Advertisement

Review of Anthropomorphic Head Stabilisation and Verticality Estimation in Robots

  • Ildar Farkhatdinov
  • Hannah Michalska
  • Alain Berthoz
  • Vincent Hayward
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 124)

Abstract

In many walking, running, flying, and swimming animals, including mammals, reptiles, and birds, the vestibular system plays a central role for verticality estimation and is often associated with a head stabilisation (in rotation) behaviour. Head stabilisation, in turn, subserves gaze stabilisation, postural control, visual-vestibular information fusion and spatial awareness via the active establishment of a quasi-inertial frame of reference. Head stabilisation helps animals to cope with the computational consequences of angular movements that complicate the reliable estimation of the vertical direction. We suggest that this strategy could also benefit free-moving robotic systems, such as locomoting humanoid robots, which are typically equipped with inertial measurements units. Free-moving robotic systems could gain the full benefits of inertial measurements if the measurement units are placed on independently orientable platforms, such as a human-like heads. We illustrate these benefits by analysing recent humanoid robots design and control approaches.

Notes

Acknowledgements

I. Farkhatdinov was supported by a fellowship from Ecole Doctorale, Sciences Mécaniques, Acoustique, Electronique et Robotique de Paris (UPMC). Additional funding was provided by the European Research Council, Advanced Grant PATCH, agreement No. 247300 and EU FP7 BALANCE (ICT-601003).

References

  1. 1.
    Ajoudani, A., Lee, J., Rocchi, A., Ferrati, M., Hoffman, E.M., Settimi, A., Caldwell, D.G., Bicchi, A., Tsagarakis, N.G.: A manipulation framework for compliant humanoid COMAN: Application to a valve turning task. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 664–670 (2014)Google Scholar
  2. 2.
    Allum, J.H.J., Adkin, A.L., Carpenter, M.G., Held-Ziolkowska, M., Honegger, F., Pierchala, K.: Trunk sway measures of postural stability during clinical balance tests: effects of a unilateral vestibular deficit. Gait Posture 14(3), 227–237 (2001)CrossRefGoogle Scholar
  3. 3.
    Allum, J.H.J., Honegger, F., Pfaltz, C.R.: Afferent Control of Posture and Locomotion, vol. 80 of Progress in Brain Research. Elsevier (1989)Google Scholar
  4. 4.
    Ang, W.T., Khosla, P.K., Riviere, C.N.: Nonlinear regression model of a low-g MEMS accelerometer. IEEE Sens. J. 7(1), 81–88 (2007)CrossRefGoogle Scholar
  5. 5.
    Angelaki, D.E., Cullen, K.E.: Vestibular system: the many facets of a multimodal sense. Annu. Rev. Neurosci. 31, 125–150 (2008)CrossRefGoogle Scholar
  6. 6.
    Arechavaleta, G., Laumond, J.-P., Hicheur, H., Berthoz, A.: An optimality principle governing human walking. IEEE Trans. Robot. 24(1), 5–14 (2008)CrossRefGoogle Scholar
  7. 7.
    Asfour, T., Azad, P., Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke, K., Schröder, J., Dillmann, R.: Toward humanoid manipulation in human-centred environments. Robot. Autonom. Syst. 56(1), 54–65 (2008)CrossRefGoogle Scholar
  8. 8.
    Authie, C., Hilt, P., N’Guyen, S., Berthoz, A., Bennequin, D.: Differences in gaze anticipation for locomotion with and without vision. Front. Hum. Neurosci. (2015) (June 9)Google Scholar
  9. 9.
    Baerveldt, A.-J., Klang, R.: A low-cost and low-weight attitude estimation system for an autonomous helicopter. In: Proceedings of IEEE International Conference on Intelligent Engineering Systems, pp. 391–395. IEEE (1997)Google Scholar
  10. 10.
    Baker, J., Goldberg, J., Peterson, B.: Spatial and temporal response properties of the vestibulocollic reflex in decerebrate cats. J. Neurophysiol. 54(3), 735–756 (1985)CrossRefGoogle Scholar
  11. 11.
    Baldwin, G., Mahony, R., Trumpf, J.: A nonlinear observer for 6 dof pose estimation from inertial and bearing measurements. In: 2009 IEEE International Conference on Robotics and Automation, pp. 2237–2242. IEEE (2009)Google Scholar
  12. 12.
    Barbour, N., Schmidt, G.: Inertial sensor technology trends. IEEE Sens. J. 1(4), 332–339 (2001)CrossRefGoogle Scholar
  13. 13.
    Barshan, B., Durrant-Whyte, H.: Inertial navigation systems for mobile robots. IEEE Trans. Robot. Autom. 11(3), 328–342 (1995)CrossRefGoogle Scholar
  14. 14.
