Advertisement

A Deep Prediction Architecture for Traffic Flow with Precipitation Information

  • Jingyuan Wang
  • Xiaofei Xu
  • Feishuang Wang
  • Chao Chen
  • Ke RenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)

Abstract

Traffic flow prediction is an important building block to enabling intelligent transportation systems in a smart city. An accurate prediction model can help the governors make reliable traffic control strategies. In this paper, we propose a deep traffic flow prediction architecture P-DBL, which takes advantage of a deep bi-directional long short-term memory (DBL) model and precipitation information. The proposed model is able to capture the deep features of traffic flow and take full advantage of time-aware traffic flow data and additional precipitation data. We evaluate the prediction architecture on the dataset from Caltrans Performance Measurement System (PeMS) and the precipitation dataset from California Data Exchange Center (CDEC). The experiment results demonstrate that the proposed model for traffic flow prediction obtains high accuracy compared with other models.

Keywords

Traffic flow prediction Bi-directional LSTM Deep hierarchy Precipitation information 

Notes

Acknowledgement

This work is supported by “Fundamental Research Funds for the Central Universities” (XDJK2017C027) and “CERNET Innovation Project” (NGII20170516).

References

  1. 1.
    Huang, W., Song, G., Hong, H., Xie, K.: Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15(5), 2191–2201 (2014)CrossRefGoogle Scholar
  2. 2.
    Abadi, A., Rajabioun, T., Ioannou, P.A.: Traffic flow prediction for road transportation networks with limited traffic data. IEEE Trans. Intell. Transp. Syst. 16(2), 653–662 (2015)Google Scholar
  3. 3.
    Ahmed, M.S., Cook, A.R.: Analysis of freeway traffic time-series data by using Box-Jenkins techniques (1979)Google Scholar
  4. 4.
    Kamarianakis, Y., Vouton, V.: Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches. Transp. Res. Rec. 1857(1), 74–84 (2003)CrossRefGoogle Scholar
  5. 5.
    Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)CrossRefGoogle Scholar
  6. 6.
    Jin, X., Zhang, Y., Yao, D.: Simultaneously prediction of network traffic flow based on PCA-SVR. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 1022–1031. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72393-6_121CrossRefGoogle Scholar
  7. 7.
    Leshem, G.: Traffic flow prediction using adaboost algorithm with random forests as a weak learner. Enformatika 193 (2011)Google Scholar
  8. 8.
    Chan, K.Y., Dillon, T.S., Singh, J., Chang, E.: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm. IEEE Trans. Intell. Transp. Syst. 13(2), 644–654 (2012)CrossRefGoogle Scholar
  9. 9.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)CrossRefGoogle Scholar
  10. 10.
    Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)Google Scholar
  11. 11.
    Tian, Y., Pan, L.: Predicting short-term traffic flow by long short-term memory recurrent neural network. In: IEEE International Conference on Smart City/SocialCom/SustainCom, pp. 153–158 (2015)Google Scholar
  12. 12.
    Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J.: Deep multi-view spatial-temporal network for taxi demand prediction. arXiv preprint arXiv:1802.08714 (2018)
  13. 13.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735 (1997)CrossRefGoogle Scholar
  14. 14.
    Wang, Y.Q., Jing, L.: Study of rainfall impacts on freeway traffic flow characteristics. Transp. Res. Procedia 25, 1533–1543 (2017)CrossRefGoogle Scholar
  15. 15.
    Ibrahim, A.T., Hall, F.L.: Effect of adverse weather conditions on speed-flow-occupancy relationships (1994)Google Scholar
  16. 16.
    Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K.: Google’s neural machine translation system: bridging the gap between human and machine translation (2016)Google Scholar
  17. 17.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  18. 18.
    Hawkins, D.M.: The problem of overfitting. Cheminform 35(19), 1 (2004)CrossRefGoogle Scholar
  19. 19.
    Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. Comput. Sci. 3(4), 212–223 (2012)Google Scholar
  20. 20.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jingyuan Wang
    • 1
  • Xiaofei Xu
    • 1
  • Feishuang Wang
    • 1
  • Chao Chen
    • 2
  • Ke Ren
    • 1
    Email author
  1. 1.School of Computer and Information ScienceSouthwest UniversityChongqingChina
  2. 2.Online and Continuing Education CollegeSouthwest UniversityChongqingChina

Personalised recommendations