Epigenetics and the Evolution of Human Social Cognition

  • Gillian RagsdaleEmail author
  • Robert A. Foley
Part of the Interdisciplinary Evolution Research book series (IDER)


Human social cognitive abilities share derived attributes with other primates, but humans excel uniquely with regard to skills such as theory of mind, perspective-taking, sharing intentions and using language. Even these apparently unique abilities, however, must be supported by neurochemistry that is in turn developmentally dependent on genes derived from our primate lineage. In the last decade, epigenetic processes have emerged as an influence on differences both within and between mammalian species, and the brain is a major target for epigenetic processes regulating gene expression. This short review looks at how epigenetic processes may have contributed to human social cognitive evolution, how this relates to differences between human and non-human primate social cognition and to what extent this is consistent with the social brain hypothesis, i.e. increasing human sociality as a driver rather than a consequence of human brain evolution. The evidence ranges from general trends in maternally and paternally expressed genes influencing different parts of the brain, quantitative differences in mechanisms such as DNA methylation and gene expression in the brains of humans and other primates and examples of species-specific epigenetic regulation of genes associated with social cognition and language.


Epigenetics Imprinted genes Parent of origin Language Methylation GABA Serotonin Human 


  1. Adegbola AA et al (2015) Monoallelic expression of the human FOXP2 speech gene. Proc Natl Acad Sci USA 112(22):6848–6854CrossRefPubMedGoogle Scholar
  2. Auger CJ et al (2011) Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain. Proc Natl Acad Sci USA 108(10):4242–4247CrossRefPubMedGoogle Scholar
  3. Ayub Q et al (2013) FOXP2 targets show evidence of positive election in European populations. Am J Hum Genet 92(5):696–706CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bateson P et al (2004) Developmental plasticity and human health. Nature 430:419–421CrossRefGoogle Scholar
  5. Brown WM (2011) The parental antagonism theory of language evolution: preliminary evidence for the proposal. Hum Biol 83(2):213–245CrossRefPubMedGoogle Scholar
  6. Cáceres M et al (2003) Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 100(22):13030–13035CrossRefPubMedGoogle Scholar
  7. Canli T, Lesh K-P (2007) Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci 10(9):1103–1109CrossRefPubMedGoogle Scholar
  8. Chadwick BP (2015) Epigenetics: current research and emerging trends. Caister Academic, NorfolkGoogle Scholar
  9. Charrier C, Polleux F (2012) Role of partial duplication of the SRGAP2 gene in the evolution and development of the human brain. Med Sci 28(11):911–914Google Scholar
  10. Chimpanzee Sequencing Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437(7055):69–87CrossRefGoogle Scholar
  11. Cochran DM et al (2015) Relationship among glutamine, gamma-aminobutyric acid, and social cognition in autism spectrum disorders. J Child Adolesc Psychopharmacol 25(4):314–322CrossRefPubMedPubMedCentralGoogle Scholar
  12. Crespi BJ (2007) Sly FOXP2: genomic conflict in the evolution of language. Trends Ecol Evol 22(4):174–175CrossRefPubMedGoogle Scholar
  13. Crişan LG et al (2009) Genetic contributions of the serotonin transporter to social learning of fear and economic decision making. Soc Cogn Affect Neurosci 4(4):399–408CrossRefPubMedPubMedCentralGoogle Scholar
  14. Curley JP (2011) Is there a genomically imprinted social brain? Bioessays 33(9):662–668CrossRefPubMedGoogle Scholar
  15. Dennis EL et al (2011) Altered structural brain connectivity in healthy carriers of the autism risk gene, CNTNAP2. Brain Connect 1(6):447–459CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dennis MY et al (2012) Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149(4):912–922CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol 6(5):178–190CrossRefGoogle Scholar
  18. Dunbar RI (2009) The Social Brain Hypothesis and its implications for social evolution. Ann Hum Biol 36(5):562–572CrossRefGoogle Scholar
  19. Feuk L et al (2006) Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am J Hum Genet 79(5):956–972CrossRefGoogle Scholar
  20. Foley RA (2016) Mosaic evolution and the pattern of transitions in the hominin lineage. Philos Trans R Soc Lond B Biol Sci 371:20150244CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gershon NB, High PC (2015) Epigenetics and child abuse: modern-day Darwinism -the miraculous ability of the human genome to adapt, and then adapt again. Am J Med Genet C Semin Med Genet 169(4):353–360CrossRefPubMedGoogle Scholar
  22. Haig D (2002) Genomic imprinting and kinship. Rutgers University, New BrunswickGoogle Scholar
  23. Haig D (2014) Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity 113(2):96–103CrossRefPubMedGoogle Scholar
  24. Hajj EI et al (2014) Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction 148(6):R111–R120CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20CrossRefGoogle Scholar
  26. Hariri AR et al (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400–403CrossRefPubMedGoogle Scholar
  27. Heijmans BT et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049CrossRefPubMedPubMedCentralGoogle Scholar
  28. Holloway T, Gonzalez-Maeso J (2015) Epigenetic mechanisms of serotonin signalling. ACS Chem Neurosci 6(7):1099–1199CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hsieh J, Zhao X (2016) Genetics and epigenetics in adult neurogenesis. Cold Spring Harb Perspect Biol 8(6):a018911CrossRefPubMedPubMedCentralGoogle Scholar
  30. Isles AR et al (2002) A possible role for imprinted genes in inbreeding avoidance and dispersal from the natal area in mice. Proc Biol Sci 269(1492):665–670CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jablonka E (2013) Epigenetic inheritance and plasticity: the responsive germline. Prog Biophys Mol Biol 111:99–107CrossRefPubMedGoogle Scholar
  32. Jablonka E, Lamb MJ (2005) Evolution in four dimensions: genetic, epigenetic, behavioural and symbolic variation in the history of life. MIT, CambridgeGoogle Scholar
  33. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mecahnisms and implications for the study of heredity and evolution. Q Rev Biol 84(2):131–176CrossRefGoogle Scholar
  34. Jack KM, Isbell LA (2009) Dispersal in primates: advancing an individualized approach. Behaviour 146:429–436CrossRefGoogle Scholar
  35. Jack A et al (2012) DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Front Hum Neurosci 6:a280CrossRefGoogle Scholar
  36. Jiang YH et al (1998) Mutation of the angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21(4):799–911CrossRefPubMedGoogle Scholar
  37. Jirtle RL, Skinner MK (2016) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262CrossRefGoogle Scholar
  38. Kappil M et al (2015) Environmental influences on genomic imprinting. Curr Environ Health Rep 2:155. Scholar
  39. Karg K et al (2011) The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry 68(5):444–454CrossRefPubMedPubMedCentralGoogle Scholar
  40. Keebaugh AC, Young LJ (2011) Increasing oxytocin receptor expression in the nucleus accumbens of pre-pubertal female prairie voles enhances alloparental responsiveness and partner preference formation as adults. Horm Behav 60(5):498–504CrossRefPubMedPubMedCentralGoogle Scholar
  41. Keller TE, Yi SV (2014) DNA methylation and evolution of duplicate genes. Proc Natl Acad Sci USA 111(16):5932–5937CrossRefPubMedGoogle Scholar
  42. Keverne EB (2014) Significance of epigenetics for understanding brain development, brain evolution and behaviour. Neuroscience 264:207–217CrossRefGoogle Scholar
  43. Keverne EB et al (1996) Genomic imprinting and the differential roles of parental genomes in brain development. Dev Brain Res 92(1):91–200CrossRefGoogle Scholar
  44. Klironomos FD, Berg J, Collins S (2013) How epigenetic mutations can affect genetic evolution: model and mechanism. Bioessays 35(6):571–578CrossRefPubMedGoogle Scholar
  45. Koenig A, Borries C (2012) Hominoid dispersal and human evolution. Evol Anthropol 21(3):108–112CrossRefPubMedGoogle Scholar
  46. Lillycrop KA, Burdge GC (2015) Maternal diet as a modifier of offspring epigenetics. J Dev Orig Health Dis 6(2):88–95CrossRefPubMedGoogle Scholar
  47. Maricic T et al (2013) A recent evolutionary change affects a regulatory element in human FOXP2 gene. Mol Biol Evol 30(4):844–852CrossRefPubMedGoogle Scholar
  48. Monk C et al (2012) Linking prenatal maternal adversity to developmental outcomes in infants: the role of epigenetic pathways. Dev Psychopathol 24(4):1361–1376CrossRefPubMedPubMedCentralGoogle Scholar
  49. Moriam S, Sobhani M (2013) Epigenetic effect of chronic stress on dopamine signaling and depression. Genet Epigenet 5:11–16CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mozzi A et al (2016) The evolutionary history of genes involved in spoken and written language: beyond FOXP2. Sci Rep 6:a22157CrossRefGoogle Scholar
  51. Munoa I et al (2015) The epigenetic regulation of the opioid system: new individualized prompt prevention and treatment strategies. J Cell Biochem 116(11):2419–2426CrossRefPubMedGoogle Scholar
  52. Nagy C, Turecki G (2015) Transgenerational epigenetic inheritance: an open discussion. Epigenomics 7(5):781–790CrossRefPubMedGoogle Scholar
  53. Nikolova YS et al (2014) Beyond genotype: serotonin transporter epigenetic modification predicts human brain function. Nat Neurosci 17(9):1153–1155CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nowick K et al (2009) Differences in human and chimpanzee gene expression patterns define an evolving network of transcription factors in brain. Proc Natl Acad Sci USA 106(52):22358–22363CrossRefPubMedGoogle Scholar
