Advertisement

A Coarse Space to Remove the Logarithmic Dependency in Neumann–Neumann Methods

  • Faycal ChaouquiEmail author
  • Martin J. GanderEmail author
  • Kévin Santugini-RepiquetEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

Domain Decomposition Methods are the most widely used methods for solving large linear systems that arise from the discretization of partial differential equations.

References

  1. 1.
    F. Chaouqui, M.J. Gander, K. Santugini-Repiquet, A continuous analysis of Neumann-Neumann methods: scalability and new coarse spaces (2018, in preparation)Google Scholar
  2. 2.
    G. Ciaramella, M. Gander, Analysis of the parallel Schwarz method for growing chains of fixed-size subdomains: part I. SIAM J. Numer. Anal. 55(3), 1330–1356 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    G. Ciaramella, M. Gander, Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: part II. SIAM J. Numer. Anal. 56(3), 1498–1524 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Y.H. De Roeck, P. Le Tallec, Analysis and test of a local domain decomposition preconditioner, in Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, vol. 4 (1991)Google Scholar
  5. 5.
    M. Dryja, O. Widlund, An additive variant of the Schwarz alternating method for the case of many subregions. Ultracomputer Research Laboratory, Univ., Courant Inst. of Mathematical Sciences, Division of Computer Science (1987)Google Scholar
  6. 6.
    M. Dryja, O.B. Widlund, Additive Schwarz methods for elliptic finite element problems in three dimensions. New York University. Courant Institute of Mathematical Sciences. Computer Science Department (1991)zbMATHGoogle Scholar
  7. 7.
    C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, D. Rixen, FETI-DP: a dual–primal unified FETI method part i: a faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50(7), 1523–1544 (2001)CrossRefGoogle Scholar
  8. 8.
    M.J. Gander, A. Loneland, SHEM: an optimal coarse space for RAS and its multiscale approximation, in Domain Decomposition Methods in Science and Engineering XXIII (Springer, Berlin, 2016)Google Scholar
  9. 9.
    M.J. Gander, L. Halpern, F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M.J. Gander, L. Halpern, K. Santugini-Repiquet, A new coarse grid correction for ras/as, in Domain Decomposition Methods in Science and Engineering XXI (Springer, Berlin, 2014), pp. 275–283zbMATHGoogle Scholar
  11. 11.
    M.J. Gander, A. Loneland, T. Rahman, Analysis of a new harmonically enriched multiscale coarse space for domain decomposition methods (2015). Preprint arXiv:1512.05285Google Scholar
  12. 12.
    J. Mandel, M. Brezina, Balancing domain decomposition for problems with large jumps in coefficients. Math. Comput. Am. Math. Soc. 65(216), 1387–1401 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Mandel, C.R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization. Numer. Linear Algebra Appl. 10(7), 639–659 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Mandel, C.R. Dohrmann, R. Tezaur, An algebraic theory for primal and dual substructuring methods by constraints. Appl. Numer. Math. 54(2), 167–193 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R.A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems. SIAM J. Numer. Anal. 24(2), 355–365 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Toselli, O.B. Widlund, Domain Decomposition Methods: Algorithms and Theory, vol. 34 (Springer, Berlin, 2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de GenèveSection de mathématiquesGenevaSwitzerland
  2. 2.Université BordeauxIMB, CNRS UMR5251, MC2, INRIA Bordeaux - Sud-OuestBordeauxFrance

Personalised recommendations