Advertisement

Universality, Invariance, and the Foundations of Computational Complexity in the Light of the Quantum Computer

  • Michael E. Cuffaro
Chapter
Part of the Philosophy of Engineering and Technology book series (POET, volume 30)

Abstract

Computational complexity theory is a branch of computer science dedicated to classifying computational problems in terms of their difficulty. While computability theory tells us what we can compute in principle, complexity theory informs us regarding what is feasible. In this chapter I argue that the science of quantum computing illuminates complexity theory by emphasising that its fundamental concepts are not model-independent, but that this does not, as some suggest, force us to radically revise the foundations of the theory. For model-independence never has been essential to those foundations. The fundamental aim of complexity theory is to describe what is achievable in practice under various models of computation for our various practical purposes. Reflecting on quantum computing illuminates complexity theory by reminding us of this, too often under-emphasised, fact.

Notes

Acknowledgements

This project was supported financially by the Foundational Questions Institute (FQXi) and by the Rotman Institute of Philosophy. I am grateful to Scott Aaronson, Walter Dean, William Demopoulos, Armond Duwell, Laura Felline, Sona Ghosh, Amit Hagar, Gregory Lavers, and Markus Müller for their comments on a previous draft of this chapter. This chapter also benefited from the comments and questions of audience members at the Montreal Inter-University Workshop on the History and Philosophy of Mathematics, and at the Perimeter Institute for Theoretical Physics.

