Advertisement

A Finite Difference Method with Optimized Dispersion Correction for the Helmholtz Equation

  • Pierre-Henri CocquetEmail author
  • Martin J. GanderEmail author
  • Xueshuang XiangEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

We propose a new finite difference method (FDM) with optimized dispersion correction for the Helmholtz equation.

References

  1. 1.
    I.M. Babuska, S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    I. Babuška, F. Ihlenburg, E.T. Paik, S.A. Sauter, A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput. Methods Appl. Mech. Eng. 128(3–4), 325–359 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Z. Chen, D. Cheng, T. Wu, A dispersion minimizing finite difference scheme and preconditioned solver for the 3d Helmholtz equation. J. Comput. Phys. 231(24), 8152–8175 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Cheng, X. Tan, T. Zeng, A dispersion minimizing finite difference scheme for the Helmholtz equation based on point-weighting. Comput. Math. Appl. 314, 618–646 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    O.G. Ernst, M.J. Gander, Multigrid methods for Helmholtz problems: a convergent scheme in 1D using standard components, in Direct and Inverse Problems in Wave Propagation and Applications, ed. by I. Graham, U. Langer, M. Melenk, M. Sini (DeGruyter, 2013), pp. 135–186.Google Scholar
  6. 6.
    F. Ihlenburg, I. Babuška, Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int. J. Numer. Methods Eng. 38(22), 3745–3774 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    F. Ihlenburg, I. Babuška, Finite element solution of the Helmholtz equation with high wave number part i: the h-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    C.-H. Jo, C. Shin, J.H. Suh, An optimal 9-point, finite-difference, frequency-space, 2-d scalar wave extrapolator. Geophysics 61(2), 529–537 (1996)CrossRefGoogle Scholar
  9. 9.
    C. Shin, H. Sohn, A frequency-space 2-d scalar wave extrapolator using extended 25-point finite-difference operator. Geophysics 63(1), 289–296 (1998)CrossRefGoogle Scholar
  10. 10.
    C.C. Stolk, A dispersion minimizing scheme for the 3-d Helmholtz equation based on ray theory. J. Comput. Phys. 314, 618–646 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    C.C. Stolk, M. Ahmed, S.K. Bhowmik, A multigrid method for the Helmholtz equation with optimized coarse grid corrections. SIAM J. Sci. Comput. 36(6), A2819–A2841 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    E. Turkel, D. Gordon, R. Gordon, S. Tsynkov, Compact 2d and 3d sixth order schemes for the Helmholtz equation with variable wave number. J. Comput. Phys. 232(1), 272–287 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Wu, A dispersion minimizing compact finite difference scheme for the 2d Helmholtz equation. J. Comput. Appl. Math. 311, 497–512 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de la RéunionPIMENTSainte-Clotilde, ReunionFrance
  2. 2.Université de GenèveGenèveSwitzerland
  3. 3.Qian Xuesen Laboratory of Space TechnologyBeijingChina

Personalised recommendations