    Benallegue, M., Lamiraux, F.: Humanoid flexibility deformation can be efficiently estimated using only inertial measurement units and contact information. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 246–251 (2014)Google Scholar
  15. 15.
    Bernardin, D., Kadone, H., Bennequin, D., Sugar, T., Zaoui, M., Berthoz, A.: Gaze anticipation during human locomotion. Exp. Brain Res. 223(1), 65–78 (2012)CrossRefGoogle Scholar
  16. 16.
    Berthoz, A.: The Brain’s Sense of Movement. Harvard University Press, Cambridge (2000)Google Scholar
  17. 17.
    Berthoz, A., Droulez, J., Vidal, P.P., Yoshida, K.: Neural correlates of horizontal vestibulo-ocular reflex cancellation during rapid eye movements in the cat. J. Physiol. 419(1), 717–751 (1989)CrossRefGoogle Scholar
  18. 18.
    Berthoz, A., Jones, M.G., Begue, A.: Differential visual adaptation of vertical canal-dependent vestibulo-ocular reflexes. Exp. Brain Res. 44(1) (1981)Google Scholar
  19. 19.
    Berthoz, A., Pavard, B., Young, L.: Perception of linear horizontal self-motion induced by peripheral vision (linear vection) basic characteristics and visual-vestibular interactions. Exp. Brain Res. 23(5) (1975)Google Scholar
  20. 20.
    Bisdorff, A.R., Wolsley, C.J., Anastasopoulos, D., Bronstein, A.M., Gresty, M.A.: The perception of body verticality (subjective postural vertical) in peripheral and central vestibular disorders. Brain 119(5), 1523–1534 (1996)CrossRefGoogle Scholar
  21. 21.
    Borah, J., Young, L.R., Curry, R.E.: Optimal estimator model for human spatial orientation. Ann. N.Y. Acad. Sci. 545, 51–73 (1988)CrossRefGoogle Scholar
  22. 22.
    Bras, S., Cunha, R., Vasconcelos, J.F., Silvestre, C., Oliveira, P.: A nonlinear attitude observer based on active vision and inertial measurements. IEEE Trans. Robot. 27(4), 664–677 (2011)CrossRefGoogle Scholar
  23. 23.
    Bronstein, A.M.: Evidence for a vestibular input contributing to dynamic head stabilization in man. Acta Otolaryngol. 105(1–2), 1–6 (1998)Google Scholar
  24. 24.
    Brooks, R.A., Breazeal, C.: The cog project: building a humanoid robot. In: Computation for Metaphors, Analogy, and Agents. Lecture Notes in Computer Science, vol. 1562, pp. 52–87 (1999)Google Scholar
  25. 25.
    Buchanan, J.J., Horak, F.B.: Vestibular loss disrupts control of head and trunk on a sinusoidally moving platform. J. Vestib. Res. Equilib. Orientation 11(6), 371–89 (2002)Google Scholar
  26. 26.
    Bums, E., Homing, R., Herb, W., Zook, J., Guckel, H.: Resonant microibeam accelerometers. In: Proceedings of the International Solid-State Sensors and Actuators Conference—TRANSDUCERS ’95, vol. 2, pp. 659–662. IEEE (1995)Google Scholar
  27. 27.
    Buschmann, T., Lohmeier, S., Ulbrich, H.: Humanoid robot lola: design and walking control. J. Physiol. Paris 103(3–5), 141–148 (2009)CrossRefGoogle Scholar
  28. 28.
    Carey, J.P., Santina, C.C.D.: Principles of applied vestibular physiology. In: Cummings Otolaryngology—Head and Neck Surgery, Chapter 163. Mosby (2005)Google Scholar
  29. 29.
    Chang, Y.-H., Oh, Y., Kim, D., Hong, S.: Balance control in whole body coordination framework for biped humanoid robot MAHRU-R. In: RO-MAN 2008—The 17th IEEE International Symposium on Robot and Human Interactive Communication, pp. 401–406. IEEE (2008)Google Scholar
  30. 30.
    Chase, W.G., Clark, H.H.: Semantics in the perception of verticality. Br. J. Psychol. 62(3), 311–326 (1971)CrossRefGoogle Scholar
  31. 31.
    Cheng, G., Hyon, S.-H., Morimoto, J., Ude, A., Hale, J.G., Colvin, G., Scroggin, W., Jacobsen, S.C.: Cb: a humanoid research platform for exploring neuroscience. Adv. Robot. 21(10), 1097–1114 (2007)CrossRefGoogle Scholar
  32. 32.
    Ciaravella, G., Laschi, C., Dario, P.: Biomechanical modeling of semicircular canals for fabricating a biomimetic vestibular system. IEEE Eng. Med. Biol. Soc. 1, 1758–1761 (2006)Google Scholar
  33. 33.
