Advertisement

Mid-Infrared Molecular Sensing

  • Angela B. SeddonEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Mid-infrared (MIR) sensing has wide applicability for detecting molecular solids, liquids, solutions and gases. This chapter reviews how guided waves in MIR-transmitting chalcogenide glass fibers, waveguides and resonators are showing promise for compact, portable and real-time molecular sensing with potential use across many sectors, such as in medicine, security, the environment, agriculture, pharmaceuticals and in manufacturing and chemical processing. New bright, MIR supercontinuum laser sources have been demonstrated both in chalcogenide glass fiber and on-chip for wideband MIR molecular sensing. Also, bright rare earth-doped chalcogenide glass fiber photoluminescence () is being harnessed in PL-absorption narrow-band MIR molecular sensing. Many designs of chalcogenide glass sensor heads realized for evanescent field detection of molecules both in fiber and on-chip are described in this chapter. Also, processing of chalcogenide glasses pertinent to application in MIR molecular sensing devices is presented. The necessary background to MIR optical sensing is given, showing how it can be quantitative, of high contrast, fast and with high sensitivity and specificity. The data processing required to interpret MIR molecular sensing is briefly discussed.

References

  1. W. Herschel: Experiments on the refrangibility of the invisible rays of the sun, Philos. Trans. R. Soc. Lond. 90, 284–292 (1800)CrossRefGoogle Scholar
  2. BSI ISO 20473:2007: Optics and photonics. Spectral bands (BSI, ISO Geneva 2007) checked 2015, BSI. p. 10Google Scholar
  3. J.H. Savage: Infrared Optical Materials and Their Antireflection Coatings (Adam Hilger, Bristol 1985), Fig. 1.1. p. 2Google Scholar
  4. A.B. Seddon: Biomedical applications in probing deep tissue using mid-infrared (MIR) supercontinuum optical biopsy. In: Deep Imaging in Tissue and Tissue-Like Media with Linear and Nonlinear Optics, ed. by R.R. Alfano, L. Shi (Pan Stanford, New York 2017)Google Scholar
  5. P.W. France, M.G. Drexhage, J.M. Parker, M.W. Moore, S.F. Carter, J.V. Wright: Fluoride Glass Optical Fibres (Blackie, London 1990)CrossRefGoogle Scholar
  6. J. Shephard, W. MacPherson, R. Maier, J. Jones, D. Hand, M. Mohebbi, A. George, P. Roberts, J. Knight: Single-mode mid-IR guidance in a hollow-core photonic crystal fibre, Opt. Express 13(18), 7139–7144 (2005)CrossRefGoogle Scholar
  7. J.S. Sanghera, L.B. Shaw, L.E. Busse, V.Q. Nguyen, P.C. Pureza, B.C. Cole, B.B. Harbison, I.D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, R. Miklos: Development and infrared applications of chalcogenide glass optical fibres, Fibre Integr. Opt. 19(3), 251–274 (2000)CrossRefGoogle Scholar
  8. J.S. Sanghera, L.B. Shaw, I.D. Aggarwal: Chalcogenide glass-fiber-based mid-IR sources and applications, IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009)CrossRefGoogle Scholar
  9. A.B. Seddon: Chalcogenide glasses: A review of their preparation, properties and applications, J. Non-Cryst. Solids 184, 44–50 (1995)CrossRefGoogle Scholar
  10. D. Lezal: Chalcogenide Glasses – Survey and Progress, Optoelectron. Adv. Mater. 5, 23–34 (2003)Google Scholar
  11. M.J. Pilling, A. Henderson, B. Bird, M.D. Brown, N.W. Clark, P. Gardner: High-throughput quantum cascade laser (QCL) spectral histopathology: A practical approach towards clinical translation, Faraday Discuss. 187, 135–154 (2016)CrossRefGoogle Scholar
  12. C.R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T.M. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A.B. Seddon, O. Bang: Mid-infrared supercontinuum covering 1.4–13.3 \({\upmu}\)m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nat. Photonics 8, 830–834 (2014)CrossRefGoogle Scholar
  13. G. Steinmeyer, J.S. Skibina: Entering the mid-infrared: The demonstration of chalcogenide fiber-based supercontinuum sources that reach beyond a wavelength of ten micrometres is set to have a major impact on spectroscopy and molecular sensing, Nat. Photonics 8, 814–815 (2014)CrossRefGoogle Scholar
  14. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies: High brightness 2.2–12 \({\upmu}\)m mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber, J. Am. Ceram. Soc. 99(8), 2565–2568 (2016)CrossRefGoogle Scholar
  15. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S.J. Madden, B. Luther-Davies: A broadband, quasi-continuous, MIR supercontinuum generated in a chalcogenide glass waveguide, Laser Photonics Rev. 8(5), 792–798 (2014)CrossRefGoogle Scholar
  16. F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, V. Nazabal: Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers, Sens. Actuators B 207, 518–525 (2015)CrossRefGoogle Scholar
  17. J. Schneider: Fluoride fiber laser operating at 3.9 \({\upmu}\)m, Electron. Lett. 31(15), 1250–1251 (1995)CrossRefGoogle Scholar
  18. L. Sojka, Z. Tang, D. Furniss, H. Sakr, Y. Fang, E. Beres-Pawlik, T.M. Benson, A.B. Seddon, S. Sujecki: Mid-infrared emission in Tb3+-doped selenide glass fiber, J. Opt. Soc. Am. B 34(3), A70–A79 (2017)CrossRefGoogle Scholar
  19. A.B. Seddon, Z. Tang, D. Furniss, S. Sujecki, T.M. Benson: Progress in rare-earth-doped mid-infrared fiber lasers, Opt. Express 18(25), 26704–26719 (2010)CrossRefGoogle Scholar
  20. N. Jayakrupakar, G.R. Lloyd, N. Shepherd, N. Stone: High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features, Analyst 141, 630–639 (2016)CrossRefGoogle Scholar
  21. A.B. Seddon: A prospective for new mid-infrared medical endoscopy using chalcogenide glasses, Int. J. Appl. Glass Sci. 2(3), 177–191 (2011)CrossRefGoogle Scholar
  22. A.B. Seddon: Mid-infrared (IR) – A hot topic, the potential for using mid-IR light for non-invasive, early detection of skin cancers in vivo, Phys. Status Solidi (b) 250(5), 1020–1027 (2013)CrossRefGoogle Scholar
  23. R. Li, D. Furniss, H. Bagshaw, A.B. Seddon: The decisive role of oxide content on the formation and crystallization of gallium-lanthanum-sulphide glasses, J. Mater. Res. 14(6), 1–6 (1999)Google Scholar
  24. J.-L. Adam, X. Zhang (Eds.): Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead, Oxford 2013)Google Scholar
  25. J. Sanghera, I. Aggarwal (Eds.): Infrared Fiber Optics (CRC, Boca Raton 1998)Google Scholar
  26. G.E. Snopatin, V.S. Shiryaev, V.G. Plotnichenko, E.M. Dianov, M.F. Churbanov: High-purity chalcogenide glasses for fiber optics, Inorg. Mater. 45(13), 1439–1460 (2009)CrossRefGoogle Scholar
  27. A.B. Seddon, S.N.B. Hodgson, M.G. Scott: Sol-gel approach to preparing germanium disulphide, J. Mater. Sci. 26, 2599–2602 (1991)CrossRefGoogle Scholar
  28. C.C. Huang, D.W. Hewak, J.V. Badding: Deposition and characterization of germanium sulphide glass planar waveguides, Opt. Express 12(11), 2501–2506 (2004)CrossRefGoogle Scholar
  29. Y. Zha, P.T. Lin, L. Kimerling, A. Agarwal, C.B. Arnold: Inverted-rib chalcogenide waveguides by solution process, ACS Photonics 1, 153–157 (2014)CrossRefGoogle Scholar
  30. N. Prasad, D. Furniss, H.L. Rowe, C.A. Miller, D.H. Gregory, A.B. Seddon: First time microwave synthesis of As40Se60 chalcogenide glass, J. Non-Cryst. Solids 356(41/42), 2134–2145 (2010)CrossRefGoogle Scholar
  31. L.A. Mochalov, A.S. Lobanov, A.V. Nezhdanov, A.I. Mashin, M.A. Kudryashov, A.V. Strikovskiy, A.V. Kostrov, A.V. Vorotyntsev, V.M. Vorotyntsev: Influence of the preparation technique on the optical properties and content of heterophase inclusions of As2S3 chalcogenide glasses, Opt. Mater. Express 6(11), 3507–3517 (2016)CrossRefGoogle Scholar
  32. H. Rawson: Properties and Applications of Glass (Elsevier, Amsterdam 1980)Google Scholar
  33. D. Furniss, A.B. Seddon: Thermal analysis of inorganic compound glasses and glass-ceramics. In: Principles and Applications of Thermal Analysis, ed. by P. Gabbott (Blackwells, Oxford 2007)Google Scholar
  34. S.D. Savage, C.A. Miller, D. Furniss, A.B. Seddon: Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers, J. Non-Cryst. Solids 354(29), 3418–3427 (2008)CrossRefGoogle Scholar
  35. C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Trole, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J.-L. Adam, J. Lucas: Chalcogenide step index and microstructured single mode fibers, J. Non-Cryst. Solids 357, 2480–2483 (2011)CrossRefGoogle Scholar
  36. T. Miya, Y. Terunuma, T. Hosaka, T. Mujashita: Ultimate low loss single mode fiber at 1.55 \({\upmu}\)m, Electron. Lett. 15(4), 106–108 (1979)CrossRefGoogle Scholar
  37. J.S. Sanghera, V.Q. Nguyen, P.C. Pureza, R.E. Milos, F.H. Kung, I.D. Aggarwal: Fabrication of long lengths of low loss transmitting As40S60−xSex glass fibers, J. Lightwave Technol. 14(5), 743–748 (1996)CrossRefGoogle Scholar
  38. M.S. Makiad, R.K. Mohr, R.E. Howard, P.B. Macedo, C.T. Moynihan: Multiphonon absorption in As2S3-As2Se3 glasses, Solid State Commun. 15, 855–858 (1974)CrossRefGoogle Scholar
  39. G.E. Snopatin, M.F. Churbanov, A.A. Pushkin, V.V. Gerasimenko, E.M. Dianov, V.G. Plotnichenko: High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km, Optoelectron. Adv. Mater. 3(7), 669–671 (2009)Google Scholar
  40. Z. Tang, V.S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T.M. Benson, A.B. Seddon, M.F. Churbanov: Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics, Opt. Mater. Express 5(8), 1722–1737 (2015)CrossRefGoogle Scholar
  41. G.G. Devyatykh, E.M. Dianov, V.G. Plotnichenko, I.V. Skripachev, M.F. Churbanov: Fiber waveguides based on high purity glasses, High Purity Subst. 5, 1–27 (1991)Google Scholar
  42. J. Troles, V. Shriyaev, M.F. Churbanov, P. Houizot, L. Brilland, F. Désévêdavy, F. Charpentier, T. Pain, G. Snopatin, J.-L. Adam: GeSe4 glass fibers with low optical losses in the mid-IR, Opt. Mater. 32(1), 212–215 (2009)CrossRefGoogle Scholar
  43. V.S. Shiryaev, J.-L. Adam, X.H. Zhang, C. Boussard-Plédel, J. Lucas, M.F. Churbanov: Infrared fibers based on Te-As-Se glass system with low optical losses, J. Non-Cryst. Solids 336(2), 113–119 (2004)CrossRefGoogle Scholar
  44. F. Désévêdavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, J.-L. Adam: Small-core chalcogenide microstructure fibers for the infrared, Appl. Opt. 47(32), 6014–6021 (2008)CrossRefGoogle Scholar
  45. M.F. Churbanov, V.S. Shiryaev, A.I. Suchkov, A.A. Pushkin, V.V. Gerasimenko, R.M. Shaposhnikov, E.M. Dianov, V.G. Plotnichenko, V.V. Koltashev, Y.N. Pyrkov, J. Lucas, J.-L. Adam: High-purity As-S-Se and As-Se-Te glasses and optical fibers, Inorg. Mater. 43(4), 441–447 (2007)CrossRefGoogle Scholar
  46. J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Désévêdavy, P. Houizot: Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single mode fiber at 1.55 \({\upmu}\)m, Mater. Res. Bull. 43(4), 976–982 (2008)CrossRefGoogle Scholar
  47. S. Sanghera, V.Q. Nguyen, P.C. Pureza, F.H. Kung, R. Miklos, I.D. Aggarwal: Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers, J. Lightwave Technol. 12(5), 737–741 (1994)CrossRefGoogle Scholar
  48. A.B. Seddon, N.S. Abdel-Moneim, L. Zhang, W.J. Pan, D. Furniss, C.J. Mellor, T. Kohoutek, J. Orava, T. Wagner, T.M. Benson: MIR integrated optics: Versatile hot embossing of MIR glasses for on-chip planar waveguides for molecular sensing, Opt. Eng. 53(7), 0718241–0718249 (2014),  https://doi.org/10.1117/1.OE.53.7.071824CrossRefGoogle Scholar
  49. R. Todorov, K. Petkov: Light induced changes in the optical properties of thin As–S–Ge(Bi,Tl) films, J. Optoelectron. Adv. Mater. 3(12), 311–317 (2001)Google Scholar
  50. V.K. Tikhomirov, D. Furniss, A.B. Seddon, J.A. Savage, P.D. Mason, D.A. Orchard, K.L. Lewis: Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibers, Infrared Phys. Technol. 45, 115–123 (2004)CrossRefGoogle Scholar
  51. H.G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A.B. Seddon, I. Kubat, O. Bang, T.M. Benson: Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation, Opt. Mater. Express 4(7), 1444–1455 (2014)CrossRefGoogle Scholar
  52. I. Kubat, C.S. Agger, U. Møller, A.B. Seddon, Z.Q. Tang, S. Sujecki, T.M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P.M. Moselund, O. Bang: Mid-infrared supercontinuum generation to 12.5 \({\upmu}\)m in large NA chalcogenide step-index fibers pumped at 4.5 \({\upmu}\)m, Opt. Express 22(16), 19169–19182 (2014)CrossRefGoogle Scholar
  53. A. Zackery, S.R. Elliott: Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences, Vol. 135 (Springer, New York 2007)Google Scholar
  54. D. Eiseberg, W. Kauzmann: Structure and Properties of Water (Oxford Univ. Press, London 1969) p. 7Google Scholar
  55. C.N. Banwell: Fundamentals of Molecular Spectroscopy (McGraw-Hill, London 1966)Google Scholar
  56. M.J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H.J. Butler, K.M. Dorling, P.R. Fielden, S.W. Fogarty, N.J. Fullwood, K.A. Heys, C. Hughes, P. Lasch, P.L. Martin-Hirsch, B. Obinaju, G.D. Sockalingum, J. Sulé-Suso, R.J. Strong, M.J. Walsh, B.R. Wood, P. Gardner, F.L. Martin: Using Fourier transform IR spectroscopy to analyze biological materials, Nat. Protoc. 9(8), 1771–1791 (2014)CrossRefGoogle Scholar
  57. A.G. Lalkhen, A. McCluskey: Clinical tests: Sensitivity and specificity, Continuing Educ. Anaesth. Crit. Care Pain 8(6), 221–223 (2008)CrossRefGoogle Scholar
  58. D.G. Altman, J.M. Bland: Diagnostic tests 1: Sensitivity and specificity, BMJ 308, 1552 (1994)CrossRefGoogle Scholar
