Advertisement

Coupling Parareal and Dirichlet-Neumann/Neumann-Neumann Waveform Relaxation Methods for the Heat Equation

  • Yao-Lin Jiang
  • Bo Song
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

The Dirichlet-Neumann and Neumann-Neumann waveform relaxation methods are non-overlapping spatial domain decomposition methods to solve evolution problems, while the parareal algorithm is in time parallel fashion. Based on the combinations of space and time parallel strategies, we present and analyze parareal Dirichlet-Neumann and parareal Neumann-Neumann waveform relaxation for parabolic problems. Between these two algorithms, parareal Neumann-Neumann waveform relaxation is a space-time parallel algorithm, which increases the parallelism both in space and time. We derive for the heat equation the convergence results for both algorithms in one spatial dimension. We also illustrate our theoretical results with numerical experiments.

Notes

Acknowledgements

The first author is partially supported by the Natural Science Foundation of China (NSFC) under grant 61663043. The second author is partially supported by the Fundamental Research Funds for the Central Universities under grant G2018KY0306. We appreciate the comments of the reviewers that led to a better presentation.

References

  1. 1.
    M.J. Gander, E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in Domain Decomposition Methods in Science and Engineering XVII (Springer, Berlin, 2008), pp. 45–56zbMATHGoogle Scholar
  2. 2.
    M.J. Gander, L. Halpern, Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M.J. Gander, A.M. Stuart, Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M.J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M.J. Gander, L. Halpern, F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M.J. Gander, Y.L. Jiang, R.J. Li, Parareal Schwarz waveform relaxation methods, in Domain Decomposition Methods in Science and Engineering XX (Springer, Berlin, 2013), pp. 451–458CrossRefGoogle Scholar
  7. 7.
    M.J. Gander, Y.L. Jiang, B. Song, H. Zhang, Analysis of two parareal algorithms for time-periodic problems. SIAM J. Sci. Comput. 35(5), A2393–A2415 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.J. Gander, F. Kwok, B.C. Mandal, Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems. Electron. Trans. Numer. Anal. 45, 424–456 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    M.J. Gander, F. Kwok, B.C. Mandal, Dirichlet-Neumann and Neumann-Neumann waveform relaxation for the wave equation, in Domain Decomposition Methods in Science and Engineering XXII (Springer, Berlin, 2016), pp. 501–509CrossRefGoogle Scholar
  10. 10.
    E. Giladi, H.B. Keller, Space-time domain decomposition for parabolic problems. Numer. Math. 93(2), 279–313 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y.L. Jiang, A general approach to waveform relaxation solutions of nonlinear differential-algebraic equations: the continuous-time and discrete-time cases. IEEE Trans. Circuits Syst. I Reg. Papers 51(9), 1770–1780 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Y.L. Jiang, Waveform Relaxation Methods (Scientific Press, Beijing, 2010)Google Scholar
  13. 13.
    Y.L. Jiang, X.L. Ding, Waveform relaxation methods for fractional differential equations with the caputo derivatives. J. Comput. Appl. Math. 238, 51–67 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Y.L. Jiang, B. Song, Parareal substructuring waveform relaxation methods for parabolic problems (2017, in preparation)Google Scholar
  15. 15.
    E. Lelarasmee, A.E. Ruehli, A.L. Sangiovanni-Vincentelli, The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1(3), 131–145 (1982)CrossRefGoogle Scholar
  16. 16.
    J.L. Lions, Y. Maday, G. Turinici, A parareal in time discretization of PDEs. C. R. Acad. Sci. Ser. I Math. 332(7), 661–668 (2001)MathSciNetzbMATHGoogle Scholar
  17. 17.
    J. Liu, Y.L. Jiang, Waveform relaxation for reaction-diffusion equations. J. Comput. Appl. Math. 235(17), 5040–5055 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Liu, Y.L. Jiang, A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations. J. Comput. Appl. Math. 236(17), 4245–4263 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Lubich, A. Ostermann, Multi-grid dynamic iteration for parabolic equations. BIT Numer. Math. 27(2), 216–234 (1987)CrossRefGoogle Scholar
  20. 20.
    Y. Maday, G. Turinici, The parareal in time iterative solver: a further direction to parallel implementation, in Domain Decomposition Methods in Science and Engineering (Springer, Berlin, 2005), pp. 441–448zbMATHGoogle Scholar
  21. 21.
    S. Vandewalle, E. Van de Velde, Space-time concurrent multigrid waveform relaxation. Ann. Numer. Math. 1, 347–363 (1994)MathSciNetzbMATHGoogle Scholar
  22. 22.
    S.L. Wu, M. Al-Khaleel, Convergence analysis of the Neumann-Neumann waveform relaxation method for time-fractional RC circuits. Simul. Model. Pract. Theory 64, 43–56 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXi’an Jiaotong UniversityXi’anChina
  2. 2.School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations