Advertisement

Auxiliary Space Preconditioners for a DG Discretization of H(curl; Ω)-Elliptic Problem on Hexahedral Meshes

  • Blanca Ayuso de DiosEmail author
  • Ralf HiptmairEmail author
  • Cecilia PagliantiniEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

We present a family of preconditioners based on the auxiliary space method for a discontinuous Galerkin discretization on cubical meshes of H(curl;Ω)-elliptic problems with possibly discontinuous coefficients. We address the influence of possible discontinuities in the coefficients on the asymptotic performance of the proposed solvers and present numerical results in two dimensions.

References

  1. 1.
    D.N. Arnold, G. Awanou, Finite element differential forms on cubical meshes. Math. Comput. 83(288), 1551–1570 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    B. Ayuso de Dios, R. Hiptmair, C. Pagliantini, Auxiliary space preconditioners for SIP-DG discretizations of H(curl)-elliptic problems with discontinuous coefficients. IMA J. Numer. Anal. 37(2), 646–686 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    C.R. Dohrmann, O.B. Widlund, A BDDC algorithm with deluxe scaling for three-dimensional H(curl) problems. Commun. Pure Appl. Math. 69(4), 745–770 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Hiptmair, J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45, 2483–2509 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Houston, I. Perugia, A. Schneebeli, D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100(3), 485–518 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    J.-C. Nédélec, Mixed finite elements in R 3. Numer. Math. 35(3), 15–341 (1980) .CrossRefGoogle Scholar
  7. 7.
    S.V. Nepomnyaschikh, Mesh theorems on traces, normalizations of function traces and their inversion. Soviet J. Numer. Anal. Math. Model. 6(3), 223–242 (1991)MathSciNetzbMATHGoogle Scholar
  8. 8.
    P. Oswald, Preconditioners for nonconforming discretizations. Math. Comput. 65(215), 923–941 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Pagliantini, Computational magnetohydrodynamics with discrete differential forms. Ph.D. dissertation No. 23781, Seminar for Applied Mathematics, ETH Zürich, 2016Google Scholar
  10. 10.
    A. Toselli, Dual-primal FETI algorithms for edge finite-element approximations in 3D. IMA J. Numer. Anal. 26(1), 96–130 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Xu, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56(3), 215–235 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaItaly
  2. 2.IMATI-CNRPaviaItaly
  3. 3.Seminar for Applied MathematicsETH ZürichZürichSwitzerland
  4. 4.EPFL-SB-MATH-MCSS, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations