Integral Equation Based Optimized Schwarz Method for Electromagnetics

  • Xavier ClaeysEmail author
  • Bertrand ThierryEmail author
  • Francis CollinoEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)


The optimized Schwarz method (OSM) is recognized as one of the most efficient domain decomposition strategies without overlap for the solution to wave propagation problems in harmonic regime.



This work received support from the ANR research Grant ANR-15-CE23-0017-01.


  1. 1.
    Y. Boubendir, X. Antoine, C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231(2), 262–280 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    F. Collino, S. Ghanemi, P. Joly, Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Mech. Eng. 184(2–4), 171–211 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, 3rd edn., vol. 93 (Springer, New York, 2013)Google Scholar
  4. 4.
    B. Després, Décomposition de domaine et problème de Helmholtz. C. R. Acad. Sci. Paris Sér. I Math. 311(6), 313–316 (1990)MathSciNetzbMATHGoogle Scholar
  5. 5.
    B. Després, Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régime harmonique. Le théorème de Borg pour l’équation de Hill vectorielle. PhD thesis, Univ. de Paris IX (Dauphine), 1991Google Scholar
  6. 6.
    M. El Bouajaji, B. Thierry, X. Antoine, C. Geuzaine, A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell’s equations. J. Comput. Phys. 294, 38–57 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M.J. Gander, Optimized Schwarz methods for Helmholtz problems, in Domain Decomposition Methods in Science and Engineering (Lyon, 2000). Theory Eng. Appl. Comput. Methods (International Center for Numerical Methods in Engineering, Barcelona, 2002), pp. 247–254Google Scholar
  8. 8.
    M.J. Gander, F. Magoulès, F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Lecouvez, Iterative domain decomposition method without overlap with geometric convergence for Helmholtz equation. PhD thesis, École Polytechnique, 2015Google Scholar
  10. 10.
    M. Lecouvez, B. Stupfel, P. Joly, F. Collino, Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation. C. R. Phys. 15(5), 403–414 (2014)CrossRefGoogle Scholar
  11. 11.
    J.-C. Nédélec, Acoustic and Electromagnetic Equations. Applied Mathematical Sciences, vol. 144 (Springer, New York, 2001)Google Scholar
  12. 12.
    F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010)zbMATHGoogle Scholar
  13. 13.
    F. Vico, L. Greengard, Z. Gimbutas, Boundary integral equation analysis on the sphere. Numer Math. 128(3), 463–487 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sorbonne Université, Université Paris-Diderot SPCCNRS, Inria, Laboratoire Jacques-Louis Lions, équipe AlpineParisFrance
  2. 2.INRIAParisFrance
  3. 3.Sorbonne Université, Université Paris-Diderot SPCCNRS, Laboratoire Jacques-Louis Lions, LJLLParisFrance
  4. 4.POEMS (ENSTA ParisTech, CNRS, INRIA, Universit Paris-Saclay)PalaiseauFrance

Personalised recommendations