References

  1. Aaronson, S. (2013a). Quantum computing since Democritus. New York: Cambridge University Press.CrossRefGoogle Scholar
  2. Aaronson, S. (2013b). Why philosophers should care about computational complexity. In B. J. Copeland, C. J. Posy, & O. Shagrir (Eds.), Computability: Turing, Gödel, Church, and beyond (pp. 261–327). Cambridge, MA: MIT Press.Google Scholar
  3. Agrawal, M., Kayal, N., & Saxena, N. (2004). PRIMES is in P. Annals of Mathematics, 160, 781–793.CrossRefGoogle Scholar
  4. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., & Regev, O. (2007). Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Journal on Computing, 37, 166–194.CrossRefGoogle Scholar
  5. Andréka, H., Madarász, J. X., Németi, I., Németi, P., Székely, G. (2018). Relativistic computation. In M. E. Cuffaro & S. C. Fletcher (Eds.), Physical perspectives on computation, computational perspectives on physics. Cambridge: Cambridge University Press.Google Scholar
  6. Arora, S., & Barak, B. (2009). Computational complexity: A modern approach. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Bennett, C. H., Bernstein, E., Brassard, G., & Vazirani, U. (1997). Strengths and weaknesses of quantum computing. SIAM Journal on Computing, 26, 1510–1523.CrossRefGoogle Scholar
  8. Bernstein, E., & Vazirani, U. (1997). Quantum complexity theory. SIAM Journal on Computing, 26, 1411–1473.CrossRefGoogle Scholar
  9. Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R., & den Nest, M. V. (2009). Measurement-based quantum computation. Nature Physics, 5, 19–26.CrossRefGoogle Scholar
  10. Bub, J. (2010). Quantum computation: Where does the speed-up come from? In A. Bokulich & G. Jaeger (Eds.), Philosophy of quantum information and entanglement (pp. 231–246). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  11. Carnap, R. (1962). Logical foundations of probability (2nd ed.). Chicago: The University of Chicago Press.Google Scholar
  12. Carnap, R. (1980 [1950]). Empiricism, semantics, and ontology. In H. Morick (Ed.), Challenges to empiricism (pp. 28–45). Indianapolis: Hackett Publishing Company.Google Scholar
  13. Cerf, N. J., Grover, L. K., & Williams, C. P. (2000). Nested quantum search and structured problems. Physical Review A, 61, 032303.CrossRefGoogle Scholar
  14. Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58, 345–363.CrossRefGoogle Scholar
  15. Cobham, A. (1965). The intrinsic computational difficulty of functions. In Y. Bar-Hillel (Ed.), Logic, methodology and philosophy of science: Proceedings of the 1964 international congress, North-Holland (pp. 24–30).Google Scholar
  16. Copeland, B. J. (2015). The Church-Turing thesis. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2015 ed.). https://plato.stanford.edu/archives/sum2015/entries/church-turing/.
  17. Cuffaro, M. E. (2012). Many worlds, the cluster-state quantum computer, and the problem of the preferred basis. Studies in History and Philosophy of Modern Physics, 43, 35–42.CrossRefGoogle Scholar
  18. Cuffaro, M. E. (2017). On the significance of the Gottesman-Knill theorem. The British Journal for the Philosophy of Science, 68, 91–121.Google Scholar
  19. Cuffaro, M. E. (2018). Reconsidering no-go-theorems from a practical perspective. The British Journal for the Philosophy of Science, 69, 633–655.CrossRefGoogle Scholar
  20. Dawson, J. W., Jr. (2007). Classical logic’s coming of age. In D. Jacquette (Ed.), Philosophy of logic (pp. 497–522). Amsterdam: Elsevier.CrossRefGoogle Scholar
  21. Dean, W. (2016a). Algorithms and the mathematical foundations of computer science. In L. Horsten & P. Welch (Eds.), Gödel’s disjunction: The scope and limits of mathematical knowledge (pp. 19–66). Oxford: Oxford University Press.CrossRefGoogle Scholar
  22. Dean, W. (2016b). Computational complexity theory. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 ed.). https://plato.stanford.edu/archives/win2016/entries/computational-complexity/.
  23. Dean, W. (2016c). Squeezing feasibility. In A. Beckmann, L. Bienvenu, & N. Jonoska (Eds.), Pursuit of the Universal: Proceedings of the 12th conference on computability in Europe (pp. 78–88). Cham: Springer International Publishing.Google Scholar
  24. Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 400, 97–117.CrossRefGoogle Scholar
  25. Deutsch, D. (1989). Quantum computational networks. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 425, 73–90.CrossRefGoogle Scholar
  26. Duwell, A. (2007). The many-worlds interpretation and quantum computation. Philosophy of Science, 74, 1007–1018.CrossRefGoogle Scholar
  27. Duwell, A. (2018). How to make orthogonal positions parallel: Revisiting the quantum parallelism thesis. In M. E. Cuffaro & S. C. Fletcher (Eds.), Physical perspectives on computation, computational perspectives on physics. Cambridge: Cambridge University Press.Google Scholar
  28. Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics, 17, 449–467.CrossRefGoogle Scholar
  29. Farhi, E., Goldstone, J., Gutmann, S., & Sipser, M. (2000). Quantum computation by adiabatic evolution (Technical report MIT-CTP-2936), MIT. arXiv:quant-ph/0001106.Google Scholar
  30. Fortnow, L. (1994). The role of relativization in complexity theory. Bulletin of the European Association for Theoretical Computer Science, 52, 229–244.Google Scholar
  31. Fortnow, L. (2003). One complexity theorist’s view of quantum computing. Theoretical Computer Science, 292, 597–610.CrossRefGoogle Scholar
  32. Fortnow, L. (2006). The efficient Church-Turing thesis. http://blog.computationalcomplexity.org/2006/12/efficient-church-turing-thesis.html. Posted: Thursday, December 07, 2006. Retrieved: Monday, April 26, 2010.
