Chemical Strengthening of Glass

  • Timothy M. GrossEmail author
Part of the Springer Handbooks book series (SHB)


A basic ternary sodium aluminosilicate glass system is described since this simple system forms the basis for glasses readily ion-exchanged to the high surface compressive stress and deep compressive stress layer. The ionic interdiffusion of monovalent alkali ions within an aluminosilicate glass is described and the complementary error function form of the invading ion concentration profile is established. The generation of the stress profile from the concentration gradient is then described mathematically. The basics of fracture mechanics are reviewed and then used to describe the advantages of ion-exchanged glasses, namely imparting high surface strength to allow highly flexible and bendable thin glass sheets and for thicker glass, the retention of strength following deep contact damage. A simple model is described that can accurately predict the retained strength as a function of flaw depth for a known stress profile. The frangibility behavior of ion-exchanged glasses is also described in terms of stored strain energy and cracking responses are shown. The sharp contact failure mode for cover glasses is also described and the use of a Vickers diamond indenter to replicate this type of failure mode is demonstrated. Experimental data show that the resistance to sharp contact strength-limiting flaw generation is improved both with high compressive stress enveloping the deformation region and by utilizing glass compositions that are more resistant to subsurface damage during sharp contact events. Sliding Knoop and Vickers indenter scratch testing shows that ion-exchanged glasses with resistance to subsurface damage do not produce highly visible lateral cracks at loads that readily produce this type of damage in typical ion-exchanged aluminosilicate glasses.



I would like to thank all colleagues that contributed to the understanding of ion-exchangeable glasses presented in this chapter. In particular, I would like to thank Ben Hanson for providing microprobe data, Doug Allan and Guangli Hu for useful discussions and guidance regarding stress profile generation and fracture mechanics modeling, Kevin Reiman for flaw-depth measurements in abraded ring-on-ring samples, Steve Carley for strain gage measurements, Charlene Smith for providing samples with varying levels of stored strain energy, and Anthony Furstoss for break pattern imaging. The fracture mechanics guidance provided by Scott Glaesemann and Jim Price is greatly appreciated.


