Advertisement

Source Analysis and Selection Using Block Term Decomposition in Atrial Fibrillation

  • Pedro Marinho R. de OliveiraEmail author
  • Vicente Zarzoso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10891)

Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinical practice, and is becoming a major public health concern. To better understand the mechanisms of this arrhythmia an accurate analysis of the atrial activity (AA) signal in electrocardiogram (ECG) recordings is necessary. The block term decomposition (BTD), a tensor factorization technique, has been recently proposed as a tool to extract the AA in ECG signals using a blind source separation (BSS) approach. This paper makes a deep analysis of the sources estimated by BTD, showing that the classical method to select the atrial source among the other sources may not work in some cases, even for the matrix-based methods. In this context, we propose two new automated methods to select the atrial source by considering another novel parameter. Experimental results on ten patients show the validity of the proposed methods.

Keywords

Atrial source selection Block term decomposition Atrial fibrillation Blind source separation 

References

  1. 1.
    January, C.T., Wann, L.S., Alpert, J.S., Calkins, H., Cleveland, J.C., Cigarroa, J.E., Conti, J.B., et al.: 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 64(21), 2246–2280 (2014)Google Scholar
  2. 2.
    Mainardi, L., Sörnmo, L., Cerutti, S.: Understanding atrial fibrilation: the signal processing contribution. Synthesis Lectures on Biomedical Engineering. Morgan & Claypool Publishers (2008)Google Scholar
  3. 3.
    Rieta, J.J., Castells, F., Sánchez, C., Zarzoso, V., Millet, J.: Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Trans. Biomed. Eng. 51(7), 1176–1186 (2004)CrossRefGoogle Scholar
  4. 4.
    Castells, F., Rieta, J.J., Millet, J., Zarzoso, V.: Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Trans. Biomed. Eng. 52(2), 258–267 (2005)CrossRefGoogle Scholar
  5. 5.
    Zarzoso, V.: Extraction of ECG characteristics using source separation techniques: exploiting statistical independence and beyond. In: Naït-Ali, A. (ed.) Advanced Biosignal Processing, pp. 15–47. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-89506-0_2CrossRefGoogle Scholar
  6. 6.
    Ribeiro, L.N., Hidalgo-Muñoz, A.R., Zarzoso, V.: Atrial signal extraction in atrial fibrillation electrocardiograms using a tensor decomposition approach. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015, Milan, Italy, 25–29 August 2015, pp. 6987–6990 (2015)Google Scholar
  7. 7.
    Ribeiro, L.N., Hidalgo-Muñoz, A.R., Favier, G., Mota, J.C.M., de Almeida, A.L.F., Zarzoso, V.: A tensor decomposition approach to noninvasive atrial activity extraction in atrial fibrillation ECG. In: Proceedings of the XXIII European Signal Processing Conference, EUSIPCO-2015, Nice, France, 31 August–4 September 2015, pp. 2576–2580 (2015)Google Scholar
  8. 8.
    Ribeiro, L.N., de Almeida, A.L.F., Zarzoso, V.: Enhanced block term decomposition for atrial activity extraction in atrial fibrillation ECG. In: Proceedings of the 9th IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM-2016, Rio de Janeiro, Brazil, 10–13 July 2016Google Scholar
  9. 9.
    Zarzoso, V.: Parameter estimation in block term decomposition for noninvasive atrial fibrillation analysis. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP-2017, Curaçao, Dutch Antilles, 10–13 December 2017Google Scholar
  10. 10.
    Zarzoso, V., Comon, P.: Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Trans. Neural Netw. 21(2), 248–261 (2010)CrossRefGoogle Scholar
  11. 11.
    Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2005)Google Scholar
  12. 12.
    De Lathauwer, L.: Blind separation of exponential polynomials and the decomposition of a tensor in rank-(\(l_r\), \(l_r\), \(1\)) terms. SIAM J. Matrix Anal. Appl. 32(4), 1451–1474 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Boley, D.L., Luk, F.T., Vandevoorde, D.: Vandermonde factorization of a Hankel matrix. In: Proceedings of the Workshop on Scientific Computing, Hong Kong, March 1997Google Scholar
  14. 14.
    Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab 3.0, March 2016. https://www.tensorlab.net/

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pedro Marinho R. de Oliveira
    • 1
    Email author
  • Vicente Zarzoso
    • 1
  1. 1.Université Côte d’Azur, CNRS, I3S Laboratory, CS 40121Sophia Antipolis CedexFrance

Personalised recommendations