  55. Pai AA et al (2011) A genome-wide study of DNA methylation patterns and gene expression in multiple human and chimpanzee tissues. PLoS Genet 7(2). Scholar
  56. Perroud N et al (2014) The Tutsi genocide and transgenerational transmission of maternal stress: the epigenetics and biology of the HPA axis. World J Biol Psychiatry 15(4):334–345CrossRefPubMedGoogle Scholar
  57. Petito A et al (2016) The relationship between personality traits, the 5HTT polymorphisms, and the occurrence of anxiety and depressive symptoms in elite athletes. PLoS One 11(6):e0156601. Scholar
  58. Prokopuk L et al (2015) Transgenerational epigenetic inheritance: adaptation through the germline epigenome? Epigenomics 7(5):829–846CrossRefPubMedGoogle Scholar
  59. Puglia MH et al (2015) Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proc Natl Acad Sci USA 112(11):3308–3313CrossRefPubMedGoogle Scholar
  60. Ragsdale G, Foley RA (2011) A maternal influence on theory of mind mediated by executive function: differential parental influences on full and half-siblings. PLoS One 6(8). Scholar
  61. Ragsdale G, Foley RA (2012) Testing the imprinted brain: parent-of-origin effects on empathy and systemising. Evol Hum Behav 33(4):402–410CrossRefGoogle Scholar
  62. Sadakierska-Chudy A et al (2015a) A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox Res 27(1):84–97CrossRefPubMedGoogle Scholar
  63. Sadakierska-Chudy A et al (2015b) A comprehensive view of the epigenetic landscape part II: histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 27(2):172–197CrossRefPubMedGoogle Scholar
  64. Schneider E et al (2014) Widespread differences in cortex DNA methylation of the “language gene” CNTNAP2 between humans and chimpanzees. Epigenetics 9(4):533–545CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schulz LC (2010) The Dutch Hunger Winter and the developmental origins of health and disease. Proc Natl Acad Sci USA 107(39):16757–16758CrossRefPubMedGoogle Scholar
  66. Shultz S, Opie C, Atkinson QD (2011) Stepwise evolution of stable sociality in primates. Nature 479(7372):219–U96CrossRefPubMedGoogle Scholar
  67. Silverman JL et al (2015) GABA(B) receptor agonist R-Baclofen reverses social deficits and reduces repetitive behaviour in two mouse models of autism. Neuropsychopharmacology 40(9):2228–2239CrossRefPubMedPubMedCentralGoogle Scholar
  68. Skuse D (2006) Genetic influences on the neural basis of social cognition. Philos Trans R Soc Lond Ser B Biol Sci 361(1476):2129–2141CrossRefGoogle Scholar
  69. Stimpson CD et al (2016) Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Soc Cogn Affect Neurosci 11(3):413422. Scholar
  70. Strathearn L (2011) Maternal neglect: oxytocin, dopamine and the neurobiology of attachment. J Neuroendocrinol 23(11):1054–1065CrossRefPubMedPubMedCentralGoogle Scholar
  71. Stuppia L et al (2015) Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics 7:a120CrossRefGoogle Scholar
  72. Thomas AC et al (2012) The speech gene FOXP2 is not imprinted. J Med Genet 49(11):669–670CrossRefPubMedGoogle Scholar
  73. Tobi EW et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing and sex-specific. Hum Mol Genet 18:4046–4053CrossRefPubMedPubMedCentralGoogle Scholar
  74. Uher R et al (2011) Serotonin transporter gene moderates childhood maltreatment’s effects on persistent but not single-episode depression: replications and implications for resolving inconsistent results. J Affect Disord 135(1–3):56–65CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vangeel EB et al (2015) DNA methylation in imprinted genes IGF2 and GNASXL is associated with prenatal maternal stress. Genes Brain Behav 14(8):573–582. Scholar
  76. Vernes SC et al (2008) A functional genetic link between distinct developmental language disorders. N Engl J Med 359(22):2337–2345CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wang H et al (2013) Histone deacetylase inhibitors facilitate partner preference formation in female prairie voles. Nat Neurosci 16(7):919–924CrossRefPubMedPubMedCentralGoogle Scholar
  78. Webster MT (2013) Human-specific accelerated evolution of noncoding sequences. eLS.
  79. Wendland JR et al (2006) Differential functional variability of serotonin transporter and monoamine oxidase a genes in macaque species displaying contrasting levels of aggression-related behaviour. Behav Genet 36(2):163–172CrossRefPubMedGoogle Scholar
  80. Yehuda NP et al (2014) Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in holocaust survivor offspring. Am J Psychiatry 171(8):872–880. Scholar
  81. Zeng J, Konopka G, Hunt BG, Preuss TM, Geschwind D, Soojin VY (2012) Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am J Hum Genet 91(3):455–465CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Ronin Institute for Independent ScholarshipMontclairUSA
  2. 2.The Leverhulme Centre for Human Evolutionary StudiesUniversity of CambridgeCambridgeUK

Personalised recommendations