Advertisement

Does SHEM for Additive Schwarz Work Better than Predicted by Its Condition Number Estimate?

  • Petter E. BjørstadEmail author
  • Martin J. GanderEmail author
  • Atle LonelandEmail author
  • Talal RahmanEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

The SHEM (Spectral Harmonically Enriched Multiscale) coarse space is a new coarse space for arbitrary overlapping or non-overlapping domain decomposition methods.

References

  1. 1.
    J. Aarnes, T.Y. Hou, Multiscale domain decomposition methods for elliptic problems with high aspect ratios. Acta Math. Appl. Sin. Engl. Ser. 18(1), 63–76 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Eikeland, L. Marcinkowski, T. Rahman, Overlapping schwarz methods with adaptive coarse spaces for multiscale problems in 3D (2016). Arxiv:1611.00968Google Scholar
  3. 3.
    M.J. Gander, L. Halpern, Méthodes de décomposition de domaine. Encyclopédie électronique pour les ingénieurs (2012)Google Scholar
  4. 4.
    M.J. Gander, A. Loneland, SHEM: an optimal coarse space for RAS and its multiscale approximation, in Domain Decomposition Methods in Science and Engineering XXIII (Springer, Berlin, 2016)Google Scholar
  5. 5.
    M.J. Gander, B. Song, Complete, optimal and optimized coarse spaces for AS, in Domain Decomposition Methods in Science and Engineering XXIV. Lecture Notes in Computational Science and Engineering (Springer, Cham, 2018)Google Scholar
  6. 6.
    M.J. Gander, L. Halpern, K. Santugini Repiquet, Discontinuous coarse spaces for DD-methods with discontinuous iterates, in Domain Decomposition Methods in Science and Engineering XXI (Springer, Berlin, 2014), pp. 607–615zbMATHGoogle Scholar
  7. 7.
    M.J. Gander, L. Halpern, K. Santugini Repiquet, A new coarse grid correction for RAS/AS, in Domain Decomposition Methods in Science and Engineering XXI (Springer, Berlin, 2014), pp. 275–283zbMATHGoogle Scholar
  8. 8.
    M.J. Gander, A. Loneland, T. Rahman, Analysis of a new harmonically enriched multiscale coarse space for domain decomposition methods (2015). Arxiv preprint arXiv:1512.05285Google Scholar
  9. 9.
    M.J. Gander, L. Halpern, K. Santugini Repiquet, On optimal coarse spaces for domain decomposition and their approximation, in Domain Decomposition Methods in Science and Engineering XXIV. Lecture Notes in Computational Science and Engineering (Springer, Cham, 2018)Google Scholar
  10. 10.
    I.G. Graham, P.O. Lechner, R. Scheichl, Domain decomposition for multiscale PDEs. Numer. Math. 106(4), 589–626 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, Multiscale coarse spaces for overlapping Schwarz methods based on the ACMS space in 2D. Electron. Trans. Numer. Anal. 48, 156–182 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Klawonn, P. Radtke, O. Rheinbach, FETI-DP methods with an adaptive coarse space. SIAM J. Numer. Anal. 53(1), 297–320 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126(4), 741–770 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.Section of MathematicsUniversity of GenevaGenevaSwitzerland
  3. 3.Department of Computing, Mathematics and PhysicsWestern Norway University of Applied SciencesBergenNorway

Personalised recommendations