (Springer, Heidelberg, 2017), pp. 179–186Google Scholar
  7. 7.
    H.H. Kim, E. Chung, J. Wang, BDDC and FETI-DP preconditioners with adaptive coarse spaces for three-dimensional elliptic problems with oscillatory and high contrast coefficients. J. Comput. Phys. 349, 191–214 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    H.H. Kim, E. Chung, J. Wang, Adaptive BDDC and FETI-DP algorithms with a change of basis formulation on adaptive primal constraints, Electron. Trans. Numer. Anal. 49, 64–80 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Klawonn, O.B. Widlund, Dual-primal FETI methods for linear elasticity. Commun. Pure Appl. Math. 59(11), 1523–1572 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Klawonn, M. Kühn, O. Rheinbach, Adaptive coarse spaces for FETI-DP in three dimensions. SIAM J. Sci. Comput. 38(5), A2880–A2911 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Mandel, B. Sousedík, J. Šístek, Adaptive BDDC in three dimensions. Math. Comput. Simul. 82(10), 1812–1831 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    N. Spillane, D.J. Rixen, Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms. Int. J. Numer. Methods Eng. 95(11), 953–990 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    N. Spillane, V. Dolean, P. Hauret, F. Nataf, D.J. Rixen, Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method. C. R. Math. Acad. Sci. Paris 351(5–6), 197–201, 2013MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Institute of Natural SciencesKyung Hee UniversityYonginRepublic of Korea
  2. 2.Department of MathematicsThe Chinese University of Hong KongShatinChina
  3. 3.School of Mathematics and Computational ScienceXiangtan UniversityXiangtanChina

Personalised recommendations