Advertisement

The Foundations of Arithmetic in Ibn Sīnā

  • Hassan TahiriEmail author
Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 43)

Abstract

Ibn Sīnā (980–1037), one of the most influential philosopher-scientists who was known to the West by the Latinised name Avicenna, has introduced a major shift in the philosophy of mathematics. His conception of number is structured into 5 main conceptual developments: (1) the recognition of mathematical objects as intentional entities and the acknowledgment that this amounts to provide an intentional notion of existence; (2) the link between the intentional act of apprehending unity and the generation of numbers by means of a specific act of repetition made possible by memory; (3) the identification of a specific intentional act that explains how the repetition operator can be performed by an epistemic agent; (4) the development of a notion of aggregate (or constructive set) that assumes an inductive operation for the generation of its elements and an underlying notion of equivalence relation; (5) the claim that plurality and unity should be understood interdependently (we grasp plurality by grasping it as instantiating an invariant).

References

Primary Sources

  1. Avicenna. (2009). The Physics of The Healing Open image in new window A Parallel English-Arabic text translated, introduced and annotated by Jon McGinnis, Islamic Translation Series, Birgham Young University Press, Prove, Utah.Google Scholar
  2. Avicenna. (2005). The Metaphysics of The Healing Open image in new window A Parallel English-Arabic text translated, introduced and annotated by Michael E. Marmura, Islamic Translation Series, Birgham Young University Press, Prove, Utah.Google Scholar
  3. Ibn Sīnā. (1992). Kitāb al-Ishārāt wa aṭ-Ṭanbīhāt with a Commentary by Nasīr al-Dīn al-Ṭūsī, Second Part, ed. S. Dunyā, Dār al-Ma‘ārif, Cairo.Google Scholar
  4. Avicenne. (1986). Le Livre de Science, Traduit du persan par Mohammad Achena et Henri Massé, Deuxième édition revue et corrigée, Les Belles Lettres – UNESCO.Google Scholar
  5. Ibn Sīnā. (1983). Kitāb al-Ishārāt wa aṭ-Ṭanbīhāt with a Commentary by Nasīr al-Dīn al-Ṭūsī, First Part One, ed. S. Dunyā, Dār al-Ma‘ārif, Cairo.Google Scholar
  6. Avicenne. (1978). La Métaphysique du Shifā’, Livres I à V, Introduction, traduction et notes par Georges C. Anawati, J. Vrin, Paris.Google Scholar
  7. Ibn Sīnā. (1968). Kitāb al-Ishārāt wa aṭ-Ṭanbīhāt with a Commentary by Nasīr al-Dīn al-Ṭūsī, Third Part, ed. S. Dunyā, Dār al-Ma‘ārif, Cairo.Google Scholar
  8. Ibn Sīnā. (1956). Al-Shifā’, al-Manṭiq, vol. V: al-Burhān, ed. Afifi, directed by Ibrāhīm Madhkour, al-Maṭba‛a al-Amīrīa, Cairo.Google Scholar
  9. Avicenne. (1951). Livre des directives et remarques. Kitāb al-Ishārāt wa L-Tanbīhāt (Pointers and Reminders), Traduction, introduction et notes par A.-M. Goichon, Paris-Beyrouth, Editions Unesco, Vrin.Google Scholar
  10. Ibn Sīnā. (1910). Manṭiq al-mashriqiyyīn, al-Maktaba al-salafia, Cairo.Google Scholar
  11. Gohlman, W. E. (1974). The life of Ibn Sīnā. A Critical Edition and Annotated Translation. State University of New York Press: Albany, NY.Google Scholar
  12. Al-Fārābī. (1989). Kitāb al-wāḥid wa al-waḥda, Arabic Text Edited with Introduction and Notes by M. Mahdi, Ṭūbqāl li al-Nashr, Casablanca.Google Scholar
  13. Al-Jurjānī. (2004). Mu‘jam al-ta‘rīfāt, ed. Muhammad Siddiq al-Minshawi, Cairo, Dār al-Faḍīla.Google Scholar
  14. Al-Khwārizmī. (2007). Kitāb al-jabr wa al-muqābala in Le commencement de l’algèbre, texte établi, traduit et commenté par R. Rashed, Albert Blanchard, Paris; for the English version, Al-Khwārizmī: The Beginnings of Algebra, Edited with translation and commentary by Roshdi Rashed, Bilingual edition, Saqi Books, 2009.Google Scholar
  15. Al-Kindī. (1950). Rasā’il al-Kindī al-falsafiyya, ed. Mu ammad ‛Abd al-Hādī Abū Rīda, Cairo.Google Scholar
  16. Frege, G. (1884). The Foundations of Arithmetic, A Logico-Mathematical Enquiry into The Concept of Number, Translated by J. L. Austin, Second Revised Edition, Harper Torchbooks, The Science Library Harper & Brothers, New York.Google Scholar
  17. Poincaré, H. (1902). La science et l’hypothèse. Paris: Flammarion.Google Scholar

Secondary Literature

  1. Badawi, A. (1978). Aristū ‘inda al-‘arab, al-Kuwait, Wakālat al-Maṭbū‘at.Google Scholar
  2. Hodges, W. \& Moktefi, A. (2013). Ibn Sīnā on Logical Analysis, (Draft), available at Hodges’s website: http://wilfridhodges.co.uk/arabic29.pdf.
  3. Rashed, R. (2015). Classical Mathematics from Al-Khwārizmī to Descartes, translated by M. H. Shank, Centre for Arab Unity Studies, London and New York: Routledge.Google Scholar
  4. Tahiri, H. (2018). When the present misunderstands the past. How a modern arab intellectual reclaimed his own heritage. Arabic Sciences and Philosophy, 28(1), 133–158.Google Scholar
  5. Rahman, S. \& Salloum, Z. (2013). “Quantité, unité et identité dans la philosophie d’Ibn Sīnā”. In H. Tahiri (Ed.), La périodisation en histoire des sciences et de la philosophie. La fin d’un mythe, Cahiers de Logique et d’Epistémologie (Vol. 13, pp. 51–61). London: College Publications.Google Scholar
  6. Young, W. E. (2016). The Dialectical Forge. Juridical Disputation and the Evolution of Islamic Law. Dordrecht: Springer.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CFCUL—Centre for Philosophy of ScienceUniversity of LisbonLisbonPortugal

Personalised recommendations