Advertisement

A Rather Unusual History

  • Mauro Gallegati
Chapter
Part of the New Economic Windows book series (NEW)

Abstract

As we have seen, the marginal revolution of Jevons, Menger and Walras is based on Newton’s physics, that is, on mechanistic determinism, in which cause–effect relationships are believed to be true, while statistical physics takes its first steps (the economists’ equilibrium is consequently a state of quiescence in which every single agent is in equilibrium and not, as in statistical physics, a statistical equilibrium in which the single entities may not be, but the totality is). It’s the affirmation of methodological individualism, namely, of the methodology that sees every agent acting in its own individual interest, without bothering about what the other agents do. In economics, this is known as the lack of strategy principle. In real life, as stupidity.

Keywords

Agent-based economics Complexity Gödel theorems versus axiomatic economics Keynes Interaction and emergence 

References

  1. Ackerman, F.: Still dead after all these years: interpreting the failure of general equilibrium theory. J. Econ. Methodol. 9(2), 139–202 (2002)CrossRefGoogle Scholar
  2. Albert, R., Barabási, A.L.: Dynamics of complex systems: Scaling laws for the period of Boolean’ networks. Phys. Rev. Lett. 84, 5660–5663 (2000)CrossRefGoogle Scholar
  3. Alfarano, S., Lux, T., Wagner, F.: Empirical validation of stochastic models of interacting agents. Eur. Phys. J. B. 55(2), 183–187 (2007)CrossRefGoogle Scholar
  4. Alfarano, S., Lux, T., Wagner, F.: Estimation of agent-based models: the case of an asymmetric herding model. Comput. Econ. 26(1), 19–49 (2005)CrossRefGoogle Scholar
  5. Anderson, P.W.: More is different. Science. 177(4047), 393–396 (1972)CrossRefGoogle Scholar
  6. Arrow, K.J., Debreu, G.: Existence of equilibrium for a competitive economy. Econometrica. 22, 265–290 (1954)CrossRefGoogle Scholar
  7. Ashraf, Q., Gershman, B., Howitt, P.: How inflation affects macroeconomic performance: an agent-based computational investigation. Macroecon. Dyn. 20, 558–581 (2016)CrossRefGoogle Scholar
  8. Ashraf, Q., Gershman, B., Howitt, P.: Banks, market organization, and macroeconomic performance: an agent-based computational analysis. J. Econ. Behav. Organ. 135, 143–180 (2017)CrossRefGoogle Scholar
  9. Assenza, T., Delli Gatti, D.: E pluribus unum: macroeconomic modelling for multiagent economies. J. Econ. Dyn. Control. 37, 1659–1682 (2013)CrossRefGoogle Scholar
  10. Axtell, R.L.: Zipf distribution of US firm sizes. Science. 293, 1818–1820 (2001)CrossRefGoogle Scholar
  11. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science. 286(5439), 509–512 (1999)CrossRefGoogle Scholar
  12. Bargigli, L., Gallegati, M.: Finding communities in credit networks. E-Journal. (2012)Google Scholar
  13. Benhabib, R.D.: A characterization of erratic dynamics in the overlapping generations model. J. Econ. Dyn. Control. 4, 37–55 (1982)CrossRefGoogle Scholar
  14. Bernanke, B., Gertler, M.: Should central banks respond to movements in asset prices. Am. Econ. Rev. 91, 253–257 (2001)CrossRefGoogle Scholar
  15. Bianchi, C., Cirillo, P., Gallegti, M., Vagliasindi, P.: Validating and calibrating agent-based models: a case study. Comput. Econ. 30(3), 245–264 (2007)CrossRefGoogle Scholar
  16. Bianconi, G., Barabasi, A.L.: Competition and multiscaling in evolving networks. Europhys. Lett. 54, 436–442 (2001)CrossRefGoogle Scholar
  17. Bischi, G.I.: Matematica per l’economia e le scienze sociali. http://slideplayer.it/slide/191642/ (2012)
  18. Blaug, M.: The formalist revolution of the 1950s. J. Hist. Econ. Thought. 25(2), 145–156 (2003)CrossRefGoogle Scholar
  19. Blundell, R., Stoker, T.M.: Heterogeneity and aggregation. J. Econ. Lit. 43, 347–391 (2005)CrossRefGoogle Scholar
  20. Boldrin, M., Montrucchio, L.: On the indeterminacy of capital accumulation paths. J. Econ. Theory. 40, 26–39 (1986)CrossRefGoogle Scholar
  21. Bookstaber, R.: The End of Theory. Financial Crises, the Failure of Economics, and the Sweep of Human Interaction. Princeton University Press, Princeton (2017)CrossRefGoogle Scholar
  22. Brock W. A., ; Colander, D. (2000). Complexity and policy. In D. Colander (Ed.), The complexity vision and the teaching of economics. Edward Elgar: CheltenhamGoogle Scholar
  23. Buchanan, M.: The Social Atom: Why the Rich Get Richer, Cheaters Get Caught, and Your Neighbor Usually Looks Like You. Bloomsbury, New York (2007)Google Scholar
  24. Caballero, R.J.: A fallacy of composition. Am. Econ. Rev. 82(5), 1279–1292 (1992)Google Scholar
  25. Caiani, A., Godin, A., Caverzasi, E., Gallegati, M., Kinsella, S., Stiglitz, J.E.: Agent based-stock flow consistent macroeconomics: towards a benchmark model. J. Econ. Dyn. Control. 69, 375–408 (2016a)CrossRefGoogle Scholar
  26. Caiani, A., Palestrini, A., Russo, A., Gallegati, M. (eds.): Economics with Heterogeneous Interacting Agents. Springer, Milan (2016b)Google Scholar
  27. Caldarelli, G.: Scale-free Networks. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  28. Canzian, G., Gaffeo, E., Tamborini, R.: Keynes in the computer laboratory an agent-based model with MEC, MPC, LP. In: Hernàndez, C., Posada, M., Lòpez-Parades, A. (eds.) Artificial Economics. The Generative Method in Economics. Springer, Berlin (2009)Google Scholar
  29. Capra, F., Mattei, U.: The Ecology of Law: Toward a Legal System in Tune with Nature and Community. Berrett-Koehler Publishers, Oakland, CA (2015)Google Scholar
  30. Catullo, E., Gallegati, M., Palestrini, A.: Towards a credit network based early warning indicator for crises. J. Econ. Dyn. Control. 50, 78–97 (2015)CrossRefGoogle Scholar
  31. Catullo, E., Giri, F., Gallegati, M.: Macro and micro prudential policies: sweet and lowdown in a credit network agent based model. Macroecon. Dyn. (2018)Google Scholar
  32. Chen, S.H.: Agent-based Computational Economics. Routledge, London (2012)Google Scholar
  33. Cincotti, S., Raberto, M., Teglio, A.: Credit money and macroeconomic instability in the agent-based model and simulator eurace. Economics. 4, 1–32 (2010)Google Scholar
  34. Cincotti, S., Raberto, M., Teglio, A.: The EURACE macroeconomic model and simulator. In: Aoki, M., Binmore, K., Deakin, S., Gintis, H. (eds.) Complexity and Institutions: Markets, Norms and Corporations, pp. 81–106. Palgrave Macmillan, New York (2012)Google Scholar
  35. Clarida, R., Galì, J., Gertler, M.: The science of monetary policy: a New-Keynesian perspective. J. Econ. Lit. 37, 1661–1707 (1999)CrossRefGoogle Scholar
  36. Clementi, F., Gallegati, M.: The Distribution of Income and Wealth. Springer, Milan (2016)CrossRefGoogle Scholar
  37. Clementi, F., Gallegati, M., Gianmoena, L., Landini, S., Stiglitz, J.E.: A new distributional index. Working paper, Università di Macerata (2018)Google Scholar
  38. Cohen, K.: Simulation of the firm. Am. Econ. Rev. 50, 534–540 (1960)Google Scholar
  39. Colander, D., Howitt, P., Kirman, A., Leijonhufvud, A., Mehrling, P.: Beyond DSGE models: toward an empirically based macroeconomics. Am. Econ. Rev. 98, 236–240 (2008)CrossRefGoogle Scholar
  40. Cozzi, T.: The macroeconomic crisis. Moneta e Credito. 64(253), 31–44 (2011)Google Scholar
  41. Davidson, P.: Rational expectations: a fallacious foundation for studying crucial decision-making processes. J. Post Keynes. Econ. 5, 182–198 (1982)CrossRefGoogle Scholar
  42. Dawid, H., Delli Gatti, D.: Agent-based macroeconomics, forthcoming (2018)Google Scholar
  43. Dawid, H., Gemkow, S., Harting, P., Neugart, M.: On the effects of skill upgrading in the presence of spatial labor market frictions: an agent-based analysis of spatial policy design. J. Artif. Soc. Soc. Simul. 12, 4 (2009)Google Scholar
  44. Dawid, H., Gemkow, S., Harting, P., Neugart, M., Kabus, K., Wersching, K.: Skills, innovation and growth: an agent-based policy analysis. J. Econ. Stat. 228, 251–275 (2008)Google Scholar
  45. Dawid, H., Gemkow, S., Harting, P., van der Hoog, S., Neugart, M.: Agent-based macroeconomic modeling and policy analysis: The eurace@unibi model. In: Chen, S.-H., Kaboudan, M. (eds.) Handbook on Computational Economics and Finance. Oxford University Press, New York (2018)Google Scholar
  46. Dawid, H., Harting, P.: Capturing rm behavior in agent-based models of industry evolution and macroeconomic dynamics (Chapter 6). In: Bunsdorf, G. (ed.) Evolution, Organization and Economic Behavior. Edward Elgar, Cheltenham (2012)Google Scholar
  47. Dawid, H., Harting, P., Neugart, M.: Economic convergence: policy implications from a heterogeneous agent model. J. Econ. Dyn. Control. 44, 54–80 (2014)CrossRefGoogle Scholar
  48. De Grauwe, P.: Top-down versus bottom-up macroeconomics. Paper presented at the CESifo Conference Whats wrong with modern macroeconomics, Munich, 6–7 November 2009 (2009)Google Scholar
  49. De Masi, G., Fujiwara, Y., Gallegati, M., Greenwald, B., ; Stiglitz, J. E. (2010). Empirical evidences of credit networks in Japan. Evol. Inst. Econ. Rev., 7(2), 209–232CrossRefGoogle Scholar
  50. Debreu, G.: Theory of Value. An Axiomatic Analysis of Economic Equilibrium. Wiley, New York (1959)Google Scholar
  51. Delli Gatti, D., Desiderio, S.: Monetary policy experiments in an agent-based model with financial frictions. J. Econ. Interac. Coord. 10, 265–286 (2015)CrossRefGoogle Scholar
  52. Delli Gatti, D., Di Guilmi, C., Gaffeo, E., Gallegati, M., Giulioni, G., ; Palestrini, A. (2004). Business cycle fluctuations and firms size distribution dynamics. Adv. Complex Syst., 7(2), 1–18CrossRefGoogle Scholar
  53. Delli Gatti, D., Di Guilmi, C., Gaffeo, E., Giulioni, G., Gallegati, M., Palestrini, A.: A new approach to business fluctuations: heterogeneous interacting agents, scaling laws and financial fragility. J. Econ. Behav. Organ. 56, 489–512 (2005)CrossRefGoogle Scholar
  54. Delli Gatti, D., Gaffeo, E., Gallegati, M.: Complex agent-based macroeconomics: a manifesto for a new paradigm. J. Econ. Interac. Coord. 5(2), 111–135 (2010a)CrossRefGoogle Scholar
  55. Delli Gatti, D., Gallegati, M., Cirillo, P., Desiderio, S., Gaffeo, E.: Macroeconomics from the Bottom-up. Springer, Berlin (2011)CrossRefGoogle Scholar
  56. Delli Gatti, D., Palestrini, A., Gaffeo, E., Giulioni, G., Gallegati, M.: Emergent macroeconomics: An agent-based approach to business fluctuations. Springer, New York (2008)Google Scholar
  57. Delli Gatti, D., Gallegati, M., Greenwald, B., Russo, A., Stiglitz, J.: The financial accelerator in an evolving credit network. J. Econ. Dyn. Control. 34, 1627–1650 (2010b)CrossRefGoogle Scholar
  58. Delli Gatti, D., Gallegati, M., Greenwald, B., Russo, A., Stiglitz, J.E.: Business fluctuations and bankruptcy avalanches in an evolving network economy. J. Econ. Interac. Coord. 4(2), 195–212 (2009)CrossRefGoogle Scholar
  59. Dosi, G., Fagiolo, G., Roventini, A.: An evolutionary model of endogeneous business cycles. Comput. Econ. 27(1), 3–34 (2006)CrossRefGoogle Scholar