    Crassidis, J.L., Markley, F.L., Cheng, Y.: Survey of nonlinear attitude estimation methods. J. Guidance Control Dyn. 30(1), 12–28 (2007)CrossRefGoogle Scholar
  34. 34.
    Cronin, T.W., Kinloch, M.R., Olsen, G.H.: Head-bobbing behavior in walking whooping cranes (grus americana) and sandhill cranes (grus canadensis). J. Ornithol. 148(S2), 563–569 (2007)CrossRefGoogle Scholar
  35. 35.
    Cullen, K.E.: The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 35(3), 185–96 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Curthoys, I.S., Markham, C.H., Curthoys, E.J.: Semicircular duct and ampulla dimensions in cat, guinea pig and man. J. Morphol. 151(1), 17–34 (1977)CrossRefGoogle Scholar
  37. 37.
    David, R., Stoessel, A., Berthoz, A., Spoor, F., Bennequin, D.: Assessing morphology and function of the semicircular duct system: introducing new in-situ visualization and software toolbox. Sci. Rep. 6, 32772 (2016)CrossRefGoogle Scholar
  38. 38.
    Davies, M.N., Green, P.R.: Head-bobbing during walking, running and flying: relative motion perception in the pigeon. J. Exp. Biol. 138(1), 71–91 (1988)Google Scholar
  39. 39.
    De Vries, H.: The mechanics of the labyrinth otoliths. Acta Otolaryngol. 38(3), 262–73 (1951)CrossRefGoogle Scholar
  40. 40.
    Dieterich, M., Brandt, T.: Vestibulo-ocular reflex. Curr. Opin. Neurol. 8(1), 83–8 (1995)CrossRefGoogle Scholar
  41. 41.
    Dimiccoli, M., Girard, B., Berthoz, A., Bennequin, D.: A functional explanation of otolith geometry. J. Comput. Neurosci. 35(2) (2013)Google Scholar
  42. 42.
    Dunbar, D.C.: Stabilization and mobility of the head and trunk in wild monkeys during terrestrial and flat-surface walks and gallops. J. Exp. Biol. 207(6), 1027–1042 (2004)CrossRefGoogle Scholar
  43. 43.
    Dunbar, D.C., Macpherson, J.M., Simmons, R.W., Zarcades, A.: Stabilization and mobility of the head, neck and trunk in horses during overground locomotion: comparisons with humans and other primates. J. Exp. Biol. 211(Pt 24), 3889–907 (2008)CrossRefGoogle Scholar
  44. 44.
    Duncan, R.C., Gunnersen, A.L.F.S.J.: Inertial guidance, navigation, and control systems. J. Spacecraft Rockets 1(6), 577–587 (1964)CrossRefGoogle Scholar
  45. 45.
    Ernst, M.O., Bülthoff, H.H.: Merging the senses into a robust percept. Trends Cogn. Sci. 8(4), 162–9 (2004)CrossRefGoogle Scholar
  46. 46.
    Euston, M., Coote, P., Mahony, R., Hamel, T.: A complementary filter for attitude estimation of a fixed-wing UAV. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 340–345. IEEE (2008)Google Scholar
  47. 47.
    Ezure, K., Sasaki, S., Uchino, Y., Wilson, V.J.: Frequency-response analysis of vestibular-induced neck reflex in cat. ii. functional significance of cervical afferents and polysynaptic descending pathways. J. Neurophysiol. 41(2), 459–471 (1978)CrossRefGoogle Scholar
  48. 48.
    Fallón, M.F., Antone, M., Roy, N., Teller, S.: Drift-free humanoid state estimation fusing kinematic, inertial and lidar sensing. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 112–119 (2014)Google Scholar
  49. 49.
    Falotico, E., Cauli, N., Hashimoto, K., Kryczka, P., Takanishi, A., Dario, P., Berthoz, A., Laschi, C.: Head stabilization based on a feedback error learning in a humanoid robot. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, pp. 449–454. IEEE (2012)Google Scholar
  50. 50.
    Falotico, E., Cauli, N., Kryczka, P., Hashimoto, K., Berthoz, A., Takanishi, A., Dario, P., Laschi, C.: Head stabilization in a humanoid robot: models and implementations. Autonom. Robots 41(2), 349–365 (2017)CrossRefGoogle Scholar
  51. 51.
    Farkhatdinov, I., Hayward, V., Berthoz, A.: On the benefits of head stabilization with a view to control balance and locomotion in humanoids. In: 11th IEEE-RAS International Conference on Humanoid Robots 2011, Bled, Slovenia, pp. 147–152. IEEE (2011)Google Scholar
  52. 52.
    Farkhatdinov, I., Michalska, H., Berthoz, A., Hayward, V.: Modeling verticality estimation during locomotion. In: Romansy 19, Robot Design, Dynamics and Control, vol. 544 of CISM International Centre for Mechanical Sciences, Paris, France, pp. 359–366. Springer (2012)Google Scholar
  53. 53.
    Farkhatdinov, I., Roehri, N., Burdet, E.: Anticipatory detection of turning in humans for intuitive control of robotic mobility assistance. Bioinspiration Biomimetics 12(5) (2017)Google Scholar
  54. 54.
    Fourati, H., Manamanni, N., Afilal, L., Handrich, Y.: A nonlinear filtering approach for the attitude and dynamic body acceleration estimation based on inertial and magnetic sensors: bio-logging application. IEEE Sens. J. 11(1), 233–244 (2011)CrossRefGoogle Scholar
  55. 55.
    Frost, B.J.: The optokinetic basis of head-bobbing in the pigeon. J. Exp. Biol. 74, 187–195 (1978)Google Scholar
  56. 56.
    Fujita, M.: Head bobbing and the body movement of little egrets (Egretta garzetta) during walking. J. Comp. Physiol. A Neuroethology Sens. Neural Behav. Physiol. 189(1), 53–58 (2003)Google Scholar
  57. 57.
    Jones, G.M., Berthoz, A., Segal, B.: Adaptive modification of the vestibulo-ocular reflex by mental effort in darkness. Exp. Brain Res. 56(1), 149–153 (1984)Google Scholar
  58. 58.
    Gay, S., Ijspeert, A., Santos Victor, J.: Predictive gaze stabilization during periodic locomotion based on adaptive frequency oscillators. In: 2012 IEEE International Conference on Robotics and Automation, pp. 271–278. IEEE (2012)Google Scholar
  59. 59.
    Gebre-Egziabher, D., Hayward, R., Powell, J.: A low-cost GPS/inertial attitude heading reference system (AHRS) for general aviation applications. In: IEEE 1998 Position Location and Navigation Symposium (Cat. No. 98CH36153), pp. 518–525. IEEE (1998)Google Scholar
  60. 60.
    Geen, J., Krakauer, D.: Rate-sensing gyroscope. Technical report, ADI Micromachined Products Division (2003)Google Scholar
  61. 61.
    Goldberg, J., Peterson, B.W.: Reflex and mechanical contributions to head stabilization in alert cats. J. Neurophysiol. 56(3), 857–875 (1986)CrossRefGoogle Scholar
  62. 62.
    Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of NAO humanoid. In: 2009 IEEE International Conference on Robotics and Automation, pp. 769–774. IEEE (2009)Google Scholar
  63. 63.
    Grassi, M.: Attitude determination and control for a small remote sensing satellite. Acta Astronaut. 40(9), 675–681 (1997)CrossRefGoogle Scholar
  64. 64.
    Grasso, R., Prévost, P., Ivanenko, Y.P., Berthoz, A.: Eye-head coordination for the steering of locomotion in humans: an anticipatory synergy. Neurosci. Lett. 253(2), 115–118 (1998)CrossRefGoogle Scholar
  65. 65.
    Green, P.R.: Head orientation and trajectory of locomotion during jumping and walking in domestic chicks. Brain Behav. Evol. 51(1), 48–58 (1998)CrossRefGoogle Scholar
  66. 66.
    Greiff, P., Antkowiak, B., Campbell, J., Petrovich, A.: Vibrating wheel micromechanical gyro. In: Proceedings of Position, Location and Navigation Symposium—PLANS ’96, pp. 31–37. IEEE (1996)Google Scholar
  67. 67.
    Grewal, M., Henderson, V., Miyasako, R.: Application of kalman filtering to the calibration and alignment of inertial navigation systems. IEEE Trans. Autom. Control 36(1), 3–13 (1991)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Groen, J.J.: Cupulometry. Laryngoscope 67(9), 894–905 (1957)CrossRefGoogle Scholar
  69. 69.
    Guitton, D., Kearney, R., Wereley, N., Peterson, B.: Visual, vestibular and voluntary contributions to human head stabilization. Exp. Brain Res. 64(1) (1986)Google Scholar
  70. 70.
    Hain, T., Ramaswamy, T., Hilmann, M.: Anatomy and physiology of vestibular system. In: Herdman, S.J. (ed.) Vestibular Rehabilitation, Chapter 1 (2007)Google Scholar
  71. 71.
    Hale, J., Cheng, G.: Full-body compliant human-humanoid interaction: balancing in the presence of unknown external forces. IEEE Trans. Robot. 23(5), 884–898 (2007)CrossRefGoogle Scholar
  72. 72.
    Hashimoto, K., Kang, H., Nakamura, M., Falotico, E., Lim, H., Takanishi, A., Laschi, C., Dario, P., Berthoz, A.: Realization of biped walking on soft ground with stabilization control based on gait analysis. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2014)Google Scholar
  73. 73.
    Hicheur, H., Vieilledent, S., Berthoz, A.: Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms. Neurosci. Lett. 383(1–2), 87–92 (2005)CrossRefGoogle Scholar
  74. 74.
    Hirose, M., Ogawa, K.: Honda humanoid robots development. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 365(1850), 11–9 (2007)CrossRefGoogle Scholar
  75. 75.
    Hulk, J., Jongkees, L.B.W.: The turning test with small regulable stimuli. J. Laryngol. Otol. 62(02), 70–75 (1948)CrossRefGoogle Scholar
  76. 76.
    Igarashi, M., O-Uchi, T., Alford, B.R.: Volumetric and dimensional measurements of vestibular structures in the squirrel monkey. Acta Otolaryngol. 91(5–6), 437–44 (1981)CrossRefGoogle Scholar
  77. 77.
    Israel, I., Grasso, R., Georges-Francois, P., Tsuzuku, T., Berthoz, A.: Spatial memory and path integration studied by self-driven passive linear displacement. i. Basic properties. J. Neurophysiol. 77(6), 3180–3192 (1997)CrossRefGoogle Scholar
  78. 78.
    Israël, I., Rivaud, S., Gaymard, B., Berthoz, A., Pierrot-Deseilligny, C.: Cortical control of vestibular-guided saccades in man. Brain 118(5), 1169–1183 (1995)CrossRefGoogle Scholar
  79. 79.
    Jun, Y., Ellenburg, R., Oh, P.: From concept to realization: designing miniature humanoids for running. J. Systemics Cybern. Inform. (2010)Google Scholar
  80. 80.
    Kadone, H., Bernardin, D., Bennequin, D., Berthoz, A.: Gaze anticipation during human locomotion-top-down organization that may invert the concept of locomotion in humanoid robots. In: 19th International Symposium in Robot and Human Interactive Communication, pp. 552–557 (2010)Google Scholar
  81. 81.
    Kagami, S., Mochimaru, M., Ehara, Y., Miyata, N., Nishiwaki, K., Kanade, T., Inoue, H.: Measurement and comparison of humanoid H7 walking with human being. Robot. Autonom. Syst. 48(4), 177–187 (2004)CrossRefGoogle Scholar
  82. 82.
    Kalman, R.E.: A new approach to linear filtering and prediction problems 1. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)CrossRefGoogle Scholar
  83. 83.
    Katzir, G., Schechtman, E., Carmi, N., Weihs, D.: Head stabilization in herons. J. Comp. Physiol. A Sens. Neural. Behav. Physiol. 187(6), 423–432 (2001)CrossRefGoogle Scholar
  84. 84.
    Keshner, E.A., Hain, T.C., Chen, K.J.: Predicting control mechanisms for human head stabilization by altering the passive mechanics. J. Vestib. Res. Equilib. Orientation 9(6), 423–34 (1999)Google Scholar
  85. 85.
    Kim, J.-Y., Park, I.-W., Oh, J.-H.: Experimental realization of dynamic walking of the biped humanoid robot KHR-2 using zero moment point feedback and inertial measurement. Adv. Robot. 20(6), 707–736 (2006)CrossRefGoogle Scholar
  86. 86.
    Kryczka, P., Falotico, E., Hashimoto, K., Lim, H., Takanishi, A., Laschi, C., Dario, P., Berthoz, A.: Implementation of a human model for head stabilization on a humanoid platform. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 675–680. IEEE (2012)Google Scholar
  87. 87.
    Lapadatu, D., Habibi, S., Reppen, B., Salomonsen, G., Kvisteroy, T.: Dual-axes capacitive inclinometer/low-g accelerometer for automotive applications. In: 14th IEEE International Conference on Micro Electro Mechanical Systems, pp. 34–37. IEEE (2001)Google Scholar
  88. 88.
    Laumond, J.-P., Arechavaleta, G., Truong, T.-V.-A., Hicheur, H., Pham, Q.-C., Berthoz, A.: The words of the human locomotion. In: Kaneko, M., Nakamura, Y. (eds.) Robotics Research, vol. 66 of Springer Tracts in Advanced Robotics, pp. 35–47. Springer (2011)Google Scholar
  89. 89.
    Laumond, J.-P., Benallegue, M., Carpentier, J., Berthoz, A.: The yoyo-man. Int. J. Robot. Res. 0278364917693292 (2017)Google Scholar
  90. 90.
    Laurens, J., Droulez, J.: Bayesian processing of vestibular information. Biol. Cybern. 96(4), 389–404 (2007)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Leavitt, J., Sideris, A., Bobrow, J.: High bandwidth tilt measurement using low-cost sensors. IEEE/ASME Trans. Mechatron. 11(3), 320–327 (2006)CrossRefGoogle Scholar
  92. 92.
    Lin, C.-H., Kuo, S.-M.: High-performance inclinometer with wide-angle measurement capability without damping effect. In: 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 585–588. IEEE (2007)Google Scholar
  93. 93.
    Lohmeier, S., Buschmann, T., Ulbrich, H.: System design and control of anthropomorphic walking robot LOLA. IEEE/ASME Trans. Mechatron. 14(6), 658–666 (2009)CrossRefGoogle Scholar
  94. 94.
    Lopes, M., Bernardino, A., Santos-Victor, J., Rosander, K., von Hofsten, C.: Biomimetic eye-neck coordination. In: 2009 IEEE 8th International Conference on Development and Learning. IEEE (2009)Google Scholar
  95. 95.
    Luenberger, D.G.: Observing the state of a linear system. IEEE Trans. Mil. Electron. 8(2), 74–80 (1964)CrossRefGoogle Scholar
  96. 96.
    MacNeilage, P.R., Ganesan, N., Angelaki, D.E.: Computational approaches to spatial orientation: from transfer functions to dynamic bayesian inference. J. Neurophysiol. 100(6), 2981–96 (2008)CrossRefGoogle Scholar
  97. 97.
    Manaf, A.B.A., Nakamura, K., Onishi, J., Matsumoto, Y.: One-side-electrode-type fluid-based inclinometer combined with cmos circuitry. In: 2007 IEEE Sensors, pp. 844–847. IEEE (2007)Google Scholar
  98. 98.
    Manchester, D., Woollacott, M., Zederbauer-Hylton, N., Marin, O.: Visual, vestibular and somatosensory contributions to balance control in the older adult. J. Gerontol. 44(4), M118–M127 (1989)CrossRefGoogle Scholar
  99. 99.
    Merfeld, D.M., Zupan, L., Peterka, R.J.: Humans use internal models to estimate gravity and linear acceleration. Nature 398(6728), 615–8 (1999)CrossRefGoogle Scholar
  100. 100.
    Merfeld, D.M., Zupan, L.H.: Neural processing of gravitoinertial cues in humans. iii. Modeling tilt and translation responses. J. Neurophysiol. 87(2), 819–833 (2002)CrossRefGoogle Scholar
  101. 101.
    Merfeld, D.M., Zupan, L.H., Gifford, C.A.: Neural processing of gravito-inertial cues in humans. ii. Influence of the semicircular canals during eccentric rotation. J. Neurophysiol. 85(4), 1648–1660 (2001)CrossRefGoogle Scholar
  102. 102.
    Mescheder, U., Majer, S.: Micromechanical inclinometer. Sens. Actuators A Phys. 60(1–3), 134–138 (1997)CrossRefGoogle Scholar
  103. 103.
    Metni, N., Pflimlin, J.-M., Hamel, T., Souères, P.: Attitude and gyro bias estimation for a VTOL UAV. Control Eng. Pract. 14(12), 1511–1520 (2006)CrossRefGoogle Scholar
  104. 104.
    Meyer, J.-A., Guillot, A., Girard, B., Khamassi, M., Pirim, P., Berthoz, A.: The psikharpax project: towards building an artificial rat. Robot. Autonom. Syst. 50(4), 211–223 (2005)CrossRefGoogle Scholar
  105. 105.
    Mottier, P., Pouteau, P.: Solid state optical gyrometer integrated on silicon. Electron. Lett. 33(23) (1997)Google Scholar
  106. 106.
    Necker, R.: Head-bobbing of walking birds. J. Comp. Physiol. A Neuroethology Sens. Neural Behav. Physiol. 193(12), 1177–1183 (2007)Google Scholar
  107. 107.
    Niven, J., Hixson, W.: Frequency response of the human semicircular canals: I. Steady-state ocular nystagmus response to high-level sinusoidal angular rotations. Technical report, NASA Naval School of Aviation Medicine (1961)Google Scholar
  108. 108.
    Novack, M.J.: Design and fabrication of a thin film micromachined accelerometer. Ph.D. thesis, Massachusetts Institute of Technology (1992)Google Scholar
  109. 109.
    Paian, F., Laschi, C., Miwa, H., Guglielmelli, E., Dario, P., Takanishi, A.: Design and development of a biologically-inspired artificial vestibular system for robot heads. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 1317–1322. IEEE (2004)Google Scholar
  110. 110.
    Panerai, F., Metta, G., Sandini, G.: Learning visual stabilization reflexes in robots with moving eyes. Neurocomputing 48(1–4), 323–337 (2002)CrossRefGoogle Scholar
  111. 111.
    Paramiggiani, A., Maggiali, M., Natale, L., Nori, F., Schmitz, A., Tsagarakis, N., Victor, J.S., Becchi, F., Sandini, G., Metta, G.: The design of the iCub humanoid robot. Int. J. Humanoid Rob. 1250027 (2012)Google Scholar
  112. 112.
    Park, I.-W., Kim, J.-Y., Lee, J., Oh, J.-H.: Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot - 3: HUBO). In: 5th IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 321–326. IEEE (2005)Google Scholar
  113. 113.
    Pascal, P., Ivanenko, Y., Grasso, R., Berthoz, A.: Spatial invariance in anticipatory orienting behaviour during human navigation. Neurosci. Lett. 339(3), 243–247 (2003)CrossRefGoogle Scholar
  114. 114.
    Pateromichelakis, N., Mazel, A., Hache, M., Koumpogiannis, T., Gelin, R., Maisonnier, B., Berthoz, A.: Head-eyes system and gaze analysis of the humanoid robot Romeo. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 1374–1379. IEEE (2014)Google Scholar
  115. 115.
    Pozzo, T., Berthoz, A., Lefort, L.: Head stabilisation during various locomotor tasks in humans. Exp. Brain Res. 82(1), 97–106 (1990)CrossRefGoogle Scholar
  116. 116.
    Pozzo, T., Berthoz, A., Lefort, L., Vitte, E.: Head stabilization during various locomotory tasks in humans ii. Patients with bilateral vestibular deficits. Exp. Brain Res. 85, 208–217 (1991)CrossRefGoogle Scholar
  117. 117.
    Pozzo, T., Levik, Y., Berthoz, A.: Head and trunk movements in the frontal plane during complex dynamic equilibrium tasks in humans. Exp. Brain Res. 106(2), 327–338 (1995)CrossRefGoogle Scholar
  118. 118.
    Puers, R., Reyntjens, S.: Design and processing experiments of a new miniaturized capacitive triaxial accelerometer. Sens. Actuators A Phys. 68(1–3), 324–328 (1998)CrossRefGoogle Scholar
  119. 119.
    Qian, J., Fang, B., Yang, W., Luan, X., Nan, H.: Accurate tilt sensing with linear model. IEEE Sens. J. 11(10), 2301–2309 (2011)Google Scholar
  120. 120.
    Rehbinder, H., Hu, X.: Drift-free attitude estimation for accelerated rigid bodies. Automatica 40(4), 653–659 (2004)MathSciNetCrossRefGoogle Scholar
  121. 121.
    Reisine, H., Simpson, J.I., Henn, V.: A geometric analysis of semicircular canals and induced activity in their peripheral afferents in the rhesus monkey. Ann. N.Y. Acad. Sci. 545, 10–20 (1988)CrossRefGoogle Scholar
  122. 122.
    Roncone, A., Pattacini, U., Metta, G., Natale, L.: Gaze stabilization for humanoid robots: a comprehensive framework. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 259–264. IEEE (2014)Google Scholar
  123. 123.
    Rotella, N., Bloesch, M., Righetti, L., Schaal, S.: State estimation for a humanoid robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 952–958 (2014)Google Scholar
  124. 124.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: IEEE/RSJ International Conference on Intelligent Robots and System, vol. 3, pp. 2478–2483. IEEE (2002)Google Scholar
  125. 125.
    Schwarz, M., Rodehutskors, T., Schreiber, M., Behnke, S.: Hybrid driving-stepping locomotion with the wheeled-legged robot momaro. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5589–5595 (2016)Google Scholar
  126. 126.
    Selva, P., Oman, C.M.: Relationships between Observer and Kalman filter models for human dynamic spatial orientation. J. Vestib. Res. Equilib. Orientation 22(2), 69–80 (2012)Google Scholar
  127. 127.
    Shepard, N.T., Telian, S.A., Smith-Wheelock, M., Raj, A.: Vestibular and balance rehabilitation therapy. Ann. Otol. Rhinol. Laryngol. 102(3 Pt 1), 198–205 (1993)CrossRefGoogle Scholar
  128. 128.
    Shibata, T., Schaal, S.: Biomimetic gaze stabilization based on feedback-error-learning with nonparametric regression networks. Neural Netw. 14(2), 201–216 (2001)CrossRefGoogle Scholar
  129. 129.
    Shibata, T., Vijayakumar, S.: Humanoid oculomotor control based on concepts of computational neuroscience. In: IEEE-RAS International Conference on Humanoid Robots, Japan (2001)Google Scholar
  130. 130.
    Sreenivasa, M.N., Soueres, P., Laumond, J.-P., Berthoz, A.: Steering a humanoid robot by its head. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4451–4456. IEEE (2009)Google Scholar
  131. 131.
    Stephens, B.J., Atkeson, C.G.: Dynamic balance force control for compliant humanoid robots. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1248–1255. IEEE (2010)Google Scholar
  132. 132.
    Sugimoto, N., Morimoto, J., Hyon, S.-H., Kawato, M.: The eMOSAIC model for humanoid robot control. Neural Netw. Official J. Int. Neural Netw. Soc. 29-30(null), 8–19 (2012)Google Scholar
  133. 133.
    Svendsen, M.S., Helbo, J., Hansen, M.R., Popovic, D.B., Stoustrup, J., Pedersen, M.M.: Aau-bot1: a platform for studying dynamic, life-like walking. Appl. Bionics Biomech. 6(3–4), 285–299 (2009)CrossRefGoogle Scholar
  134. 134.
    Tahboub, K.A.: Biologically-inspired postural and reaching control of a multi-segment humanoid robot. Int. J. Biomechatron. Biomed. Robot. 1(3), 175–190 (2011)CrossRefGoogle Scholar
  135. 135.
    Trimpe, S., D’Andrea, R.: Accelerometer-based tilt estimation of a rigid body with only rotational degrees of freedom. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2630–2636. IEEE (2010)Google Scholar
  136. 136.
    Troje, N., Frost, B.: Head-bobbing in pigeons: how stable is the hold phase? J. Exp. Biol. 203(5), 935–940 (2000)Google Scholar
  137. 137.
    Tsagarakis, N.G., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., Righetti, L., Santos-Victor, J., Ijspeert, A.J., Carrozza, M.C., Caldwell, D.G.: icub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Adv. Robot. 21(10), 1151–1175 (2007)CrossRefGoogle Scholar
  138. 138.
    Vaganay, J., Aldon, M., Fournier, A.: Mobile robot attitude estimation by fusion of inertial data. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 277–282. IEEE Computer Society Press (1993)Google Scholar
  139. 139.
    Van Buskirk, W.C., Watts, R.G., Liu, Y.K.: The fluid mechanics of the semicircular canals. J. Fluid Mech. 78(01), 87–98 (1976)CrossRefGoogle Scholar
  140. 140.
    Vannucci, L., Tolu, S., Falotico, E., Dario, P., Lund, H.H., Laschi, C.: Adaptive gaze stabilization through cerebellar internal models in a humanoid robot. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 25–30. IEEE (2016)Google Scholar
  141. 141.
    Vasconcelos, J., Cunha, R., Silvestre, C., Oliveira, P.: A nonlinear position and attitude observer on SE(3) using landmark measurements. Syst. Control Lett. 59(3–4), 155–166 (2010)MathSciNetCrossRefGoogle Scholar
  142. 142.
    Veltink, P.H., Luinge, H.J., Kooi, B.J., Baten, C.T.M., Slycke, P.: The artificial vestibular system—design of a tri-axial inertial sensor system and its application in the study of human movement. In: Proceedings of the International Society for Postural and Gait Research, number 1 (2001)Google Scholar
  143. 143.
    Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng. BME-16(1), 1–6 (1969)Google Scholar
  144. 144.
    Welch, G., Foxlin, E.: Motion tracking: no silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl. 22(6), 24–38 (2002)CrossRefGoogle Scholar
  145. 145.
    Winter, D.: Human balance and posture control during standing and walking. Gait Posture 3(4), 193–214 (1995)CrossRefGoogle Scholar
  146. 146.
    Winter, D.A., Patla, A.E., Prince, F., Ishac, M., Gielo-Perczak, K.: Stiffness control of balance in quiet standing. J. Neurophysiol. 80(3), 1211–1221 (1998)CrossRefGoogle Scholar
  147. 147.
    Wongsuwarn, H., Laowattana, D.: Experimental study for a FIBO humanoid robot. In: IEEE Conference on Robotics, Automation and Mechatronics (2006)Google Scholar
  148. 148.
    Xiang, Y., Yakushin, S.B., Kunin, M., Raphan, T., Cohen, B.: Head stabilization by vestibulocollic reflexes during quadrupedal locomotion in monkey. J. Neurophysiol. 100(2), 763–80 (2008)CrossRefGoogle Scholar
  149. 149.
    Yelnik, A.P.: Perception of verticality after recent cerebral hemispheric stroke. Stroke 33(9), 2247–2253 (2002)CrossRefGoogle Scholar
  150. 150.
    Yotter, R., Baxter, R., Ohno, S., Hawley, S., Wilson, D.: On a micromachined fluidic inclinometer. In: TRANSDUCERS ’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems, vol. 2, pp. 1279–1282. IEEE (2003)Google Scholar
  151. 151.
    Zupan, L.H., Peterka, R.J., Merfeld, D.M.: Neural processing of gravito-inertial cues in humans. i. Influence of the semicircular canals following post-rotatory tilt. J. Neurophysiol. 84(4), 2001–2015 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ildar Farkhatdinov
    • 1
    • 2
  • Hannah Michalska
    • 3
  • Alain Berthoz
    • 4
  • Vincent Hayward
    • 5
  1. 1.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUK
  2. 2.Department of BioengineeringImperial College LondonLondonUK
  3. 3.McGill UniversityMontrealCanada
  4. 4.Collège de FranceParisFrance
  5. 5.Sorbonne Universités, Institut des Systèmes Intelligents et de Robotique, ISIRParisFrance

Personalised recommendations