  1. S.S. Kistler: Stresses in glass produced by nonuniform exchange of monovalent ions, J. Am. Ceram. Soc. 45, 59–68 (1962)CrossRefGoogle Scholar
  2. M.E. Nordberg, E.L. Mochel, H.M. Garfinkel, J.S. Olcott: Strengthening by ion exchange, J. Am. Ceram. Soc. 47, 215–219 (1964)CrossRefGoogle Scholar
  3. J.H. Seaman, P.J. Lezzi, T.A. Blanchet, M. Tomozawa: Degradation of ion-exchange strengthened glasses due to surface stress relaxation, J. Non-Cryst. Solids 403, 113–123 (2014)CrossRefGoogle Scholar
  4. E. Gehrke, C. Ullner, M. Hahnert: Fatigue limit and crack arrest in alkali-containing silicate glasses, J. Mater. Sci. 26, 5445–5455 (1991)CrossRefGoogle Scholar
  5. C.R. Kurkjian, J.T. Krause, M.J. Matthewson: Strength and fatigue of silica optical fibers, J. Lightwave Technol. 7, 1360–1370 (1989)CrossRefGoogle Scholar
  6. A. Makashima, J.D. Mackenzie: Direct calculation of Young's modulus of glass, J. Non-Cryst. Solids 12, 35–45 (1973)CrossRefGoogle Scholar
  7. A. Makashima, J.D. Mackenzie: Calculation of bulk modulus, shear modulus, and Poisson's ratio of glass, J. Non-Cryst. Solids 17, 147–157 (1975)CrossRefGoogle Scholar
  8. X. Zuo, H. Toratani: Compositional design of high modulus glasses for disk substrates, J. Non-Cryst. Solids 290, 180–188 (2001)CrossRefGoogle Scholar
  9. A. Dietzel: Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten, Z. Electrochem. 48, 9–23 (1942)Google Scholar
  10. V.Y. Livshits, D.G. Tennison, S.B. Gukasyan, A.K. Kostanyan: Acoustic and elastic properties of glasses in the Na2O-Al2O3-SiO2 system, Sov. J. Glass Phys. Chem. 8, 463–468 (1982)Google Scholar
  11. A.J. Burggraaf, J. Cornelissen: Strengthening of glass by ion exchange, Phys. Chem. Glasses 5, 123–129 (1964)Google Scholar
  12. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta. Cryst. 32, 751–767 (1976)CrossRefGoogle Scholar
  13. R.H. Doremus: Exchange and diffusion of ions in glass, J. Phys. Chem. 68, 2212–2218 (1964)CrossRefGoogle Scholar
  14. R. Terai: The mixed alkali effect in the Na2O-Cs2O-SiO2 glasses, J. Non-Cryst. Solids 6, 121–135 (1971)CrossRefGoogle Scholar
  15. A.K. Varshneya, M.E. Milberg: Ion exchange in sodium borosilicate glasses, J. Am. Ceram. Soc. 57, 165–169 (1974)CrossRefGoogle Scholar
  16. A.R. Cooper, D.A. Krohn: Strengthening of glass fibers: II, Ion exchange, J. Am. Ceram. Soc. 52, 665–669 (1969)CrossRefGoogle Scholar
  17. A.Y. Sane, A.R. Cooper: Stress buildup and relaxation during ion-exchange strengthening of glass, J. Am. Ceram. Soc. 70, 86–89 (1987)CrossRefGoogle Scholar
  18. R.W. Douglas: The rheology of glassy materials – A general survey. In: Amorphous Materials, ed. by R.W. Douglas, B. Ellis (Wiley, London 1972) pp. 3–22Google Scholar
  19. M. Tomozawa, R.W. Hepburn: Surface structural relaxation of silica glass: A possible mechanism of mechanical fatigue, J. Non-Cryst. Solids 345, 449–460 (2004)CrossRefGoogle Scholar
  20. A. Agarwal, M. Tomozawa: Surface and bulk structural relaxation kinetics of silica glass, J. Non-Cryst. Solids 209, 264–272 (1997)CrossRefGoogle Scholar
  21. M. Tomozawa, P.J. Lezzi, R.W. Hepburn, T.A. Blanchet, D. Cherniak: Surface stress relaxation and resulting residual stress in glass fibers: A new mechanical strengthening mechanism of glass, J. Non-Cryst. Solids 358, 2650–2662 (2012)CrossRefGoogle Scholar
  22. D.C. Allan, K.W. Koch, R.V. Roussev, R.A. Schaut, V.M. Schneider: Systems and methods for measuring the stress profile of ion-exchanged glass, US Patent (Application), 9140543 (2015), Assigned to Corning IncorporatedGoogle Scholar
  23. G.R. Irwin: Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech. 24, 361–364 (1957)Google Scholar
  24. G.S. Glaesemann, K. Jakus, J.E. Ritter: Strength variability of indented soda-lime glass, J. Am. Ceram. Soc. 70, 441–444 (1987)CrossRefGoogle Scholar
  25. J.B. Wachtman, W.R. Cannon, M.J. Matthewson: Mechanical Properties of Ceramics (Wiley, Hoboken 2009)CrossRefGoogle Scholar
  26. R.J. Charles: A review of glass strength. In: Progress in Ceramic Science, Vol. 1, ed. by J.E. Burke (Pergamon, New York 1961) pp. 1–38Google Scholar
  27. W.B. Hillig: Sources of weakness and the ultimate strength of brittle amorphous solids. In: Modern Aspects of the Vitreous State, ed. by J.D. Makenzie (Butterworth, Washington DC 1962) pp. 152–194Google Scholar
  28. T.A. Michalske: The stress corrosion limit: It's measurement and implications. In: Fracture Mechanics of Ceramics, Vol. 5, ed. by R.C. Bradt, A.G. Evans, D.P.H. Hasselmann, F.F. Lange (Plenum, New York 1983) pp. 277–289CrossRefGoogle Scholar
  29. S.T. Gulati, J. Westbrook, S. Carley, H. Vepakomma, T. Ono: Two point bending of thin glass substrate, SID Symp. Dig. Techn. Pap. 45(2), 652–654 (2011)CrossRefGoogle Scholar
  30. J.D. Makenzie, J. Wakaki: Effects of ion exchange on the Young's modulus of glass, J. Non-Cryst. Solids 38/39, 385–390 (1980)CrossRefGoogle Scholar