  59. Y.-C. Chang, P. Wagli, V. Paeder, A. Homsy, L. Hvozdara, P. Van der Wal, J. Di Francesco, N.F. de Rooij, H.P. Herzig: Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip, Lab Chip 12, 3020–3023 (2012)CrossRefGoogle Scholar
  60. C.K.N. Patel: www.pranalytica.com (accessed September 2016)
  61. C.K.N. Patel: Recent progress in MWIR and LWIR quantum cascade lasers. In: SPIE Secur. Def. Edinburgh 2016, ed. by D. Titterton (SPIE, Bellingham 2016)Google Scholar
  62. AUTHOR: www.daylightsolutions.com (accessed September 2016)
  63. B. Guo, Y. Wang, C. Peng, H.L. Zhang, G.P. Luo, H.Q. Le, C. Gmachl, D.L. Sivco, M.L. Peabody, A.Y. Cho: Laser-based mid-infrared reflectance imaging of biological tissues, Opt. Express 12(1), 208–218 (2004)CrossRefGoogle Scholar
  64. J.S. Sanghera, I.D. Aggarwal, L.B. Shaw, L.E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, F. Kung: Application of chalcogenide glass optical fibers at NRL, J. Optoelectron. Adv. Mater. 3(3), 627–640 (2001)Google Scholar
  65. G.S. Athanasiou, J. Ernst, D. Furniss, T.M. Benson, J. Chauhan, J. Middleton, C. Parmenter, M. Fay, N. Neate, V. Shiryaev, M.F. Churbanov, A.B. Seddon: Toward mid-infrared, subdiffraction, spectral-mapping of human cells and tissue: SNIM (Scanning Near-Field Infrared Microscopy), J. Lightwave Technol. 34(4), 1212–1219 (2016)CrossRefGoogle Scholar
  66. P.J. Melling: Announcement at ISNOG (International Symposium on Non-Oxide Glasses and New Optical Glasses), early 1990sGoogle Scholar
  67. P.J. Melling: Fiber-optic probes for mid-infrared spectrometry. In: Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, Chichester 2002)Google Scholar
  68. J.R. Berard, R.J. Burger, P.J. Melling, W.R. Moser: Optical fiber coupled devices for remote spectroscopy in the infrared, US Patent 5170056 (1992)Google Scholar
  69. P. Lucas, M.R. Riley, C. Boussard-Plédel, B. Bureau: Review: Advances in chalcogenide fiber evanescent wave biochemical sensing, Anal. Biochem. 351, 1–10 (2006)CrossRefGoogle Scholar
  70. P. Lucas, M.A. Solis, D. Le Coq, C. Juncker, M.R. Riley, J. Collier, D.E. Boesewetter, C. Boussard-Plédel, B. Bureau: Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells, Sens. Actuators B 119, 355–362 (2006)CrossRefGoogle Scholar
  71. P. Lucas, A.A. Wilhelm, M. Videa, C. Boussard-Plédel, B. Bureau: Chemical stability of chalcogenide infrared glass fibers, Corros. Sci. 50, 2047–2052 (2008)CrossRefGoogle Scholar
  72. P. Houizot, M.-L. Anne, C. Boussard-Plédel, O. Loréal, H. Tariel, J. Lucas, B. Bureau: Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing, Sensors 14, 17905–17914 (2014)CrossRefGoogle Scholar
  73. J.-D. Albert, V. Monbet, A. Jolivet-Gougeon, N. Fatih, M. Le Corvec, M. Seck, F. Charpentier, G. Coiffier, C. Boussard-Plédel, B. Bureau, P. Guggenbuhl, O. Loréal: A novel method for a fast diagnosis of septic arthritis using mid infrared and deported spectroscopy, Joint Bone Spine 83, 318–323 (2016)CrossRefGoogle Scholar
  74. M. LeCorvec, F. Charpentier, A. Kachenoura, S. Bensaid, S. Henno, E. Bardou-Jacquet, B. Turlin, V. Monbet, L. Senhadji, O. Loréal, O. Sire, J.F. Betagne, H. Tariel, F. Lainé: Fast and non-invasive medical diagnostic using mid infrared sensor: The AMNIFIR Project, IRBM 37, 116–123 (2016)CrossRefGoogle Scholar
  75. M.L. Anne, E. Le Gal La Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H.L. Ma, X.H. Zhang, J.-L. Adam: Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy, Sens. Actuators B 137, 687–691 (2009)CrossRefGoogle Scholar
