Skip to main content

Application of Independent Component Analysis to Tumor Transcriptomes Reveals Specific and Reproducible Immune-Related Signals

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2018)

Abstract

Independent Component Analysis (ICA) can be used to model gene expression data as an action of a set of statistically independent hidden factors. The ICA analysis with a downstream component analysis was successfully applied to transcriptomic data previously in order to decompose bulk transcriptomic data into interpretable hidden factors. Some of these factors reflect the presence of an immune infiltrate in the tumor environment. However, no foremost studies focused on reproducibility of the ICA-based immune-related signal in the tumor transcriptome. In this work, we use ICA to detect immune signals in six independent transcriptomic datasets. We observe several strongly reproducible immune-related signals when ICA is applied in sufficiently high-dimensional space (close to one hundred). Interestingly, we can interpret these signals as cell-type specific signals reflecting a presence of T-cells, B-cells and myeloid cells, which are of high interest in the field of oncoimmunology. Further quantification of these signals in tumoral transcriptomes has a therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swartz, M.A., Iida, N., Roberts, E.W., Sangaletti, S., Wong, M.H., Yull, F.E., Coussens, L.M., DeClerck, Y.A.: Tumor microenvironment complexity: emerging roles in cancer therapy (2012)

    Article  Google Scholar 

  2. Becht, E., Giraldo, N.A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., Selves, J., Laurent-Puig, P., Sautès-Fridman, C., Fridman, W.H., et al.: Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17(1), 218 (2016)

    Article  Google Scholar 

  3. Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., Alizadeh, A.A.: Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12(5), 453–457 (2015)

    Article  Google Scholar 

  4. Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D.E., Gfeller, D.: Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife 6, e26476 (2017)

    Google Scholar 

  5. Roman, T., Xie, L., Schwartz, R.: Automated deconvolution of structured mixtures from heterogeneous tumor genomic data. PLoS Comput. Biol. 13(10), e1005815 (2017)

    Article  Google Scholar 

  6. Gaujoux, R., Seoighe, C.: Semi-supervised nonnegative matrix factorization for gene expression deconvolution: a case study. Infect. Genet. Evol. 12(5), 913–921 (2012)

    Article  Google Scholar 

  7. Brunet, J.P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. 101(12), 4164–4169 (2004)

    Article  Google Scholar 

  8. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(45), 411–430 (2000)

    Article  Google Scholar 

  9. Zinovyev, A., Kairov, U., Karpenyuk, T., Ramanculov, E.: Blind source separation methods for deconvolution of complex signals in cancer biology. Biochem. Biophys. Res. Commun. 430(3), 1182–1187 (2013)

    Article  Google Scholar 

  10. Teschendorff, A.E., Journée, M., Absil, P.A., Sepulchre, R., Caldas, C.: Elucidating the altered transcriptional programs in breast cancer using independent component analysis. PLoS Comput. Biol. 3(8), 1539–1554 (2007)

    Article  MathSciNet  Google Scholar 

  11. Biton, A., Bernard-Pierrot, I., Lou, Y., Krucker, C., Chapeaublanc, E., Rubio-Pérez, C., López-Bigas, N., Kamoun, A., Neuzillet, Y., Gestraud, P., Grieco, L., Rebouissou, S., DeReyniès, A., Benhamou, S., Lebret, T., Southgate, J., Barillot, E., Allory, Y., Zinovyev, A., Radvanyi, F.: Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes. Cell Rep. 9(4), 1235–1245 (2014)

    Article  Google Scholar 

  12. Gorban, A., Kegl, B., Wunch, D., Zinovyev, A.: Principal Manifolds for Data Visualisation and Dimension Reduction. Lecture notes in Computational Science and Engineering, vol. 58, p. 340. Springer, Heidelberg (2008)

    Book  Google Scholar 

  13. Saidi, S.A., Holland, C.M., Kreil, D.P., MacKay, D.J.C., Charnock-Jones, D.S., Print, C.G., Smith, S.K.: Independent component analysis of microarray data in the study of endometrial cancer. Oncogene 23(39), 6677–6683 (2004)

    Article  Google Scholar 

  14. Bang-Berthelsen, C.H., Pedersen, L., Fløyel, T., Hagedorn, P.H., Gylvin, T., Pociot, F.: Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes. BMC Genomics 12, 97 (2011)

    Article  Google Scholar 

  15. Kairov, U., Cantini, L., Greco, A., Molkenov, A., Czerwinska, U., Barillot, E., Zinovyev, A.: Determining the optimal number of independent components for reproducible transcriptomic data analysis. BMC Genomics 18(1), 712 (2017)

    Article  Google Scholar 

  16. Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M., Network, C.G.A.R., et al.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113 (2013)