  31. B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, New York 1993)CrossRefGoogle Scholar
  32. D.C. Allan, X. Guo, G. Hu, G. Peng: Method for achieving a stress profile in a glass, US Patent Application, 14/540328 (2014), Assigned to Corning IncorporatedGoogle Scholar
  33. G.D. Quinn, R.C. Bradt: On the Vickers indentation fracture toughness test, J. Am. Ceram. Soc. 90, 673–680 (2007)CrossRefGoogle Scholar
  34. D.J. Green: Compressive surface strengthening of brittle materials by a residual stress distribution, J. Am. Ceram. Soc. 66, 807–810 (1983)CrossRefGoogle Scholar
  35. S.T. Gulati: Frangibility of tempered soda-lime glass sheet. In: Glass Processing Days: Architectural and Automotive Glass: Now and In the Future, ed. by J. Vitkala (Tamglass Engineering Oy, Tampere 1997) pp. 72–76Google Scholar
  36. J.T. Hagan, M.V. Swain: The origin of median and lateral cracks around plastic indents in brittle materials, J. Phys. D 11, 2091–2102 (1978)CrossRefGoogle Scholar
  37. A. Arora, D.B. Marshall, B.R. Lawn: Indentation deformation/fracture of normal and anomalous glasses, J. Non-Cryst. Solids 31, 415–428 (1979)CrossRefGoogle Scholar
  38. J.T. Hagan: Shear deformation under pyramidal indentations in soda-lime glass, J. Mater. Sci. 15, 1417–1424 (1980)CrossRefGoogle Scholar
  39. B.R. Lawn, T.P. Dabbs, C.J. Fairbanks: Kinetics of shear-activated indentation crack initiation in soda-lime glass, J. Mater. Sci. 18, 2785–2797 (1983)CrossRefGoogle Scholar
  40. K. Hirao, M. Tomozawa: Microhardness of SiO\({}_{2}\) in various environements, J. Am. Ceram. Soc. 70, 497–502 (1987)CrossRefGoogle Scholar
  41. K.L. Barefoot, M.J. Dejneka, S. Gomez, T.M. Gross, N. Shashidhar: Crack and scratch resistant glass and enclosures made therefrom, US Patent (Application), 8586492 (2013), Assigned to Corning IncorporatedGoogle Scholar
  42. J.D. Mackenzie: High pressure effects on oxide glasses: I, Densification in rigid state, J. Am. Ceram. Soc. 46, 461–476 (1963)CrossRefGoogle Scholar
  43. J.E. Neely, J.D. Mackenzie: Hardness and low-temperature deformation of silica glass, J. Mater. Sci. 3, 603–609 (1968)CrossRefGoogle Scholar
  44. K.W. Peter: Densification and flow phenomena of glass in indentation experiments, J. Non-Cryst. Solids 5, 103–115 (1970)CrossRefGoogle Scholar
  45. J.T. Hagan: Cone cracks around Vickers indentations in fused silica glass, J. Mater. Sci. 14, 462–466 (1979)CrossRefGoogle Scholar
  46. S. Yoshida, J.C. Sangleboeuf, T. Rouxel: Qualitative evaluation of indentation-induced densification in glass, J. Mater. Res. 20, 3404–3412 (2005)CrossRefGoogle Scholar
  47. T. Rouxel: Driving force for indentation cracking in glass: Composition, pressure, and temperature dependence, Philos. Trans. R. Soc. A 373, 1–26 (2014)Google Scholar
  48. G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel: Poisson's ratio and modern materials, Nat. Mater. 10, 823–837 (2011)CrossRefGoogle Scholar
  49. Y. Kato, H. Yamazaki, Y. Kubo, S. Yoshida, J. Matsuoka, T. Akai: Effect of B2O3 content on crack initiation under Vickers indenter test, J. Ceram. Soc. Japan 118, 792–798 (2010)CrossRefGoogle Scholar
  50. A.J. Ellison, T.M. Gross: Alkaline earth alumino-borosilicate crack resistant glass, US Patent (Application), 8796165 (2014), Assigned to Corning IncorporatedGoogle Scholar
  51. T.M. Gross, R.E. Youngman: Low modulus, damage resistant glass for ultra-thin applications. In: Flexible Glass, ed. by S. Garner (Scrivener, Beverly 2017) pp. 63–83CrossRefGoogle Scholar
  52. A. Zeidler, P.S. Salmon, L.B. Skinner: Packing and the structural transformations in liquid and amorphous oxides from ambient to extreme conditions, Proc. Natl. Acad. Sci. USA 111, 10045–10048 (2014)CrossRefGoogle Scholar
  53. J. Wu, J. Deubener, J.F. Stebbins, L. Grygarova, H. Behrens, L. Wondraczek, Y. Yue: Structural response of a highly viscous aluminoborosilicate melt to isotropic and anisotropic compressions, J. Chem. Phys. 131, 104504-1-10 (2009)Google Scholar
  54. T.M. Gross: Deformation and cracking behavior of glasses indented with diamond tips of various sharpness, J. Non-Cryst. Solids 358, 358–366 (2012)CrossRefGoogle Scholar
  55. V. Le Hourou, J.C. Sangleboeuf, S. Deriano, T. Rouxel, G. Duisit: Sliding indentation fracture of brittle materials: Role of elastic stress fields, Mech. Mater. 29, 143–152 (2003)Google Scholar
  56. T.M. Gross: Scratch damage in ion-exchanged alkali aluminosilicate glass: Crack evolution and the dependence of lateral cracking threshold on contact geometry. In: Fractography of Glasses and Ceramics VI, ed. by J.R. Varner, M. Wightman (Wiley, New Jersey 2012) pp. 113–122CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Corning Inc.Corning, NYUSA

Personalised recommendations