Advertisement

Design and Control of a Passive Noise Rejecting Variable Stiffness Actuator

  • Luca FiorioEmail author
  • Francesco Romano
  • Alberto Parmiggiani
  • Bastien Berret
  • Giorgio Metta
  • Francesco Nori
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 124)

Abstract

Inspired by the biomechanical and passive properties of human muscles, we present a novel actuator named passive noise rejecting Variable Stiffness Actuator (pnrVSA). For a single actuated joint, the proposed design adopts two motor-gear groups in an agonist-antagonist configuration coupled to the joint via serial non-linear springs. From a mechanical standpoint, the introduced novelty resides in two parallel non-linear springs connecting the internal motor-gear groups to the actuator frame. These additional elastic elements create a closed force path that mechanically attenuates the effects of external noise. We further explore the properties of this novel actuator by modeling the effect of gears static frictions on the output joint equilibrium position during the co-contraction of the agonist and antagonist side of the actuator. As a result, we found an analytical condition on the spring potential energies to guarantee that co-activation reduces the effect of friction on the joint equilibrium position. The design of an optimized set of springs respecting this condition leads to the construction of a prototype of our actuator. To conclude the work, we also present two control solutions that exploit the mechanical design of the actuator allowing to control both the joint stiffness and the joint equilibrium position.

References

  1. 1.
    Albu-Schaffer, A., Hirzinger, G.: Cartesian impedance control techniques for torque controlled light-weight robots. In: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA ’02. vol. 1, pp. 657–663 (2002).  https://doi.org/10.1109/ROBOT.2002.1013433
  2. 2.
    Armstrong, B.: Dynamics for robot control: Friction modelling and ensuring excitation during parameter identification. Dissertation, Stanford University (1988)Google Scholar
  3. 3.
    Berret, B., Ivaldi, S., Nori, F., Sandini, G.: Stochastic optimal control with variable impedance manipulators in presence of uncertainties and delayed feedback. In: International Conference on Intelligent Robots and Systems (IROS2011), pp. 4354–4359 . IEEE (2011)Google Scholar
  4. 4.
    Berret, B., Sandini, G., Nori, F.: Design principles for muscle-like variable impedance actuators with noise rejection property via co-contraction. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 222–227 (2012).  https://doi.org/10.1109/HUMANOIDS.2012.6651524
  5. 5.
    Berret, B., Yung, I., Nori, F.: Open-loop stochastic optimal control of a passive noise-rejection variable stiffness actuator: application to unstable tasks. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3029–3034 (2013).  https://doi.org/10.1109/IROS.2013.6696785
  6. 6.
    Bicchi, A., Tonietti, G., Piaggio, E.: Design, realization and control of soft robot arms for intrinsically safe interaction with humans. In: Proceedings of the IARP/RAS Workshop on Technical Challenges for Dependable Robots in Human Environments, pp. 79–87 (2002)Google Scholar
  7. 7.
    Bona, B., Indri, M.: Friction compensation in robotics: an overview. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05, pp. 4360–4367 (2005).  https://doi.org/10.1109/CDC.2005.1582848
  8. 8.
    Burdet, E., Osu, R., Franklin, D.W., Milner, T.E., Kawato, M.: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–9 (2001a).  https://doi.org/10.1038/35106566CrossRefGoogle Scholar
  9. 9.
    Burdet, E., Osu, R., Franklin, D.W., Milner, T.E., Kawato, M.: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001b).  https://doi.org/10.1038/35106566CrossRefGoogle Scholar
  10. 10.
    de Wit, C.C., Olsson, H., Astrom, K., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425 (1994)MathSciNetGoogle Scholar
  11. 11.
    De Luca, C.J., Mambrito, B.: Voluntary control of motor units in human antagonist muscles: coactivation and reciprocal activation. J. Neurophysiol. 58(3), 525–542 (1987). http://jn.physiology.org/content/58/3/525, http://jn.physiology.org/content/58/3/525.full.pdf
  12. 12.
    Del Prete, A., Nori, F., Metta, G,. Natale, L.: Control of contact forces: the role of tactile feedback for contact localization. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012)Google Scholar
  13. 13.
    Eiberger, O., Haddadin, S., Weis, M., Albu-Sch äffer, A., Hirzinger, G.: On joint design with intrinsic variable compliance: derivation of the DLR QA-joint, pp. 1687–1694 (2010)Google Scholar
  14. 14.
    Fiorio, L., Parmiggiani, A., Berret, B., Sandini, G., Nori, F.: pnrVSA: human-like actuator with non-linear springs in agonist-antagonist configuration (2012)Google Scholar
  15. 15.
    Fiorio, L., Romano, F., Parmiggiani, A., Sandini, G., Nori, F.: On the effects of internal stiction in pnrVIA actuators. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 362–367 (2013)  https://doi.org/10.1109/HUMANOIDS.2013.7030000
  16. 16.
    Fiorio, L., Romano, F., Parmiggiani, A., Sandini, G., Nori, F.: Stiction compensation in agonist-antagonist variable stiffness actuators. In: Proceedings of Robotics: Science and Systems, Berkeley, USA (2014)Google Scholar
  17. 17.
    Fumagalli, M., Ivaldi, S., Randazzo, M., Natale, L., Metta, G., Sandini, G., Nori, F.: Force feedback exploiting tactile and proximal force/torque sensing. Theory and implementation on the humanoid robot iCub. Autonom. Robots 33(4), 381–398 (2012)CrossRefGoogle Scholar
  18. 18.
    Hill, A., Gasser, H.: The dynamics of muscular contraction (1924)Google Scholar
  19. 19.
    Hogan, N.: Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29(8), 681–690 (1984).  https://doi.org/10.1109/TAC.1984.1103644CrossRefzbMATHGoogle Scholar
  20. 20.
    Kappen, H.J.: Optimal Control Theory and the Linear Bellman Equation, p. 363387. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511984679.018
  21. 21.
    McMahon, T.: Muscle, Reflexes, and Locomotion (1984)Google Scholar
  22. 22.
    Migliore, S. A., Brown, E. A., DeWeerth, S. P.: Biologically inspired joint stiffness control. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, April 18–22, 2005, Barcelona, Spain, pp. 4508–4513 (2005).  https://doi.org/10.1109/ROBOT.2005.1570814
  23. 23.
    Nori, F., Berret, B., Fiorio, L., Parmiggiani, A., Sandini, G.: Control of a single degree of freedom noise rejecting-variable impedance. In: Proceedings of the 10th international IFAC symposium on Robot Control (SYROCO2012) (2012)Google Scholar
  24. 24.
    Paillard, J.: Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. Can. J. Physiol. Pharmacol. 74, 401–417 (1996)CrossRefGoogle Scholar
  25. 25.
    Parra-Vega, V., Arimoto, S.: A passivity based adaptive sliding mode position-force control for robot manipulators. Int. J. Adapt. Control Signal Process. 10, 365–377 (1996)Google Scholar
  26. 26.
    Petit, F., Chalon, M., Friedl, W., Grebenstein, M., Albu-Schäffer, A., Hirzinger, G.: Bidirectional antagonistic variable stiffness actuation: analysis, design & implementation. In: ICRA, pp. 4189–4196 (2010)Google Scholar
  27. 27.
    Polit, A., Bizzi, E.: Characteristics of motor programs underlying arm movements in monkeys. J. Neurophysiol. 42(1), 183–194 (1979)CrossRefGoogle Scholar
  28. 28.
    Pratt, G., Williamson, M.: Series elastic actuators. In: 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots’, Proceedings, vol. 1, pp. 399–406 (1995)Google Scholar
  29. 29.
    Romano, F., Fiorio, L., Sandini, G., Nori, F.: Control of a two-DOF manipulator equipped with a PNR-variable stiffness actuator. In: 2014 IEEE International Symposium on Intelligent Control (ISIC), pp 1354–1359 (2014). https://doi.org/10.1109/ISIC.2014.6967620
  30. 30.
    Schiavi, R., Grioli, G., Sen, S., Bicchi, A.: VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 2171–2176 (2008).  https://doi.org/10.1109/ROBOT.2008.4543528
  31. 31.
    Theodorou, E., Buchli, J., Schaal, S.: A generalized path integral control approach to reinforcement learning. J. Mach. Learn. Res. 11, 3137–3181 (2010)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Tomei, P.: Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans. Autom. Control 45(11), 2164–2169 (2000)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tonietti, G., Schiavi, R., Bicchi, A.: Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: ICRA, pp 526–531. IEEE (2005)Google Scholar
  34. 34.
    Traversaro S, Pucci D, Nori F (2015) In situ calibration of six-axis force-torque sensors using accelerometer measurements. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 2111–2116Google Scholar
  35. 35.
    Van Ham, R., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. IEEE Robot. Autom. Mag. 16, 81–94 (2009)CrossRefGoogle Scholar
  36. 36.
    Vanderborght, B., Albu-Sch äffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M.G., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N.G., Damme, M.V., Ham, R.V., Visser, L.C., Wolf, S.: Variable impedance actuators: a review. Robot. Autonom. Syst. 61(12), 1601–1614 (2013)Google Scholar
  37. 37.
    Vitiello, N., Cattin, E., Roccella, S., Giovacchini, F., Vecchi, F., Carrozza, M.C., Dario, P.: The neurarm: towards a platform for joint neuroscience experiments on human motion control theories. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1852–1857. IEEE (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Luca Fiorio
    • 1
    Email author
  • Francesco Romano
    • 1
  • Alberto Parmiggiani
    • 1
  • Bastien Berret
    • 2
    • 3
  • Giorgio Metta
    • 1
  • Francesco Nori
    • 1
  1. 1.iCub Facility DepartmentIstituto Italiano di TecnologiaGenovaItaly
  2. 2.CIAMSUniversity of Paris-Sud, Universit Paris-SaclayOrsayFrance
  3. 3.Institut Universitaire de France (IUF)ParisFrance

Personalised recommendations