  76. F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. Michel-Le Pierrès, F. Smektala, J.-L. Adam: Infrared monitoring of underground CO2 storage using chalcogenide glass fibers, Opt. Mater. 31, 496–500 (2009)CrossRefGoogle Scholar
  77. Z. Tang, D. Furniss, M. Fay, H. Sakr, Ł. Sójka, N. Neate, N. Weston, S. Sujecki, T.M. Benson, A.B. Seddon: Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass, Opt. Mater. Express 5(4), 870–886 (2015)CrossRefGoogle Scholar
  78. H. Sakr, D. Furniss, Z. Tang, Ł. Sójka, N.A. Moneim, E. Barney, T.M. Benson, A.B. Seddon: Superior photoluminescence (PL) of Pr3+-In compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber, Opt. Express 22(18), 21236–21252 (2014)CrossRefGoogle Scholar
  79. Ł. Sójka, Z.Q. Tang, D. Furniss, H. Sakr, Y. Fang, E. Beres-Pawlick, T.M. Benson, A.B. Seddon, S. Sujecki: Mid-infrared emission in Tb3+-doped selenide glass fiber, J. Opt. Soc. Am. B 34(3), A70–A79 (2017)CrossRefGoogle Scholar
  80. A.B. Seddon, D. Furniss, Z.Q. Tang, Ł. Sójka, T.M. Benson, R. Caspary, S. Sujecki: True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass. In: Proc. 18th IEEE Int. Conf. Transpar. Opt. Netw. (2016),  https://doi.org/10.1109/ICTON.2016.7550709CrossRefGoogle Scholar
  81. F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, V. Nazabal: IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems, Int. J. Greenh. Gas Control 55, 36–41 (2016)CrossRefGoogle Scholar
  82. R. Chahala, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, V. Nazabal: Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers, Sens. Actuators B 229, 209–216 (2016)CrossRefGoogle Scholar
  83. R.R. Alfano, S.L. Shapiro: Emission in the region 4000 to 7000 Å via four-photon coupling in glass, Phys. Rev. Lett. 24, 584–587 (1970)CrossRefGoogle Scholar
  84. P.S.J. Russell: Photonic-crystal fibers, J. Lightwave Technol. 24(12), 4729–4749 (2006)CrossRefGoogle Scholar
  85. L.B. Shaw, R.R. Gattass, J. Sanghera, I. Aggarwal: All fiber mid-IR supercontinuum source from 1.5 to 5 \({\upmu}\)m, Proc. SPIE 7924, 24 (2011)Google Scholar
  86. C. Agger, I. Kubat, U. Møller, P.M. Moselund, C.R. Petersen, B. Napier, A.B. Seddon, S. Sujecki, T.M. Benson, M. Farries, J. Ward, S. Lamrini, K. Scholle, P. Fuhrberg, O. Bang: Numerical demonstration of 3–12 \({\upmu}\)m supercontinuum generation in large-core step-index chalcogenide fibers pumped at 4.5 \({\upmu}\)m, Nonlinear Opt. (2013),  https://doi.org/10.1364/NLO.2013.NW4A.09CrossRefGoogle Scholar
  87. Amorphous Materials Inc.: Chalcogenide glasses, http://www.amorphousmaterials.com/products/ (accessed 2017)
  88. Personal communication from J.S. Sanghera (2006)Google Scholar
  89. J.-P. Guin, T. Rouxel, J.-C. Sangleboeuf: Hardness, toughness and scratchability of germanium-selenium chalcogenide glasses, J. Am. Ceram. Soc. 85(6), 1545–1552 (2002)CrossRefGoogle Scholar
  90. P. Toupin, L. Brilland, D. Méchin, J.-L. Adam, J. Troles: Optical aging of chalcogenide microstructured optical fibers, J. Lightwave Technol. 32(13), 2428–2432 (2014)CrossRefGoogle Scholar
  91. Z.G. Lian, Q.Q. Li, D. Furniss, T.M. Benson, A.B. Seddon: Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions, IEEE Photonics Lett. 21(24), 1804–1806 (2009)CrossRefGoogle Scholar
  92. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.Y. Choi, S. Madden, B. Luther-Davies: 1.8–10 \({\upmu}\)m mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power, Opt. Lett. 40(6), 1081–1084 (2015)CrossRefGoogle Scholar
  93. U. Møller, Y. Yu, I. Kubat, C.R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, O. Bang: Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber, Opt. Express 23(3), 3282–3291 (2015)CrossRefGoogle Scholar
  94. R.R. Gattass, B.L. Shaw, V.Q. Nguyen, P.C. Pureza, I.D. Aggarwal, J.S. Sanghera: All-fiber chalcogenide-based mid-infrared supercontinuum source, Opt. Fiber Technol. 18, 345–348 (2012)CrossRefGoogle Scholar
  95. A.B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P.M. Moselund, N. Stone, O. Bang: Mid-infrared spectroscopy/bioimaging: Moving toward MIR optical biopsy, Laser Focus World 52(2), 50–53 (2016)Google Scholar
  96. A.B. Seddon: Mid-infrared (MIR) Photonics: MIR passive and active fiberoptics for chemical and biomedical, sensing and imaging. In: SPIE Secur. Def. Edinburgh (SPIE, Bellingham 2016)Google Scholar
  97. European Commission: MINERVA: MId- to NEaR-infrared spectroscopy for improVed medical diAgnostics, (317803, www.minerva-project.eu) (2017)
  98. NKT Photonics: www.nktphotonics.com
  99. Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L.C. Kimerling, D.T.H. Tan, A. Agarwal: On-chip chalcogenide glass waveguide-integrated MIR PbTe detectors, Appl. Phys. Lett. 109, 071111–071113 (2016)CrossRefGoogle Scholar
  100. Z. Han, P. Lin, V. Singh, L. Kimerling, K. Richardson, A. Agarwal, D.T.H. Tan: On-chip MIR gas detection using chalcogenide glass waveguide, Appl. Phys. Lett. 108, 141106.1–141106.3 (2016)Google Scholar
  101. HITRAN (high-resolution transmission molecular absorption) database: HITRAN online, 2016 edition, hitran.orgGoogle Scholar
  102. D.R.J. Boyd, H.W. Thompson, R.L. Williams: Vibration-rotation bands of methane, Proc. R. Soc. Lond. A 213, 42–54 (1952)CrossRefGoogle Scholar
  103. NIST: IR for infrared transmittance spectrum of CH4, https://webbook.nist.gov/cgi/cbook.cgi?ID=C74828&Type=IR-SPEC&Index=1 (1 Jan 2016)
  104. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies: Low-loss chalcogenide waveguides for chemical sensing in the MIR, Opt. Express 21(24), 029927–029937 (2013)CrossRefGoogle Scholar
  105. E. Baudet, A. Guttierez-Arroyo, M. Bailleul, P. Nemec, J. Charrier, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, F. Colas, B. Bureau, V. Nazabal: Chalcogenide waveguide for sensing applications in the MIR. In: Adv. Photonics 2017, Vol. ITh1A.6 (2017)Google Scholar
  106. J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, V. Nazabal: Evanescent wave optical microsensor based on chalcogenide glass, Sens. Actuators B 173, 468–476 (2012)CrossRefGoogle Scholar
  107. A. Gassenq, N. Hattasan, L. Cerutti, J.B. Rodriguez, E. Tournié, G. Roelkens: Study of evanescently-coupled and grating assisted GaInAsSb photodiodes integrated on a silicon photonic chip, Opt. Express 20(11), 11665–11672 (2012)CrossRefGoogle Scholar
  108. V. Singh, T. Zens, J. Hu, J. Wang, J.D. Musgraves, K. Richardson, L.C. Kimerling, A. Agarwal: Evanescently coupled MIR for integrated sensing applications: Theory and design, Sens. Actuators B 185, 195–200 (2013)CrossRefGoogle Scholar
  109. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, R. Thomson: Three dimensional MIR photonic circuits in chalcogenide glass, Opt. Lett. 37(3), 392–394 (2012)CrossRefGoogle Scholar
  110. C. Tsay, E. Mujagic, C.K. Madsen, C.F. Gmachl, C.B. Arnold: Mid-infrared characterization of solution-processed As2Se3 chalcogenide glass waveguides, Opt. Express 18(15), 15523–15529 (2010)CrossRefGoogle Scholar
  111. C. Vigreux, M.V. Thi, G. Maulion, R. Kribich, M. Barillot, V. Kirschner, A. Pradel: Wide-range transmitting chalcogenide films and development of micro-components for infrared integrated optics applications, Opt. Mater. Express 4(8), 1618–1631 (2014)CrossRefGoogle Scholar
  112. N. Adel-Moneim: Fabrication of Planar Optical Components in Chalcogenide Glasses, Ph.D. Thesis (University of Nottingham, Nottingham 2013)Google Scholar
  113. T. Han, S. Madden, S. Debbarma, B. Luther-Davies: Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating, Opt. Express 19(25), 25447–25453 (2011)CrossRefGoogle Scholar
  114. W.J. Pan, H. Rowe, D. Zhang, Y. Zhang, A. Loni, D. Furniss, P. Sewell, T.M. Benson, A.B. Seddon: One-step hot embossing of optical rib waveguides in chalcogenide glasses, Microw. Opt. Technol. Lett. 50(7), 1961–1963 (2008)CrossRefGoogle Scholar
  115. Z.G. Lian, W.J. Pan, D. Furniss, T.M. Benson, A.B. Seddon, T. Kohoutek, J. Orava, T. Wagner: Embossing of chalcogenide glasses: Monomode rib optical waveguides in evaporated thin films, Opt. Lett. 34(8), 1234–1236 (2009)CrossRefGoogle Scholar
  116. N.S. Abdel-Moneim, C.J. Mellor, T.M. Benson, A.B. Seddon, D. Furniss: Fabrication of stable, low optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip, Opt. Quantum. Electron. 47, 351–361 (2015)CrossRefGoogle Scholar
  117. M.R. Karim, B.M.A. Rahman, G.P. Agrawal: MIR supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide, Opt. Express 23(5), 6903–6914 (2015)CrossRefGoogle Scholar
  118. K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson: Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors, J. Nonlinear Opt. Phys. 19(01), 75–99 (2010)CrossRefGoogle Scholar
  119. V. Singh, P.T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A.P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J.D. Musgraves, K. Richardson, L.C. Kimerling, A. Agarwal: Review- mid-infrared materials and devices on a Si platform for optical sensing, Sci. Technol. Adv. Mater. 15, 014603–014618 (2014)CrossRefGoogle Scholar
  120. V. Singh: Chalcogenide Glass Materials for Integrated Infrared Photonics, Ph.D. Thesis (MIT, Boston 2015)Google Scholar
  121. H. Lin, L. Li, Y. Zou, S. Danto, J.D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P.T. Lin, V. Singh, A. Agarwal, L.C. Kimerling, J. Hu: Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators, Opt. Lett. 39, 1470–1472 (2013)CrossRefGoogle Scholar
  122. P. Ma, D.-Y. Choi, Y. Yu, Z. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, S. Madden: High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing, Opt. Express 23(15), 19969–19979 (2015)CrossRefGoogle Scholar
  123. S.A. Miller, M. Yu, X. Ji, A.G. Griffith, J. Cardenas, A.L. Gaeta, M. Lipson: Low-loss silicon platform for broadband mid-infrared photonics, Optica 4(7), 707–712 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mid-Infrared Photonics Group, George Green Institute for Electromagnetics ResearchUniversity of NottinghamNottinghamUK

Personalised recommendations