  60. Dosi, G., Fagiolo, G., Roventini, A.: The microfoundations of business cycles: an evolutionary multi-agent model. J. Evol. Econ. 18, 413–432 (2008)CrossRefGoogle Scholar
  61. Dosi, G., Fagiolo, G., Roventini, A.: Schumpeter meeting Keynes: a policy-friendly model of endogenous growth and business cycles. J. Econ. Dyn. Control. 34, 1748–1767 (2010)CrossRefGoogle Scholar
  62. Dosi, G., Fagiolo, G., Napoletano, M., Roventini, A.: Income distribution, credit and fiscal policies in an agent-based Keynesian model. J. Econ. Dyn. Control. 37, 1598–1625 (2013)CrossRefGoogle Scholar
  63. Dosi, G., Fagiolo, G., Napoletano, M., Roventini, A., Treibich, T.: Fiscal and monetary policies in complex evolving economies. J. Econ. Dyn. Control. 52, 166–189 (2015)CrossRefGoogle Scholar
  64. Dosi, G., Napoletano, M., Roventini, A., Treibich, T.: Micro and macro policies in the Keynes plus Schumpeter evolutionary models. J. Evol. Econ. 27, 63–90 (2017)CrossRefGoogle Scholar
  65. Dosi, G., Roventini, A.: Agent-based macroeconomics and classical political economy: some Italian roots. Ital. Econ. J. 3(3), 261–283 (2017)CrossRefGoogle Scholar
  66. Epstein, J.M., Axtell, R.: Growing Artificial Society. Social Science from the Bottom-up. Cambridge University Press, Cambridge (1997)Google Scholar
  67. Fagiolo, G.: Estimation of agent-based models. In: Delli Gatti, D., Fagiolo, G., Gallegati, M., Richiardi, M., Russo, A. (eds.) Agent-Based Models. A Toolkit. Cambridge University Press, Cambridge (2018)Google Scholar
  68. Fagiolo, G., Roventini, A.: Macroeconomic policy in dsge and agent-based models redux: new developments and challenges ahead. J. Artif. Soc. Soc. Simul. 20, 1 (2017)CrossRefGoogle Scholar
  69. Farmer, D., Foley, D.: The economy needs AB modelling. Nature. 460, 685–686 (2009)CrossRefGoogle Scholar
  70. Feller, W.: An Introduction to Probability. Theory and its Applications. Wiley, New York (1957)Google Scholar
  71. Finch, J., Orillard, M. (eds.): Complexity and the Economy: Implications for Economic Policy. Edward Elgar, Cheltenham, MA (2005)Google Scholar
  72. Flake, G.W.: The Computational Beauty of Nature. The MIT Press, Cambridge, MA (1998)Google Scholar
  73. Föellmer, H.: Random economies with many interacting agents. J. Math. Econ. 1, 51–62 (1974)CrossRefGoogle Scholar
  74. Forni, M., Lippi, M.: Aggregation and the Microfoundations of Dynamic Macroeconomics. Oxford Clarendon Press, Oxford (1997)Google Scholar
  75. Fujiwara, Y.: Chain of firms bankruptcy: a macroscopic study of link effect in production network. Adv. Complex Syst. 11(5), 703–717 (2008)CrossRefGoogle Scholar
  76. Gabaix, X.: The granular origins of macroeconomic fluctuations. Econometrica. 79(3), 733–772 (2011)Google Scholar
  77. Gaffard, J.L., Napoletano, M.: Agent-Based Models and Economic Policy. Sciences Po Publications, OFCE, Paris (2012)Google Scholar
  78. Gaffeo, E., Delli Gatti, D., Gallegati, M., Giulioni, G., Kirman, A., Palestrini, A., Russo, A.: Complex dynamics and empirical evidence. Inf. Sci. 117, 1202–1221 (2007)Google Scholar
  79. Gaffeo, E., Gallegati, M., Palestrini, A.: On the size distribution of firms, additional evidence from the G7 countries. Physica A. 324, 117–123 (2003)CrossRefGoogle Scholar
  80. Gallegati, M.: Composition effect and economic fluctuations. Econ. Lett. 44(1–2), 123–126 (1994)CrossRefGoogle Scholar
  81. Gintis, H.: The dynamics of general equilibrium. Econ. J. 117(523), 1280–1309 (2007)CrossRefGoogle Scholar
  82. Gloria-Palermo, S.: Introducing formalism in economics: the growth model of John von Neumann. Panoeconomics. 2010(2), 153–172 (2010)CrossRefGoogle Scholar
  83. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandte Systeme I with page-facing English translation. In: Feferman, S. et al. (eds.) Kurt Gödel, Collected Works. Vol. I. Publications 1929–1936. Oxford University Press, New York, 1986. And, On formally undecidable propositions of Principia Mathematica and related systems, English translation by Meltzer B and Braithwaite RB, Dover Publications Inc. New York, 1992 (1931)Google Scholar
  84. Grandmont, J.M.: Endogenous competitive business cycles. Econometrica. 53, 995–1045 (1985)CrossRefGoogle Scholar
  85. Grazzini, J., Richiardi, M.G., Tsionas, M.: Bayesian estimation of agent-based models. J. Econ. Dyn. Control. 77, 26–47 (2017)CrossRefGoogle Scholar
  86. Greenwald, B., Stiglitz, J.E.: Economies with imperfect information and incomplete markets. Q. J. Econ. 101(2), 229–264 (1986)CrossRefGoogle Scholar
  87. Grossman, S.J., Stiglitz, J.E.: On the impossibility of informationally efficient markets. Am. Econ. Rev. 70(3), 393–408 (1980)Google Scholar
  88. Grossman, S.J., Stiglitz, J.E.: Information and competitive price systems. Am. Econ. Rev. 66(2), 246–253 (1976)Google Scholar
  89. Haber, G.: Monetary and fiscal policy analysis with an agent-based macroeconomic model. J. Econ. Stat. 228, 276–205 (2008)Google Scholar
  90. Haldane, A.G., Turrell, A.E.: An interdisciplinary model for macroeconomics. Oxf. Rev. Econ. Policy. 34(1–2), 219–251 (2018)CrossRefGoogle Scholar
  91. Hildenbrand, W., Kirman, A.P.: Equilibrium analysis: variations on themes by Edgeworth and Walras. North-Holland, Amsterdam (1988)Google Scholar
  92. Hommes, C.: Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  93. Howitt, P.: Monetary policy and the limitations of economic knowledge. In: Colander, D. (ed.) Post Walrasian Macroeconomics: Beyond the Dynamic Stochastic General Equilibrium Model, pp. 347–367. Cambridge University Press, New York (2006)CrossRefGoogle Scholar
  94. Ingrao, B., Israel, G.: The Invisible Hand, Economic Equilibrium in the History of Science. MIT Press, Cambridge, MA (1991)Google Scholar
  95. Ingves, S.: The monetary policy landscape in a financial crisis speech by Mr. Stefan Ingves, governor of the Sveriges Riksbank, at the Swedish economics association, Stockholm (2009)Google Scholar
  96. International Monetary Fund: Lessons for monetary policy from asset price fluctuations, Chap 3. World economic outlook (2009)Google Scholar
  97. Jackson, M.: Social and Economics Networks. Princeton University Press, Princeton (2008)Google Scholar
  98. Judd, K., Tesfatsion, L.: Handbook of Computational Economics, vol 2. Agent-Based Computational Economics. North-Holland, Amsterdam (2006)Google Scholar
  99. Keynes, J.M.: A monetary theory of production. Reprinted in The Collected Writings of John Maynard Keynes, Vol. XIII The General Theory and After: Part I Preparation, pp. 408–411. Macmillan, London (1933/1973)Google Scholar
  100. Kirman, A.P.: Interaction and markets. In: Gallegati, M., Kirman, A.P. (eds.) Beyond the Representative Agent. Edward Elgar, Cheltenham (2000)Google Scholar
  101. Kirman, A.: Whom or what does the representative individual represent? J. Econ. Perspect. 6, 117–136 (1992)CrossRefGoogle Scholar
  102. Kirman, A.: The Intrinsic Limit of Modern Economic Theory. The Emperor Has No Clothes. Econ. J. XCIX(395), 126–139 (1989)CrossRefGoogle Scholar
  103. Landini, S., Gallegati, M., Rosser, B.: Consistency and incompleteness in general equilibrium theory. J. Evol. Econ. 1–26 (2018)Google Scholar
  104. Leijonhufvud, A.: Out of the corridor: keynes and the crisis. Camb. J. Econ. 33(4), 741–757 (2009)CrossRefGoogle Scholar
  105. Lengnick, M., Wohltmann, H.-W.: Agent-based financial markets and new Keynesian macroeconomics: a synthesis. Economics working paper no. 2011, 09, Christian-Albrechts-Universität Kiel, Department of Economics (2011)Google Scholar
  106. Lengnick, M.: Agent-based macroeconomics: a baseline model. J. Econ. Behav. Organ. 86, 102–120 (2013)CrossRefGoogle Scholar
  107. Leombruni, R., Richiardi, M.: Why are economists sceptical about agent-based simulations? Physica A. 355(1), 103–109 (2004)CrossRefGoogle Scholar
  108. Levy, M., Solomon, S.: Power laws are logarithmic Boltzmann laws. Int. J. Modern Phys. C. 7, 595–601 (1996)CrossRefGoogle Scholar
  109. Mas-Colell, A., Whinston, M. D., ; Green, J. (1995). Microeconomic Theory. Oxford: Oxford University PressGoogle Scholar
  110. Mazzucato, M.: The Entrepreneurial State. Debunking Public vs. Private Sector Myths. Anthem Press, London (2013)Google Scholar
  111. Miller, J. H., ; Page, S.E. (2006). Complex Adaptive Systems: An Introduction to Computational Models of Social Life. New York: Princeton University PressGoogle Scholar
  112. Mirowski, P.: More Heat Than Light. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  113. Neveu, A.: Fiscal policy and business cycle characteristics in a heterogeneous agent macro model. J. Econ. Behav. Organ. 90, 224–240 (2013)CrossRefGoogle Scholar
  114. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)Google Scholar
  115. Nicolis, G., Nicolis, C.: Foundations of complex systems nonlinear dynamics, statistical physics, and prediction. World Scientific Publishing, Hackensack, NJ (2007)CrossRefGoogle Scholar
  116. Ozdagli, A., Michael Weber, M.: Monetary policy through production networks: evidence from the stock market. NBER Working paper no. 23424 (2017)Google Scholar
  117. Palestrini, A., Gallegati, M.: Unbiased adaptive expectation schemes. Econ. Bull. XXXV(2), 1185–1190 (2015)Google Scholar
  118. Pijpers, F.P.: Applications of complexity theory in official statistics. Discussion paper no. 01, Statistics Netherlands (2018)Google Scholar
  119. Raberto, M., Teglio, A., Cincotti, S.: Debt, deleveraging and business cycles: an agent-based perspective. Economics. 6(2012–27), 1–49 (2012)Google Scholar
  120. Riccetti, L., Russo, A., Gallegati, M.: Leveraged network-based financial accelerator. J. Econ. Dyn. Control. 37(8), 1626–1640 (2013)CrossRefGoogle Scholar
  121. Riccetti, L., Russo, A., Gallegati, M.: An agent-based decentralized matching macroeconomic model. J. Econ. Interac. Coord. 10(2), 305–332 (2015)CrossRefGoogle Scholar
  122. Riccetti, L., Russo, A., Gallegati, M.: Financialisation and crisis in an agent based macroeconomic model. Econ. Model. 52(PA), 162–172 (2016a)CrossRefGoogle Scholar
  123. Riccetti, L., Russo, A., Gallegati, M.: Stock market dynamics, leveraged network based financial accelerator and monetary policy. Int. Rev. Econ. Financ. 43(C), 509–524 (2016b)CrossRefGoogle Scholar
  124. Riccetti, L., Russo, A., Gallegati, M.: Financial regulation and endogenous macroeconomic crises. Macroecon. Dyn. 22(4), 896–930 (2017)CrossRefGoogle Scholar
  125. Riccetti, L., Russo, A., Gallegati, M.: Financial regulation and endogenous macroeconomic crises. Macroecon. Dyn. (2018)Google Scholar
  126. Richiardi, M.: Empirical validation of agent-based models. In: Delli Gatti, D., Fagiolo, G., Gallegati, M., Richiardi, M., Russo, A. (eds.) Agent-based Models. A Toolkit. Cambridge University Press, Cambridge (2018)Google Scholar
  127. Rosser Jr., J.B.: Frontiere della ricerca economica. Istituto della Enciclopedia Treccani, Roma (2009)Google Scholar
  128. Russo, A., Catalano, M., Gaffeo, E., Gallegati, M., Napoletano, M.: Industrial dynamics, fiscal policy and R&D: evidence from a computational experiment. J. Econ. Behav. Organ. 64, 426–447 (2007)CrossRefGoogle Scholar
  129. Russo, A., Riccetti, L., Gallegati: Increasing inequality, consumer credit and financial fragility in an agent based macroeconomic model. J. Evol. Econ. 26, 25–47 (2016)CrossRefGoogle Scholar
  130. Sabatino, M.: Politica Economica., lectures notes. Università Kore, Enna (2012)Google Scholar
  131. Salle, I., Yldzoglu, M., Senegas, M.-A.: Inflation targeting in a learning economy: an ABM perspective. Econ. Model. 34, 114–128 (2013)CrossRefGoogle Scholar
  132. Samuelson, P.A.: Foundations of Economic Analysis. Harvard University Press, Cambridge, MA (1947)Google Scholar
  133. Schumpeter, J.A.: History of Economic Analysis. Allen & Unwin, Sydney (1954)Google Scholar
  134. Seppecher, P., Salle, I.: Deleveraging crises and deep recessions: a behavioral approach. Appl. Econ. 47, 3771–3790 (2015)CrossRefGoogle Scholar
  135. Seppecher, P.: Flexibility of wages and macroeconomic instability in an agent-based computational model with endogenous money. Macroecon. Dyn. 16, 284–297 (2012)CrossRefGoogle Scholar
  136. Simon, H.: Theories of decision-making in economics and behavioral science. Am. Econ. Rev. 49, 253–283 (1959)Google Scholar
  137. Sornette, D., Davis, A.B., Ide, K., Vixie, K.R., Pisarenko, V., Kamm, J.R.: Algorithm for model validation: theory and applications. Proc. Nat. Acad. Sci. U.S.A. 104(16), 6562–6567 (2017). Retrieved on September 2017 from http://www.pnas.org/content/104/16/6562.shortCrossRefGoogle Scholar
  138. Stiglitz, J.E.: Methodological issues and the new Keynesian economics. In: Vercelli, A., Dimitri, N. (eds.) Macroeconomics: A Survey of Research Strategies, pp. 38–86. Oxford University Press, Oxford (1992)Google Scholar
  139. Stoker, T.M.: Empirical approaches to the problem of aggregation over individuals. J. Econ. Lit. 31(4), 1827–1874 (1993)Google Scholar
  140. Tedeschi, G., Iori, G., Gallegati, M.: Herding effects in order driven markets: The rise and fall of gurus. J. Econ. Behav. Organ. 81, 82–96 (2012)CrossRefGoogle Scholar
  141. Teglio, A., Raberto, M., Cincotti, S.: The impact of banks capital adequacy regulation on the economic system: an agent-based approach. Adv. Complex. Syst. 15, (2012)CrossRefGoogle Scholar
  142. Tesfatsion, L.: Agent-based computational economics: growing economies from the bottom up. Artif. Life. 8, 55–82 (2002)CrossRefGoogle Scholar
  143. Tesfatsion, L.: Agent-based computational economics: a constructive approach to economic theory. In: Tesfatsion, L., Judd, K. (eds.) Handbook of Computational Economics, vol. II, pp. 831–880. North-Holland, Amsterdam (2006)Google Scholar
  144. Veblen, T.B.: Why is economics not an evolutionary science? Q. J. Econ. 12, 373–397 (1898)CrossRefGoogle Scholar
  145. von Hayek, F.A.: Individualism and Economic Order. University of Chicago Press, Chicago (1948)Google Scholar
  146. von Mises, L.: Human Action: A Treatise on Economics. Yale University Press, Yale (1949)Google Scholar
  147. von Neumann, J.: English version (1945-46) A model of general economic equilibrium. Rev. Econ. Stud. 14, 1–9 (1937)Google Scholar
  148. Wicksell, K.: Interest and Prices (trans: Kahn R., McMillan for the Royal Economic Society, London 1936) (1898)Google Scholar
  149. Wooldridge, M.: An introduction to multiagent systems. Wiley, New York (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mauro Gallegati
    • 1
  1. 1.Università Politecnica delle MarcheAnconaItaly

Personalised recommendations