    Article  Google Scholar 

  17. Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., Gräf, S., Ha, G., Haffari, G., Bashashati, A., Russell, R., McKinney, S., Aparicio, S., Brenton, J.D., Ellis, I., Huntsman, D., Pinder, S., Murphy, L., Bardwell, H., Ding, Z., Jones, L., Liu, B., Papatheodorou, I., Sammut, S.J., Wishart, G., Chia, S., Gelmon, K., Speers, C., Watson, P., Blamey, R., Green, A., MacMillan, D., Rakha, E., Gillett, C., Grigoriadis, A., De Rinaldis, E., Tutt, A., Parisien, M., Troup, S., Chan, D., Fielding, C., Maia, A.T., McGuire, S., Osborne, M., Sayalero, S.M., Spiteri, I., Hadfield, J., Bell, L., Chow, K., Gale, N., Kovalik, M., Ng, Y., Prentice, L., Tavaré, S., Markowetz, F., Langerød, A., Provenzano, E., Purushotham, A., Børresen-Dale, A.L., Caldas, C.: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403), 346–352 (2012)

    Article  Google Scholar 

  18. Guedj, M., Marisa, L., De Reynies, A., Orsetti, B., Schiappa, R., Bibeau, F., MacGrogan, G., Lerebours, F., Finetti, P., Longy, M., Bertheau, P., Bertrand, F., Bonnet, F., Martin, A.L., Feugeas, J.P., Bièche, I., Lehmann-Che, J., Lidereau, R., Birnbaum, D., Bertucci, F., De Thé, H., Theillet, C.: A refined molecular taxonomy of breast cancer. Oncogene 31(9), 1196–1206 (2012)

    Article  Google Scholar 

  19. Bekhouche, I., Finetti, P., Adelaïde, J., Ferrari, A., Tarpin, C., Charafe-Jauffret, E., Charpin, C., Houvenaeghel, G., Jacquemier, J., Bidaut, G., Birnbaum, D., Viens, P., Chaffanet, M., Bertucci, F.: High-resolution comparative genomic hybridization of Inflammatory breast cancer and identification of candidate genes. PLoS ONE 6(2), e16950 (2011)

    Article  Google Scholar 

  20. Wang, Y., Klijn, J.G., Zhang, Y., Sieuwerts, A.M., Look, M.P., Yang, F., Talantov, D., Timmermans, M., Meijer-Van Gelder, M.E., Yu, J., Jatkoe, T., Berns, E.M., Atkins, D., Foekens, J.A.: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460), 671–679 (2005)

    Article  Google Scholar 

  21. Reyal, F., Rouzier, R., Depont-Hazelzet, B., Bollet, M.A., Pierga, J.Y., Alran, S., Salmon, R.J., Fourchotte, V., Vincent-Salomon, A., Sastre-Garau, X., Antoine, M., Uzan, S., Sigal-Zafrani, B., de Rycke, Y.: The molecular subtype classification is a determinant of sentinel node positivity in early breast carcinoma. PLoS ONE 6(5), e20297 (2011)

    Article  Google Scholar 

  22. Himberg, J., Hyvärinen, A.: ICASSO: software for investigating the reliability of ICA estimates by clustering and visualization. In: Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, vol. 2003, pp. 259–268, January 2003

    Google Scholar 

  23. Cantini, L., Calzone, L., Martignetti, L., Rydenfelt, M., Blüthgen, N., Barillot, E., Zinovyev, A.: Classification of gene signatures for their information value and functional redundancy. npj Syst. Biol. Appl. 4(1), 2 (2018)

    Google Scholar 

  24. Wickham, H.: ggplot2 Elegant Graphics for Data Analysis, vol. 35 (2009)

    Google Scholar 

  25. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software Environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  26. Shay, T., Kang, J.: Immunological Genome Project and systems immunology (2013)

    Article  Google Scholar 

  27. Kerdiles, Y.M., Almeida, F.F., Thompson, T., Chopin, M., Vienne, M., Bruhns, P., Huntington, N.D., Raulet, D.H., Nutt, S.L., Belz, G.T., Vivier, E.: Natural-Killer-like B cells display the phenotypic and functional characteristics of conventional B cells. Immunity 47(2), 199–200 (2017)

    Article  Google Scholar 

  28. Schelker, M., Feau, S., Du, J., Ranu, N., Klipp, E., MacBeath, G., Schoeberl, B., Raue, A.: Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nature Commun. 8(1), 2032 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Vassili Soumelis for discussions on multidimensionality of biological systems. This work has been funded by INSERM Plan Cancer \(\mathrm {N}\) BIO2014-08 COMET grant under ITMO Cancer BioSys program and by ITMO Cancer (AVIESAN) who provided 3-year PhD grant. We would like to acknowledge as well foundation Bettencourt Schueller and Center for Interdisciplinary Research funding for the training of the PhD student.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Czerwinska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czerwinska, U., Cantini, L., Kairov, U., Barillot, E., Zinovyev, A. (2018). Application of Independent Component Analysis to Tumor Transcriptomes Reveals Specific and Reproducible Immune-Related Signals. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics