Advertisement

Collecting Weighted Coercions from Crowd-Sourced Lexical Data for Compositional Semantic Analysis

  • Mathieu Lafourcade
  • Bruno MeryEmail author
  • Mehdi Mirzapour
  • Richard Moot
  • Christian Retoré
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10838)

Abstract

Type-theoretic frameworks for compositional semantics are aimed at producing structured meaning representations of natural language utterances.

Using elements of lexical semantics, these frameworks are able to model many complex phenomena related to the polysemy of words and their context-dependent meanings. However, they are just as powerful as the lexical resources they can access. This paper explores ways to create and enrich wide-coverage, weighted lexical resources from crowd-sourced data. Specifically, we investigate how existing rich lexical networks – created and validated by serious games – can be used to infer linguistic coercions along with ranking corresponding to preferences in their interpretations.

References

  1. 1.
    Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  2. 2.
    Bekki, D.: Dependent type semantics: an introduction. In: Christoff, Z., Galeazzi, P., Gierasimczuk, N., Marcoci, A., Smet, S. (eds.) Logic and Interactive RAtionality (LIRa) Yearbook 2012. vol. I, pp. 277–300. University of Amsterdam (2014)Google Scholar
  3. 3.
    Chamberlain, J., Fort, K., Kruschwitz, U., Lafourcade, M., Poesio, M.: Using games to create language resources: successes and limitations of the approach. In: Gurevych, I., Kim, J. (eds.) The People’s Web Meets NLP. Theory and Applications of Natural Language Processing, pp. 3–44. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35085-6_1CrossRefGoogle Scholar
  4. 4.
    Chatzikyriakidis, S., Lafourcade, M., Ramadier, L., Zarrouk, M.: Modern type theories and lexical networks: using serious games as the basis for multi-sorted typed systems. J. Lang. Model. 5, 229–272 (2017)CrossRefGoogle Scholar
  5. 5.
    Chatzikyriakidis, S., Luo, Z.: Natural language inference in coq. J. Logic Lang. Inf. 23(4), 441–480 (2014).  https://doi.org/10.1007/s10849-014-9208-xMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cooper, R.: Copredication, dynamic generalized quantification and lexical innovation by coercion. In: Fourth International Workshop on Generative Approaches to the Lexicon (2007)Google Scholar
  7. 7.
    Cruse, D.A.: Lexical Semantics. Cambridge, New York (1986)Google Scholar
  8. 8.
    Fass, D., Wilks, Y.: Preference semantics, ill-formedness, and metaphor. Comput. Linguist. 9(3–4), 178–187 (1983). http://dl.acm.org/citation.cfm?id=1334.980082Google Scholar
  9. 9.
    Im, S., Lee, C.: A developed analysis of type coercion using asher’s TCL and conventionality. In: Cooper, R., Retoré, C. (eds.) Extended Abstracts of the ESSLLI 2015 Workshop TYTLES: Types Theory and Lexical Semantics, pp. 91–99, August 2015. https://hal.archives-ouvertes.fr/hal-01584832
  10. 10.
    Lafourcade, M.: Making people play for lexical acquisition with the JeuxDeMots prototype. In: SNLP 2007: 7th International Symposium on Natural Language Processing, Pattaya, Chonburi, Thailand, p. 7, December 2007. https://hal-lirmm.ccsd.cnrs.fr/lirmm-00200883
  11. 11.
    Lafourcade, M., Brun, N.L.: Ambiguss, a game for building a sense annotated corpus for French. In: IWCS (2017)Google Scholar
  12. 12.
    Lascarides, A.: The pragmatics of word meaning. In: Proceedings of the AAAI Spring Symposium Series: Representation and Acquisition of Lexical Knowledge: Polysemy, Ambiguity and Generativity, pp. 75–80 (1995)CrossRefGoogle Scholar
  13. 13.
    Luo, Z.: Contextual analysis of word meanings in type-theoretical semantics. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 159–174. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22221-4_11CrossRefGoogle Scholar
  14. 14.
    Luo, Z.: Common nouns as types. In: Béchet, D., Dikovsky, A. (eds.) LACL 2012. LNCS, vol. 7351, pp. 173–185. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31262-5_12CrossRefGoogle Scholar
  15. 15.
    Mery, B.: Challenges in the computational implementation of montagovian lexical semantics. In: Kurahashi, S., Ohta, Y., Arai, S., Satoh, K., Bekki, D. (eds.) JSAI-isAI 2016. LNCS (LNAI), vol. 10247, pp. 90–107. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61572-1_7CrossRefGoogle Scholar
  16. 16.
    Mery, B., Moot, R., Retoré, C.: Computing the semantics of plurals and massive entities using many-sorted types. In: Murata, T., Mineshima, K., Bekki, D. (eds.) JSAI-isAI 2014. LNCS (LNAI), vol. 9067, pp. 144–159. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48119-6_11. https://hal.inria.fr/hal-01214435CrossRefGoogle Scholar
  17. 17.
    Mery, B., Moot, R., Retoré, C.: Typed Hilbert operators for the lexical semantics of singular and plural determiner phrases. In: Epsilon 2015 - Hilbert’s Epsilon and Tau in Logic, Informatics and Linguistics. Montpellier, France, June 2015Google Scholar
  18. 18.
    Mery, B., Retoré, C.: Are books events? ontological inclusions as coercive sub-typing, lexical transfers as entailment. In: LENLS 2012, in jSAI 2015. Kanagawa, Japan, November 2015Google Scholar
  19. 19.
    Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995).  https://doi.org/10.1145/219717.219748CrossRefGoogle Scholar
  20. 20.
    Moot, R.: The grail theorem prover: type theory for syntax and semantics. In: Chatzikyriakidis, S., Luo, Z. (eds.) Modern Perspectives in Type-Theoretical Semantics. SLP, vol. 98, pp. 247–277. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-50422-3_10CrossRefGoogle Scholar
  21. 21.
    Nagao, K.: A preferential constraint satisfaction technique for natural language analysis. IEICE Trans. Inf. Syst. 77(2), 161–170 (1994)Google Scholar
  22. 22.
    Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)Google Scholar
  23. 23.
    Retoré, C.: The Montagovian Generative Lexicon Lambda Ty\(_n\): a Type Theoretical Framework for Natural Language Semantics. In: 19th International Conference on Types for Proofs and Programs (TYPES 2013). Leibniz International Proceedings in Informatics (LIPIcs), vol. 26, pp. 202–229. Schloss Dagstuhl, Germany (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mathieu Lafourcade
    • 1
  • Bruno Mery
    • 2
    • 3
    Email author
  • Mehdi Mirzapour
    • 1
  • Richard Moot
    • 1
  • Christian Retoré
    • 1
  1. 1.LIRMM – UMR 5506, CNRS & Université de MontpellierMontpellierFrance
  2. 2.LaBRI – UMR 5800, CNRS & Université de BordeauxBordeauxFrance
  3. 3.IUT de BordeauxUniversité de BordeauxGradignan CedexFrance

Personalised recommendations