  33. Gödel, K. (1956). Private letter to John von Neumann, March 20, 1956. Translated by Wensinger. In Sipser (1992).Google Scholar
  34. Goldin, D., & Wegner, P. (2008). The interactive nature of computing: Refuting the strong Church-Turing thesis. Minds & Machines, 18, 17–38.CrossRefGoogle Scholar
  35. Goldreich, O. (2008). Computational complexity: A conceptual perspective. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  36. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC’96 (pp. 212–219). New York: Association for Computing Machinery.Google Scholar
  37. Hagar, A. (2007). Quantum algorithms: Philosophical lessons. Minds & Machines, 17, 233–247.CrossRefGoogle Scholar
  38. Hagar, A., & Korolev, A. (2007). Quantum hypercomputation—hype or computation? Philosophy of Science, 74, 347–363.CrossRefGoogle Scholar
  39. Hartmanis, J. (1993). Gödel, von Neumann and the P =? NP problem. In G. Rozenberg & A. Salomaa (Eds.), Current trends in theoretical computer science (pp. 445–450). River Edge: World Scientific.CrossRefGoogle Scholar
  40. Hartmanis, J., & Stearns, R. E. (1965). On the computational complexity of algorithms. Transactions of the American Mathematical Society, 117, 285–306.CrossRefGoogle Scholar
  41. Hewitt-Horsman, C. (2009). An introduction to many worlds in quantum computation. Foundations of Physics, 39, 869–902.CrossRefGoogle Scholar
  42. Hilbert, D., & Ackermann, W. (1928). Principles of mathematical logic. Berlin: Springer.Google Scholar
  43. Howard, M., Wallman, J., Veitch, V., & Emerson, J. (2014). Contextuality supplies the ‘magic’ for quantum computation. Nature, 510, 351–355.CrossRefGoogle Scholar
  44. Lenstra, A. K., Lenstra, H. W., Jr., Manasse, M. S., & Pollard, J. M. (1990). The number field sieve. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC’90 (pp. 564–572). New York: Association for Computing Machinery.CrossRefGoogle Scholar
  45. Müller, M. (2010). Stationary algorithmic probability. Theoretical Computer Science, 411, 113–130.CrossRefGoogle Scholar
  46. Nakhnikian, G., & Salmon, W. C. (1957). Exists as a predicate. Philosophical Review, 66, 535–542.CrossRefGoogle Scholar
  47. Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information. Cambridge: Cambridge University Press.Google Scholar
  48. Nishimura, H., & Ozawa, M. (2009). Perfect computational equivalence between quantum Turing machines and finitely generated uniform quantum circuit families. Quantum Information Processing, 8, 13–24.CrossRefGoogle Scholar
  49. Papadimitriou, C. H. (1994). Computational complexity. New York: Addison-Wesley.Google Scholar
  50. Piccinini, G. (2011). The physical Church-Turing thesis: Modest or bold? The British Journal for the Philosophy of Science, 62, 733–769.CrossRefGoogle Scholar
  51. Pitowsky, I. (1990). The physical Church thesis and physical computational complexity. Iyyun: The Jerusalem Philosophical Quarterly, 39, 81–99.Google Scholar
  52. Pitowsky, I. (2002). Quantum speed-up of computations. Philosophy of Science, 69, S168–S177.CrossRefGoogle Scholar
  53. Raussendorf, R., & Briegel, H. J. (2002). Computational model underlying the one-way quantum computer. Quantum Information and Computation, 2, 443–486.Google Scholar
  54. Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21, 120–126.CrossRefGoogle Scholar
  55. Seiferas, J. I. (1990). Machine-independent complexity theory. In van Leeuwen J (Ed.), Handbook of theoretical computer science, volume A: Algorithms and complexity (pp. 165–186). Cambridge, MA: MIT Press/Elsevier.Google Scholar
  56. Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science (pp. 124–134).Google Scholar
  57. Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26, 1484–1509.CrossRefGoogle Scholar
  58. Simon, D. R. (1994). On the power of quantum computation. In 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 116–123). Los Alamitos: IEEE Press.CrossRefGoogle Scholar
  59. Sipser, M. (1992). The history and status of the P versus NP question. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC’92 (pp. 603–618). New York: Association for Computing Machinery.Google Scholar
  60. Spekkens, R. W. (2007). Evidence for the epistemic view of quantum states: A toy theory. Physical Review A, 75, 032110.CrossRefGoogle Scholar
  61. Steane, A. M. (2003). A quantum computer only needs one universe. Studies in History and Philosophy of Modern Physics, 34, 469–478.CrossRefGoogle Scholar
  62. Timpson, C. G. (2013). Quantum information theory & the foundations of quantum mechanics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  63. Turing, A. M. (1936–7). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society Second Series, s2–42, 230–265.CrossRefGoogle Scholar
  64. Turing, A. M. (1938). On computable numbers, with an application to the Entscheidungsproblem. A correction. Proceedings of the London Mathematical Society Second Series, s2–43, 544–546.CrossRefGoogle Scholar
  65. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.CrossRefGoogle Scholar
  66. van Emde Boas, P. (1990). Machine models and simulations. In J. van Leeuwen (Ed.), Handbook of theoretical computer science, volume A: Algorithms and complexity (pp. 1–66). Cambridge, MA: MIT Press/Elsevier.Google Scholar
  67. Veldhorst, M., Yang, C. H., Hwang, J. C. C., Huang, W., Dehollain, J. P., Muhonen, J. T., Simmons, S., Laucht, A., Hudson, F. E., Itoh, K. M., Morello, A., & Dzurak, A. S. (2015). A two-qubit logic gate in silicon. Nature, 526, 410–414.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Rotman Institute of PhilosophyUniversity of Western OntarioLondonCanada

Personalised recommendations