Neanderthals and Homo sapiens: Cognitively Different Kinds of Human?

  • Eiluned PearceEmail author
Part of the Interdisciplinary Evolution Research book series (IDER)


Membership of an extensive social network is imperative for human survival. However, maintaining network cohesion is particularly challenging for hunter–gatherers because they are dispersed over large home ranges and need to keep track of absent social partners for extended periods. The archaeological record suggests that compared to Neanderthals, contemporary modern humans maintained social ties between greater numbers of individuals over greater distances. I argue that such differences would have influenced neural development, driving differences in brain structure and the degree of social complexity that each taxon could sustain cognitively. Following recent suggestions that modern humans’ larger parietals might suggest an enhanced ability to create a ‘virtual inner world’, I hypothesise that this capacity allowed them to monitor larger numbers of absent social partners and thus maintain larger dispersed social networks than their Neanderthal counterparts. Larger social networks would have boosted the ability of modern humans to insure against local resource failure, sustain demographic stability and conserve cultural innovations.


Social networks Sociocognition Neural plasticity Hunter–gatherers Social archaeology 



I thank Emiliano Bruner, Thomas Wynn, Kit Opie, Robin Dunbar, Prajñaketu Holden and Iain Morley for comments on various versions of this paper. This work was funded by the European Research Council (295663). The author declares no conflict of interest.


  1. Adams AM, Madhavan S, Simon D (2002) Women’s social networks and child survival in Mali. Soc Sci Med 54(2):165–178. Scholar
  2. Baron-Cohen S (2009) Autism: the empathizing–systemizing (E-S) theory. Ann N Y Acad Sci 1156(1):68–80. Scholar
  3. Bastir M, Rosas A, Kuroe K (2004) Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol 123(4):340–350. Scholar
  4. Bastir M, Rosas A, Lieberman DE, O’Higgins P (2008) Middle cranial fossa anatomy and the origin of modern humans. Anat Rec Adv Integr Anat Evol Biol 291(2):130–140. Scholar
  5. Bastir M, Rosas A, Gunz P, Pena-Melian A, Manzi G, Harvati K et al (2011) Evolution of the base of the brain in highly encephalized human species. Nat Commun 2:588CrossRefPubMedGoogle Scholar
  6. Binford L (2001) Constructing frames of reference: an analytical method for archaeological theory building using ethnographic and environmental data sets. University of California Press, BerkeleyGoogle Scholar
  7. Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47(5):279–303. Scholar
  8. Bruner E (2010a) Morphological differences in the parietal lobes within the human genus: a neurofunctional perspective. Curr Anthropol 51(s1):S77–S88. Scholar
  9. Bruner E (2010b) The evolution of the parietal cortical areas in the human genus: between structure and cognition. In: Yuan M, Schick K, Toth N (eds) The human brain evolving: paleoneurological studies in honor of Ralph L. Holloway. Stone Age Institute, Gosport, IN, pp 83–96Google Scholar
  10. Bruner E, Holloway RL (2010) A bivariate approach to the widening of the frontal lobes in the genus Homo. J Hum Evol 58(2):138–146CrossRefGoogle Scholar
  11. Bruner E, Iriki A (2016) Extending mind, visuospatial integration, and the evolution of the parietal lobes in the human genus. Quat Int 405(A):98–110. Scholar
  12. Bruner E, Ripani M (2008) A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans. Am J Phys Anthropol 137(1):30–40. Scholar
  13. Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neanderthal and modern lineages. Proc Natl Acad Sci USA 100(26):15335–15340CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bruner E, Rangel de Lázaro G, De la Cuétara JM, Martín-Loeches M, Colom R, Jacobs HIL (2014) Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals. J Anat 224(4):367–376. Scholar
  15. Bruner E, Román FJ, de la Cuétara JM, Martin-Loeches M, Colom R (2015) Cortical surface area and cortical thickness in the precuneus of adult humans. Neuroscience 286:345–352. Scholar
  16. Bruner E, Preuss TM, Chen X, Rilling JK (2016) Evidence for expansion of the precuneus in human evolution. Brain Struct Funct. Scholar
  17. Bruner E, Spinapolice E, Burke A, Overmann K (2018) Visuospatial integration: paleoanthropological and archaeological perspectives. In: di Paolo LD, di Vincenzo F, Almeida A (eds) Evolution of primate social cognition. Springer, ChamGoogle Scholar
  18. Burke A (2012) Spatial abilities, cognition and the pattern of Neanderthal and modern human dispersals. Quat Int 247:230–235. Scholar
  19. Cantlon JF, Brannon EM, Carter EJ, Pelphrey KA (2006) Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biol 4(5):e125. Scholar
  20. Cavanna AE (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(3):564–583. Scholar
  21. Conard NJ (2009) A female figurine from the basal Aurignacian of Hohle Fels Cave in southwestern Germany. Nature 459(7244):248–252CrossRefPubMedPubMedCentralGoogle Scholar
  22. Coolidge FL, Overmann KA (2012) Numerosity, abstraction, and the emergence of symbolic thinking. Curr Anthropol 53(2):204–225. Scholar
  23. Coolidge FL, Wynn T (2005) Working memory, its executive functions, and the emergence of modern thinking. Camb Archaeol J 15(1):5–26. Scholar
  24. Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16(2):205–212. Scholar
  25. d’Errico F, Henshilwood C, Vanhaeren M, van Niekerk K (2005) Nassarius kraussianus shell beads from Blombos Cave: evidence for symbolic behaviour in the Middle Stone Age. J Hum Evol 48(1):3–24CrossRefPubMedPubMedCentralGoogle Scholar
  26. de Hamilton AFC, Grafton ST (2006) Goal representation in human anterior intraparietal sulcus. J Neurosci 26(4):1133–1137CrossRefPubMedGoogle Scholar
  27. Deeley Q, Daly EM, Azuma R, Surguladze S, Giampietro V, Brammer MJ et al (2008) Changes in male brain responses to emotional faces from adolescence to middle age. NeuroImage 40(1):389–397. Scholar
  28. Dehaene S, Cohen L (2007) Cultural recycling of cortical maps. Neuron 56(2):384–398. Scholar
  29. Devlin K (2000) The role of conceptual structure in human evolution. Brain 1867:1–12Google Scholar
  30. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312CrossRefPubMedGoogle Scholar
  31. Dumontheil I, Apperly IA, Blakemore S-J (2010) Online usage of theory of mind continues to develop in late adolescence. Dev Sci 13(2):331–338. Scholar
  32. Farizy C (1994) Spatial patterning of Middle Paleolithic sites. J Anthropol Archaeol 13(2):153–160CrossRefGoogle Scholar
  33. Finlayson C, Brown K, Blasco R, Rosell J, Negro JJ, Bortolotti GR et al (2012) Birds of a feather: Neanderthal exploitation of raptors and corvids. PLoS One 7(9):e45927. Scholar
  34. Gamble C (1999) The Palaeolithic societies of Europe. Cambridge world archaeology. Cambridge University Press, CambridgeGoogle Scholar
  35. Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC (2015) Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc Natl Acad Sci USA 112(48):14799–14804. Scholar
  36. Grove M, Pearce E, Dunbar RIM (2012) Fission-fusion and the evolution of hominin social systems. J Hum Evol 62(2):191–200CrossRefPubMedGoogle Scholar
  37. Gunz P, Neubauer S, Maureille B, Hublin J-J (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20(21):R921–R922CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hayden B (2012) Neanderthal social structure? Oxf J Archaeol 31(1):1–26. Scholar
  39. Henrich J (2004) Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case. Am Antiq 69(2):197–214CrossRefGoogle Scholar
  40. Herrmann E, Call J, Hernàndez-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317(5843):1360–1366. Scholar
  41. Hills TT, Todd PM, Lazer D, Redish AD, Couzin ID, Cognitive Search Research Group (2015) Exploration versus exploitation in space, mind, and society. Trends Cogn Sci 19(1):46–54. Scholar
  42. Holt-Lunstad J, Smith TB, Layton JB (2010) Social relationships and mortality risk: a meta-analytic review. PLoS Med 7(7):e1000316. Scholar
  43. Iaupuni SMK, Donato KM, Thompson-Colón T, Stainback M (2005) Counting on kin: social networks, social support, and child health status. Soc Forces 83(3):1137–1164CrossRefGoogle Scholar
  44. Iriki A, Taoka M (2012) Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions. Philos Trans R Soc Lond B Biol Sci 367(1585):10–23. Scholar
  45. Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 29(47):14980–14986. Scholar
  46. Lalueza-Fox C, Rosas A, Estalrrich A, Gigli E, Campos PF, GarcÃa-Tabernero A et al (2011) Genetic evidence for patrilocal mating behavior among Neanderthal groups. Proc Natl Acad Sci USA 108(1):250–253CrossRefPubMedGoogle Scholar
  47. Land MF (2014) Do we have an internal model of the outside world? Philos Trans R Soc Lond B Biol Sci 369:20130045. Scholar
  48. Langbroek M (2012) Trees and ladders: a critique of the theory of human cognitive and behavioural evolution in Palaeolithic archaeology. Quat Int 270:4–14. Scholar
  49. Lieberman DE, Ross CF, Ravosa MJ (2000) The primate cranial base: ontogeny, function, and integration. Am J Phys Anthropol Suppl 31:117–169CrossRefPubMedGoogle Scholar
  50. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RSJ, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8):4398–4403CrossRefPubMedGoogle Scholar
  51. Maguire EA, Spiers HJ, Good CD, Hartley T, Frackowiak RSJ, Burgess N (2003) Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus 13(2):250–259. Scholar
  52. Maister L, Slater M, Sanchez-Vives MV, Tsakiris M (2015) Changing bodies changes minds: owning another body affects social cognition. Trends Cogn Sci 19(1):6–12. Scholar
  53. Mars RB, Neubert F-X, Noonan MP, Sallet J, Toni I, Rushworth MFS (2012) On the relationship between the “default mode network” and the “social brain”. Front Hum Neurosci 6:1–9. Scholar
  54. McBrearty S, Brooks AS (2000) The revolution that wasn’t: a new interpretation of the origin of modern human behavior. J Hum Evol 39:453–563CrossRefGoogle Scholar
  55. Mellars P, French JC (2011) Tenfold population increase in Western Europe at the Neanderthal to modern human transition. Science 333(6042):623–627. Scholar
  56. Morley I (2013) The prehistory of music: human evolution, archaeology, and the origins of musicality. Oxford University Press, OxfordCrossRefGoogle Scholar
  57. Olson IR, McCoy D, Klobusicky E, Ross LA (2013) Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc Cogn Affect Neurosci 8(2):123–133. Scholar
  58. Pearce E (2014) Modelling mechanisms of social network maintenance in hunter–gatherers. J Archaeol Sci 50:403–413. Scholar
  59. Pearce E, Moutsiou T (2014) Using obsidian transfer distances to explore social network maintenance in late Pleistocene hunter–gatherers. J Anthropol Archaeol 36:12–20. Scholar
  60. Pearce E, Stringer C, Dunbar RIM (2013) New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proc R Soc B Biol Sci 280(1758). Scholar
  61. Pearce E, Shuttleworth A, Grove M, Layton R (2014) The costs of being a high latitude hominin. In: Dunbar RIM, Gamble C, Gowlett J (eds) The Lucy project: benchmark papers. Oxford University Press, Oxford, pp 356–379CrossRefGoogle Scholar
  62. Pearce E, Launay J, Dunbar RIM (2015) The ice-breaker effect: singing mediates fast social bonding. R Soc Open Sci 2:150221. Scholar
  63. Peer M, Salomon R, Goldberg I, Blanke O, Arzy S (2015) Brain system for mental orientation in space, time, and person. Proc Natl Acad Sci U S A 112(35):11072–11077CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pike AWG, Hoffmann DL, García-Diez M, Pettitt PB, Alcolea J, De Balbín R et al (2012) U-series dating of Paleolithic art in 11 caves in Spain. Science 336(6087):1409–1413. Scholar
  65. Powell A, Shennan S, Thomas MG (2009) Late Pleistocene demography and the appearance of modern human behavior. Science 324(5932):1298–1301. Scholar
  66. Powell J, Lewis PA, Roberts N, Garcia-Finana M, Dunbar RIM (2012) Orbital prefrontal cortex volume predicts social network size: an imaging study of individual differences in humans. Proc R Soc B Biol Sci 279(1736):2157–2162. Scholar
  67. Quallo MM, Price CJ, Ueno K, Asamizuya T, Cheng K, Lemon RN, Iriki A (2009) Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc Natl Acad Sci U S A 106(43):18379–18384CrossRefPubMedPubMedCentralGoogle Scholar
  68. Roebroeks W, Sier MJ, Nielsen TK, De Loecker D, Parés JM, Arps CES, Mücher HJ (2012) Use of red ochre by early Neanderthals. Proc Natl Acad Sci USA 109(6):1889–1894CrossRefPubMedGoogle Scholar
  69. Sallet J, Mars RB, Noonan MP, Andersson JL, O’Reilly JX, Jbabdi S et al (2011) Social network size affects neural circuits in macaques. Science 334(6056):697–700. Scholar
  70. Silk JB, Alberts SC, Altmann J (2003) Social bonds of female baboons enhance infant survival. Science 302(5648):1231–1234. Scholar
  71. Smith TM, Tafforeau P, Reid DJ, Pouech J, Lazzari V, Zermeno JP et al (2010) Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proc Natl Acad Sci USA 107(49):20923–20928. Scholar
  72. Sznajder B, Sabelis MW, Egas M (2012) How adaptive learning affects evolution: reviewing theory on the baldwin effect. Evol Biol 39(3):301–310. Scholar
  73. Van Overwalle F (2009) Social cognition and the brain: a meta-analysis. Hum Brain Mapp 30(3):829–858. Scholar
  74. Vanhaeren M, D’Errico F (2006) Aurignacian ethno-linguistic geography of Europe revealed by personal ornaments. J Archaeol Sci 33(8):1105–1128. Scholar
  75. Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10(11):792–802. Scholar
  76. Villa P, Roebroeks W (2014) Neanderthal demise: an archaeological analysis of the modern human superiority complex. PLoS One 9(4):e96424. Scholar
  77. Weinstein D, Launay J, Pearce E, Dunbar RIM, Stewart L (2015) Singing and social bonding: changes in connectivity and pain threshold as a function of group size. Evol Hum Behav. Scholar
  78. Whallon R (2006) Social networks and information: non-“utilitarian” mobility among hunter-gatherers. J Anthropol Archaeol 25(2):259–270CrossRefGoogle Scholar
  79. Wynn T, Overmann KA, Coolidge FL (2016) The false dichotomy: a refutation of the Neanderthal indistinguishability claim. J Anthropol Sci 94:1–21. Scholar
  80. Zhou WX, Sornette D, Hill RA, Dunbar RIM (2005) Discrete hierarchical organization of social group sizes. Proc R Soc B Biol Sci 272(1561):439–444CrossRefGoogle Scholar
  81. Zilhão J, Angelucci DE, Badal-García E, D’Errico F, Daniel F, Dayet L et al (2010) Symbolic use of marine shells and mineral pigments by Iberian Neanderthals. Proc Natl Acad Sci USA 107(3):1023–1028CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Social and Evolutionary Neuroscience Research Group, Department of Experimental PsychologyUniversity of OxfordOxfordUK

Personalised recommendations