Assessing the Impact of Mobility on LoRa Communications

  • Óscar Alvear
  • Jorge Herrera-Tapia
  • Carlos T. Calafate
  • Enrique Hernández-Orallo
  • Juan-Carlos Cano
  • Pietro ManzoniEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 242)


The use of LPWAN (Low Powered Wide Area Network) technologies in the scope of the Internet of Things have become the best alternative to send data between devices and cloud systems. Among these technologies, LoRa stands out as a novel and promising system that could be used in areas with a high device density, and in locations where other technologies do not provide enough communications range. In the past, most research works have made experiments in static scenarios, without taking the mobility of the things into account.

Our research is focused in analyzing the impact that mobility will have in LoRa communications performance, with the objective to determine the adequacy of this technology for vehicular scenarios oriented to data sensing, or in applications where small pieces of data are transmitted over long distances.

Experimental results show that both the mobility and the message size affect LoRa communications, despite still allowing to reach an acceptable coverage range.


LoRa Long range communications Internet of Things Sensors 



This work was supported by the Ministerio de Economía y Competitividad, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, the Generalitat Valenciana, Spain, the Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación del Ecuador (SENESCYT), the Universidad de Cuenca, and the Universidad Laica Eloy Alfaro de Manabí, Ecuador.


  1. 1.
    Herrera-Tapia, J., Förster, A., Hernández-Orallo, E., Udugama, A., Tomas, A., Manzoni, P.: Mobility as the main enabler of opportunistic data dissemination in urban scenarios. In: Puliafito, A., Bruneo, D., Distefano, S., Longo, F. (eds.) ADHOC-NOW 2017. LNCS, vol. 10517, pp. 107–120. Springer, Cham (2017). Scholar
  2. 2.
    Alvear, O.A., Zema, N.R., Natalizio, E., Calafate, C.T.: A chemotactic pollution-homing UAV guidance system. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), no. i, pp. 2115–2120 (2017)Google Scholar
  3. 3.
    Raza, U., Kulkarni, P., Sooriyabandara, M.: Low Power Wide Area Networks: A Survey, pp. 1–15 (2016).
  4. 4.
    Link-Labs: A Comprehensive look at Low Power, Wide Area Networks For ‘Internet of Things’ Engineers and Decision Makers (2016)Google Scholar
  5. 5.
    LoRa Alliance: A technical overview of LoRa and LoRaWAN, pp. 1–20, November 2015Google Scholar
  6. 6.
    Adelantado, F., Vilajosana, X., Tuset-peiro, P., Martinez, B., Melià-seguí, J., Watteyne, T.: Understanding the limits of LoRaWAN. IEEE Commun. Mag. (2017)Google Scholar
  7. 7.
    Zanella, A., Zorzi, M.: Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 60–67 (2016)Google Scholar
  8. 8.
    Xiong, X., Zheng, K., Xu, R., Xiang, W., Chatzimisios, P.: Low power wide area machine-to-machine networks: key techniques and prototype. IEEE Commun. Mag. 53(9), 64–71 (2015)CrossRefGoogle Scholar
  9. 9.
    Augustin, A., Yi, J., Clausen, T., Townsley, W.M.: A study of LoRa: long range & low power networks for the Internet of Things. Sensors 1–18 (2016)Google Scholar
  10. 10.
    Wixted, A.J., Kinnaird, P., Larijani, H., Tait, A., Ahmadinia, A., Strachan, N.: Evaluation of LoRa and LoRa WAN for wireless sensor networks. IEEE Sensors 2016, 5–7 (2016)Google Scholar
  11. 11.
    Iova, O., Murphy, A.L., Picco, G.P., Ghiro, L., Molteni, D., Ossi, F., Cagnacci, F.: LoRa from the city to the mountains : exploration of hardware and environmental factors. In: International Conference on Embedded Wireless Systems and Networks (EWSN) 2017, pp. 317–322 (2017)Google Scholar
  12. 12.
    Herrera-Tapia, J., Hernández-Orallo, E., Tomás, A., Calafate, C.T., Cano, J.C., Zennaro, M., Manzoni, P.: Evaluating the use of sub-gigahertz wireless technologies to improve message delivery in opportunistic networks. In: Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control, ICNSC 2017, pp. 305–310 (2017)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Óscar Alvear
    • 1
    • 2
  • Jorge Herrera-Tapia
    • 1
    • 3
  • Carlos T. Calafate
    • 1
  • Enrique Hernández-Orallo
    • 1
  • Juan-Carlos Cano
    • 1
  • Pietro Manzoni
    • 1
    Email author
  1. 1.Department of Computer EngineeringUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Department of Electrical Engineering, Electronics and TelecommunicationsUniversidad de CuencaCuencaEcuador
  3. 3.Universidad Laica Eloy Alfaro de ManabíMantaEcuador

Personalised recommendations