An Adaptive GDSW Coarse Space for Two-Level Overlapping Schwarz Methods in Two Dimensions

  • Alexander HeinleinEmail author
  • Axel KlawonnEmail author
  • Jascha KnepperEmail author
  • Oliver RheinbachEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)


We propose robust coarse spaces for two-level overlapping Schwarz preconditioners, which are extensions of the energy minimizing coarse space known as GDSW (Generalized Dryja, Smith, Widlund). The resulting two-level methods with adaptive coarse spaces are robust for second order elliptic problems in two dimensions, even in presence of a highly heterogeneous coefficient function, and reduce to the standard GDSW algorithm if no additional coarse basis functions are used.


  1. 1.
    J. Aarnes, T.Y. Hou, Multiscale domain decomposition methods for elliptic problems with high aspect ratios. Acta Math. Appl. Sin. Engl. Ser. 18(1), 63–76 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Bjørstad, J. Koster, P. Krzyzanowski, Domain decomposition solvers for large scale industrial finite element problems, in Applied Parallel Computing. New Paradigms for HPC in Industry and Academia. Lecture Notes in Computer Science, vol. 1947 (Springer, Berlin, 2001), pp. 373–383Google Scholar
  3. 3.
    P. Bjørstad, P. Krzyzanowski, A flexible 2-level Neumann-Neumann method for structural analysis problems, in Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 2328 (Springer, Berlin, 2002), pp. 387–394Google Scholar
  4. 4.
    M. Brezina, C. Heberton, J. Mandel, P. Vanek, An iterative method with convergence rate chosen a priori. Technical report, Denver, 1999Google Scholar
  5. 5.
    M. Buck, O. Iliev, H. Andrä, Multiscale finite element coarse spaces for the application to linear elasticity. Cent. Eur. J. Math. 11(4), 680–701 (2013). MathSciNetzbMATHGoogle Scholar
  6. 6.
    T. Chartier, R.D. Falgout, V. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge, P.S. Vassilevski, Spectral AMGe (rhoamge). SIAM J. Sci. Comput. 25(01), 1–26 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C.R. Dohrmann, A. Klawonn, O.B. Widlund, A family of energy minimizing coarse spaces for overlapping Schwarz preconditioners, in Domain Decomposition Methods in Science and Engineering XVII. Lecture Notes in Computer Science Engineering, vol. 60 (Springer, Berlin, 2008), pp. 247–254Google Scholar
  8. 8.
    C.R. Dohrmann, A. Klawonn, O.B. Widlund, Domain decomposition for less regular subdomains: overlapping Schwarz in two dimensions. SIAM J. Numer. Anal. 46(4), 2153–2168 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. Dolean, Fr. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12(4), 391–414 (2012)Google Scholar
  10. 10.
    Y. Efendiev, J. Galvis, R. Lazarov, J. Willems, Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal. 46(05), 1175–1199 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media. Multisc. Model. Simul. 8(4), 1461–1483 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M.J. Gander, A. Loneland, T. Rahman, Analysis of a new harmonically enriched multiscale coarse space for domain decomposition methods. Technical report, arxiv. Dec 2015Google Scholar
  13. 13.
    I.G. Graham, P.O. Lechner, R. Scheichl, Domain decomposition for multiscale PDEs. Numer. Math. 106(4), 589–626 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Heinlein, U. Hetmaniuk, A. Klawonn, O. Rheinbach, The approximate component mode synthesis special finite element method in two dimensions: parallel implementation and numerical results. J. Comput. Appl. Math. 289, 116–133 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, Multiscale coarse spaces for overlapping Schwarz methods based on the ACMS space in 2D. Technical report Preprint 2016-09 at (2016, submitted)
  16. 16.
    A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, Adaptive GDSW. Technical report (2018, in preparation)Google Scholar
  17. 17.
    U. Hetmaniuk, R.B. Lehoucq, A special finite element method based on component mode synthesis. ESAIM: M2AN 44(3), 401–420 (2010)Google Scholar
  18. 18.
    J. Mandel, B. Sousedík, Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Eng. 196(8), 1389–1399 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Mandel, B. Sousedík, J. Šístek, Adaptive BDDC in three dimensions. Math. Comput. Simul. 82(10), 1812–1831 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Toselli, O.B. Widlund, Domain Decomposition Methods—Algorithms and Theory. Springer Series in Computational Mathematics, vol. 34 (Springer, Berlin, 2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Institut für Numerische Mathematik und Optimierung, Fakultät für Mathematik und InformatikTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations