Scintillator Glasses

  • Russell Lee LeonardEmail author
  • Jacqueline A. Johnson
Part of the Springer Handbooks book series (SHB)


Glasses can be an attractive option for many scintillator applications, due to their unique properties. This chapter introduces the reader to scintillator glasses and examines the basic advantages and disadvantages of glasses in comparison to other scintillator materials. Considerations for the synthesis of optimized scintillator glasses are presented, with an emphasis on compositional effects, including the use of optically active dopants and enriched materials. Basic characterization of glasses is detailed with respect to the scintillation process. Applications for scintillator glasses as they relate to specific forms of ionizing radiation, including \(\upalpha\) and \(\upbeta\) particles, electron beams, x-ray and \(\upgamma\) radiation, and neutrons, are discussed; the versatility of scintillator glasses is demonstrated by a number of diverse applications including radiation detection, radiography, scanning electron microscopy, and neutron diffraction. The chapter concludes with an outlook on the future of scintillator glasses.



The authors thank Drs. A.R. Lubinsky and Charles E. Johnson for their thoughtful comments.


  1. G. Zanella, R. Zannoni: Absolute light yield of plastic scintillators and cerium scintillating glasses under low energy X-ray excitation, Nucl. Instrum. Methods Phys. Res. A 302, 352–354 (1991)CrossRefGoogle Scholar
  2. J.A. Johnson, R.L. Leonard, C. Alvarez, B. Barta, S. Schweizerd: Glass–ceramic scintillator. In: Nanocomposite, Ceramic and Thin Film Scintillators (Pan Stanford, Singapore 2016) pp. 79–106Google Scholar
  3. M.B. Barta, J.H. Nadler, Z. Kang, B.K. Wagner, R. Rosson, Y. Cai, K.H. Sandhage, B. Kahn: Composition optimization of scintillating rare-earth nanocrystals in oxide glass–ceramics for radiation spectroscopy, Appl. Opt. 53, D21–D28 (2014)CrossRefGoogle Scholar
  4. G.C. Rich, K. Kazkaz, H.P. Martinez, T. Gushue: Fabrication and characterization of a lithium-glass-based composite neutron detector, Nucl. Instrum. Methods Phys. Res. A 794, 15–24 (2015)CrossRefGoogle Scholar
  5. I. Shestakova, E. Ovechkina, V. Gaysinskiy, J.J. Antal, L. Bobek, V. Nagarkar: A high spatial resolution sensor for thermal neutron imaging, IEEE Trans. Nucl. Sci. 54, 1797–1800 (2007)CrossRefGoogle Scholar
  6. M. Koshimizu, K. Iwamatsu, M. Taguchi, S. Kurashima, A. Kimura, T. Yanagida, Y. Fujimoto, K. Watanabe, K. Asai: Influence of linear energy transfer on the scintillation decay behavior in a lithium glass scintillator, J. Luminesc. 169, 678–681 (2016)CrossRefGoogle Scholar
  7. T. Yanagida: Ionizing radiation induced emission: Scintillation and storage-type luminescence, J. Luminesc. 169, 544–548 (2016)CrossRefGoogle Scholar
  8. J. Iwanowska, L. Swiderski, M. Moszynski: Liquid scintillators and composites in fast neutron detection, J. Instrum. 7, C04004 (2012)CrossRefGoogle Scholar
  9. S. Jia, L. Huang, D. Ma, Z. Tai, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, Q. Yang, S. Xu: Luminescence properties of Tb3+-doped oxyfluoride scintillating glasses, J. Luminesc. 152, 241–243 (2014)CrossRefGoogle Scholar
  10. A.C. Stephan, S. Dai, S.A. Wallace, L.F. Miller: Modelling of composite neutron scintillators, Radiat. Prot. Dosim. 116, 165–169 (2005)CrossRefGoogle Scholar
  11. J.C. McComb, M.A. Coplan, M. Al-Sheikhly, A.K. Thompson, R.E. Vest, C.W. Clark: Noble gas excimer scintillation following neutron capture in boron thin films, J. Appl. Phys. 115, 144504 (2014)CrossRefGoogle Scholar
  12. R.T. Kouzes, A.T. Lintereur, E.R. Siciliano: Progress in alternative neutron detection to address the helium-3 shortage, Nucl. Instrum. Methods Phys. Res. A 784, 172–175 (2015)CrossRefGoogle Scholar
  13. M. Nikl, A. Yoshikawa: Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection, Adv. Opt. Mater. 3, 463–481 (2015)CrossRefGoogle Scholar
  14. R.C. Haight, H.Y. Lee, T.N. Taddeucci, J.M.O. Donnell, B.A. Perdue, N. Fotiades, M. Devlin, J.L. Ullmann, A. Laptev, T. Bredeweg, M. Jandel, R.O. Nelson, S.A. Wender, M.C. White, C.Y. Wu, E. Kwan, A. Chyzh, R. Henderson, J. Gostic: Two detector arrays for fast neutrons at LANSCE, J. Instrum. 7, C03028 (2012)Google Scholar
  15. M. Nikl: Scintillation detectors for x-rays, Meas. Sci. Technol. 17, R37 (2006)CrossRefGoogle Scholar
  16. G. Blasse: Luminescence and scintillation mechanisms in inorganic scintillators. In: Heavy Scintillators for Scientfic and Industrial Applications, ed. by F.L. Notaristerfani, M. Schneegans (Editions Frontières, Gif-sur-Yvette 1993)Google Scholar
  17. G. Blasse, B.C. Grabmaier: X-ray phosphors and scintillators (counting techniques). In: Luminescent Materials (Springer, Berlin 1994) pp. 170–194CrossRefGoogle Scholar
  18. G. Blasse, B.C. Grabmaier: X-ray phosphors and scintillators (integrating techniques). In: Luminescent Materials (Springer, Berlin, Heidelberg 1994) pp. 146–169CrossRefGoogle Scholar
  19. A. Lempicki, A.J. Wojtowicz, E. Berman: Fundamental limits of scintillator performance, Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993)CrossRefGoogle Scholar
  20. D.J. Robbins: On predicting the maximum efficiency of phosphor systems excited by ionizing-radiation, J. Electrochem. Soc. 127, 2694–2702 (1980)CrossRefGoogle Scholar
  21. P.A. Rodnyi, P. Dorenbos, C.W.E. Vaneijk: Energy-loss in inorganic scintillators, Phys. Status Solidi (b) 187, 15–29 (1995)CrossRefGoogle Scholar
  22. A.J. Wojtowicz: Rare-earth-activated wide bandgap materials for scintillators, Nucl. Instrum. Methods Phys. Res. A 486, 201–207 (2002)CrossRefGoogle Scholar
  23. G. Blasse, B.C. Grabmaier: How does a luminescent material absorb its excitation energy? In: Luminescent Materials (Springer, Berlin 1994) pp. 10–32CrossRefGoogle Scholar
  24. P. Dorenbos, R. Visser, J. Andriessen, C.W.E. van Eijk, J. Valbis, N.M. Khaidukov: Scintillation properties of possible cross-luminescence materials, Nucl. Tracks Radiat. Meas. 21, 101–103 (1993)CrossRefGoogle Scholar
  25. J.A. Rowlands: The physics of computed radiography, Phys. Medic. Biol. 47, R123–R166 (2002)CrossRefGoogle Scholar
  26. A. Pradhan, J. Lee, J. Kim: Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications, J. Medic. Phys. 33, 85–99 (2008)CrossRefGoogle Scholar
  27. L. Swiderski, M. Moszynski, D. Wolski, J. Iwanowska, T. Szczesniak, G. Pausch, C. Plettner, J. Stein, P. Schotanus, C. Hurlbut, J. Szabelski: Comparison of neutron detection efficiency of a He-3 counter and a boron-10 loaded liquid scintillator, IEEE Trans. Nucl. Sci. 57, 2857–2861 (2010)CrossRefGoogle Scholar
  28. E. Auffray, D. Bouttet, I. Dafinei, J. Fay, P. Lecoq, J.A. Mares, M. Martini, G. Mazé, F. Meinardi, B. Moine, M. Nikl, C. Pedrini, M. Poulain, M. Schneegans, S. Tavernier, A. Vedda: Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry, Nucl. Instrum. Methods Phys. Res. A 380, 524–536 (1996)CrossRefGoogle Scholar
  29. A. Correia, S. Chiquita, N.S. Hussain, R. Pirraco, C.C. Rosa: A multi-sensor dosimeter for brachytherapy based on radioluminescent fiber sensors, Proc. SPIE 8794, 87941S (2013)CrossRefGoogle Scholar
  30. G.B. Spector, T. McCollum, A.R. Spowart: Scintillator fiber optic long counter for neutron detection, Nucl. Instrum. Methods Phys. Res. A 309, 303–317 (1991)CrossRefGoogle Scholar
  31. D.A. Mulford, D.A. Scheinberg, J.G. Jurcic: The promise of targeted [alpha]-particle therapy, J. Nucl. Med. 46(1), 199S–204S (2005)Google Scholar
  32. S. Baccaro, A. Cecilia, A. Cemmi, G. Chen, E. Mihokova, M. Nikl: Optical characterization under irradiation of Ce3+(Tb3+)-doped phosphate scintillating glasses, IEEE Trans. Nucl. Sci. 48, 360–366 (2001)CrossRefGoogle Scholar
  33. I. Veronese, C. De Mattia, M. Fasoli, N. Chiodini, M.C. Cantone, F. Moretti, C. Dujardin, A. Vedda: Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica, J. Phys. Chem. C 119, 15572–15578 (2015)CrossRefGoogle Scholar
  34. C. Canevali, M. Mattoni, F. Morazzoni, R. Scotti, M. Casu, A. Musinu, R. Krsmanovic, S. Polizzi, A. Speghini, M. Bettinelli: Stability of luminescent trivalent cerium in silica host glasses modified by boron and phosphorus, J. Am. Chem. Soc. 127, 14681–14691 (2005)CrossRefGoogle Scholar
  35. J.E. Shelby: Introduction to Glass Science and Technology, 2nd edn. (Royal Society of Chemistry, Cambridge 2005)Google Scholar
  36. Y. Chen, D. Luo, L. Luo, X. Wang, T. Tang, W. Luo: Luminescence of Ce3+/Tb3+ ions in lithium-magnesium aluminosilicate glasses, J. Non-Cryst. Solids 386, 124–128 (2014)CrossRefGoogle Scholar
  37. G.C. Righini, A. Chiappini: Glass optical waveguides: A review of fabrication techniques, Opt. Eng. 53, 071819–071819 (2014)CrossRefGoogle Scholar
  38. C. Sella, R. Heindl, A. Robert: Rf sputtered Ce3+ activated SiO2 glass films as scintillators for alpha particles detection, Vacuum 36, 117–119 (1986)CrossRefGoogle Scholar
  39. J.W. Kohl: Response of various thin-film scintillators to low-energy particles, Nucl. Instrum. Methods 125, 413–417 (1975)CrossRefGoogle Scholar
  40. S.C. Gujrathi, L. Lessard: Light collection systems for thin film scintillation detectors, Nucl. Instrum. Methods Phys. Res. 206, 183–188 (1983)CrossRefGoogle Scholar
  41. J.C. Russ: The Image Processing Handbook (CRC, Boca Raton 1992)Google Scholar
  42. J.M. Boone: X-ray production, interaction, and detection in diagnostic imaging. In: Physics and Psychophysics, Handbook of Medical Imaging, Vol. 1, ed. by R.L. Van Metter, J. Beutel, H.L. Kundel (SPIE, Bellington 2000)Google Scholar
  43. C.B. Layne, W.H. Lowdermilk, M.J. Weber: Multiphonon relaxation of rare-earth ions in oxide glasses, Phys. Rev. B 16, 10–20 (1977)CrossRefGoogle Scholar
  44. C. Pfau: Low phonon energy glass ceramics for efficient rare-earth luminescence, Ph.D. Thesis (Martin-Luther-Universität, Halle-Wittenberg 2014)Google Scholar
  45. V.F. Sears: Neutron scattering lengths and cross sections, Neutron News 3, 26–37 (1992)CrossRefGoogle Scholar
  46. G.C. Tyrrell: Phosphors and scintillators in radiation imaging detectors, Nucl. Instrum. Methods Phys. Res. A 546, 180–187 (2005)CrossRefGoogle Scholar
  47. A.L. Huston, B.L. Justus, P.L. Falkenstein, R.W. Miller, H. Ning, R. Altemus: Remote optical fiber dosimetry, Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001)CrossRefGoogle Scholar
  48. T. Kim, Y. Yoon, D. Kil, Y. Hwang, H. Chung, I.K. Hoe, Y. Ahn: Effects of surrounding ion on Eu3+ luminescence in glass, Mater. Lett. 47, 290–296 (2001)CrossRefGoogle Scholar
  49. K. Whitten, R. Davis, M. Peck, G. Stanley: General Chemistry, 7th edn. (Brooks/Cole – Thomson Learning, Belmont 2004)Google Scholar
  50. D.R. Askeland: The Science and Engineering of Materials, 3rd edn. (PWS, Boston 1994)Google Scholar
  51. J. Heine, K. Müller-Buschbaum: Engineering metal-based luminescence in coordination polymers and metal-organic frameworks, Chem. Soc. Rev. 42, 9232–9242 (2013)CrossRefGoogle Scholar
  52. M.Z. Su, W. Zhao: Spectroscopic Properties of Rare Earths in Optical Materials, Springer Series in Materials Science, Vol. 83 (Springer, Berlin 2005)CrossRefGoogle Scholar
  53. K. Kawano, H. Tasaki, B.C. Hong, T. Ishitsuka: Rare-earth doped glass scintillators effective to spent nuclear fuels through photocatalyst, J. Alloys Compd. 451, 314–316 (2008)CrossRefGoogle Scholar
  54. A. Fukabori, T. Yanagida, V. Chani, F. Moretti, J. Pejchal, Y. Yokota, N. Kawaguchi, K. Kamada, K. Watanabe, T. Murata, Y. Arikawa, K. Yamanoi, T. Shimizu, N. Sarukura, M. Nakai, T. Norimatsu, H. Azechi, S. Fujino, H. Yoshida, A. Yoshikawa: Optical and scintillation properties of Pr-doped Li-glass for neutron detection in inertial confinement fusion process, J. Non-Cryst. Solids 357, 910–914 (2011)CrossRefGoogle Scholar
  55. T. Murata, S. Fujino, H. Yoshida, Y. Arikawa, T. Nakazato, T. Shimizu, N. Sarukura, M. Nakai, T. Norimatsu, H. Azechi, K. Kamada, Y. Usuki, T. Suyama, A. Yoshikawa, N. Sato, H. Kan: Custom-designed fast-response praseodymium-doped lithium 6 fluoro-oxide glass scintillator with enhanced cross-section for scattered neutron originated from inertial confinement fusion, IEEE Trans. Nucl. Sci. 57, 1426–1429 (2010)CrossRefGoogle Scholar
  56. X.-Y. Sun, D.-G. Jiang, W.-F. Wang, C.-Y. Cao, Y.-N. Li, G.-T. Zhen, H. Wang, X.-X. Yang, H.-H. Chen, Z.-J. Zhang, J.-T. Zhao: Luminescence properties of B2O3–GeO2–Gd2O3 scintillating glass doped with rare-earth and transition-metal ions, Nucl. Instrum. Methods Phys. Res. A 716, 90–95 (2013)CrossRefGoogle Scholar
  57. D.T. Valiev, S.A. Stepanov, C. Liu: Luminescent properties of lithium-phosphate-borate glasses doped with Tb3+/Eu3+ ions, IOP Conf. Ser. Mater. Sci. Eng. 110, 012053 (2016)CrossRefGoogle Scholar
  58. Y. Fujimoto, T. Yanagida, M. Koshimizu, K. Asai: Photoluminescence and Scintillation Properties of SiO2 Glass Activated with Eu2, Sens. Mater. 27, 263–268 (2015)Google Scholar
  59. J. He, Y. Wang, Y. Liu, K.P. Wang, R.H. Li, J.T. Fan, S.Q. Xu, L. Zhang: Tailoring the luminescence of europium ions in mesoporous AlPO4 monolithic glass, J. Phys. Chem. C 117, 21916–21922 (2013)CrossRefGoogle Scholar
  60. R.L. Leonard, S.K. Gray, S.D. Albritton, L.N. Brothers, R.M. Cross, A.N. Eastes, H.Y. Hah, H.S. James, J.E. King, S.R. Mishra, J.A. Johnson: Rare earth doped downshifting glass ceramics for photovoltaic applications, J. Non-Cryst. Solids 366, 1–5 (2013)CrossRefGoogle Scholar
  61. S. Schweizer, J.A. Johnson: Fluorozirconate-based glass ceramic X-ray detectors for digital radiography, Radiat. Meas. 42, 632–637 (2007)CrossRefGoogle Scholar
  62. B. Karmakar: Functional Glasses and Glass-Ceramics (Butterworth-Heinemann, Oxford 2017)Google Scholar
  63. J.K.R. Weber, M. Vu, C. Paßlick, S. Schweizer, D.E. Brown, C.E. Johnson, J.A. Johnson: The oxidation state of europium in halide glasses, J. Phys. Condens. Matter 23, 495402–495402 (2011)CrossRefGoogle Scholar
  64. X.-Y. Sun, S.-M. Huang, M. Gu, Q.-C. Gao, X.-S. Gong, Z.-P. Ye: Enhanced Tb3+ luminescence by non-radiative energy transfer from Gd3+ in silicate glass, Phys. B Condens. Matter 405, 569–572 (2010)CrossRefGoogle Scholar
  65. J.H. Bai, J.R. Kim, J.Y. Chung, J.H. Kim, J.H. Whang: Fabrication and properties analysis of lithium borate glass scintillators with transition metal oxides, J. Nucl. Sci. Technol. 5, 503–506 (2008)CrossRefGoogle Scholar
  66. H. Masai, S. Matsumoto, T. Fujiwara, Y. Tokuda, T. Yoko: Photoluminescent properties of Sb-doped phosphate glass, J. Am. Ceram. Soc. 95, 862–865 (2012)CrossRefGoogle Scholar
  67. H. Masai, T. Yanagida: Emission property of Ce3+-doped Li2O-B2O3-SiO2 glasses, Opt. Mater. Express 5, 1851–1858 (2015)CrossRefGoogle Scholar
  68. H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, T. Yoko: Scintillation property of rare earth-free SnO-doped oxide glass, Appl. Phys. Lett. 101, 191906 (2012)CrossRefGoogle Scholar
  69. P. Lecoq, A. Gektin, M. Korzhik: Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering (Springer, Cham 2016)Google Scholar
  70. R.K. Brow: Nature of alumina in phosphate glass: Properties of sodium aluminophosphate glass, J. Am. Ceram. Soc. 76, 913–918 (1993)CrossRefGoogle Scholar
  71. R.J. Freitas, K. Shimakawa, S. Kugler: Some remarks on the glass-transition temperature in chalcogenide glasses: A Correlation with the microhardness, Chalcogen. Lett. 10, 39–43 (2013)Google Scholar
  72. P.Y. Shih, T.S. Chin: Preparation of lead-free phosphate glasses with low Tg and excellent chemical durability, J. Mater. Sci. Lett. 20, 1811–1813 (2001)CrossRefGoogle Scholar
  73. M. Bengisu: Borate glasses for scientific and industrial applications: A review, J. Mater. Sci. 51, 2199–2242 (2016)CrossRefGoogle Scholar
  74. J.M. Parker: Fluoride glasses, Annu. Rev. Mater. Sci. 19, 21–41 (1989)CrossRefGoogle Scholar
  75. H.T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S.V.T.M. Afshar: Monro, H. Ebendorff-Heidepriem: Lead-germanate glasses and fibers: A practical alternative to tellurite for nonlinear fiber applications, Opt. Mater. Express 3, 1488–1503 (2013)CrossRefGoogle Scholar
  76. J. Fu, M. Kobayashi, J.M. Parker: Terbium-activated heavy scintillating glasses, J. Luminesc. 128, 99–104 (2008)CrossRefGoogle Scholar
  77. M. Poulain: Fluoride glass composition and processing. In: Fluoride Glass Fiber Optics, ed. by I.D. Aggarwal, G. Lu (Academic, Boston 1991) pp. 1–35Google Scholar
  78. L.H. Zheng, X.Y. Sun, R.H. Mao, H.H. Chen, Z.J. Zhang, J.T. Zhao: Luminescence properties of Ce3+-doped lithium borophosphate glasses and their correlations with the optical basicity, J. Non-Cryst. Solids 403, 1–4 (2014)CrossRefGoogle Scholar
  79. G. Sharma, K.S. Thind, H.S. Manupriya: Klare, S.B. Narang, L. Gerward, V.K. Dangwal: Effects of gamma-ray irradiation on optical properties of ZnO-PbO-B2O3 glasses, Nucl. Instrum. Methods Phys. Res. B 243, 345–348 (2006)CrossRefGoogle Scholar
  80. Z. Zhu, B. Liu, C. Cheng, Y. Yi, W. Guo, S. Huang, H. Chen, M. Gu, C. Ni, X. Liu: Enhanced light extraction efficiency for glass scintillator coupled with two-dimensional photonic crystal structure, Opt. Mater. 35, 2343–2346 (2013)CrossRefGoogle Scholar
  81. N.J. Cherepy, Z.M. Seeley, S.A. Payne, E.L. Swanberg, P.R. Beck, D.J. Schneberk, G. Stone, R. Perry, B. Wihl, S.E. Fisher, S.L. Hunter, P.A. Thelin, R.R. Thompson, N.M. Harvey, T. Stefanik, J. Kindem: Transparent ceramic scintillators for gamma spectroscopy and MeV imaging. In: Proc. SPIE Opt. Eng. & Appl. Conf (2015) p. 95930Google Scholar
  82. C.M. Pepin, R. Lecomte: Assessment of Quick-Stick 5870 high refractive index thermoplastic coupling compound, Nucl. Instrum. Methods Phys. Res. A 488, 670–672 (2002)CrossRefGoogle Scholar
  83. L. Bollinger, G.E. Thomas: Measurement of time dependence of scintillation intensity by a delayed-coincidence method, Rev. Sci. Instrum. 32, 1044 (1961)CrossRefGoogle Scholar
  84. S.E. Derenzo, W.W. Moses, S.C. Blankespoor, M. Ito, K. Oba: Design of a pulsed X-ray system for fluorescent lifetime measurements with a timing accuracy of 109 ps, IEEE Trans. Nucl. Sci. 41, 629–631 (1994)CrossRefGoogle Scholar
  85. S.E. Derenzo, M.J. Weber, W.W. Moses, C. Dujardin: Measurements of the intrinsic rise times of common inorganic scintillators, IEEE Trans. Nucl. Sci. 47, 860–864 (2000)CrossRefGoogle Scholar
  86. I.S. Kim, I.J. Lee, A. Appleby, E.A. Christman, M.J. Liepmann, G.H. Sigel Jr.: Airborne alpha emitters monitored by a glass fibre scintillator bundle, Radiat. Prot. Dosim. 61, 77–80 (1995)CrossRefGoogle Scholar
  87. G.F. Knoll: Radiation Detection and Measurement, 4th edn. (Wiley, Somerset 2011)Google Scholar
  88. C. Parriott: Other modes of detection. In: A Practical Guide to HPLC Detection, ed. by D. Parriott (Academic, Parsippany 1993)Google Scholar
  89. D.C. Marshall, J. Stephen: Secondary electron detector, with an extended life, for use in a scanning electron microscope, J. Phys. E 5, 1046 (1972)CrossRefGoogle Scholar
  90. J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. (Springer, New York 2003)CrossRefGoogle Scholar
  91. H.Y. Lee, T.N. Taddeucci, R.C. Haight, T.A. Bredeweg, A. Chyzh, M. Devlin, N. Fotiades, J.M. Gostic, R.A. Henderson, M. Jandel, E. Kwan, A. Laptev, R.O. Nelson, J.M. O'Donnell, B.A. Perdue, S.A. Wender, M.C. White, C.Y. Wu: Li-glass detector response study with a 252Cf source for low-energy prompt fission neutrons, Nucl. Instrum. Methods Phys. Res. A 703, 213–219 (2013)CrossRefGoogle Scholar
  92. S. Kim, J. Palta: The physics of stereotactic radiosurgery. In: Principles and Practice of Stereotactic Radiosurgery, ed. by L.S. Chin, W.F. Regine (Springer, New York 2008)Google Scholar
  93. L. Marcu, E. Bezak, B. Allen: Biomedical Physics in Radiotherapy for Cancer (Springer, London 2012)CrossRefGoogle Scholar
  94. J.H. Hubbell, S.M. Seltzer: X-Ray Mass Attenuation Coefficients, Radiation Physics Division, PML, NIST, doi:10.18434/T4D01FGoogle Scholar
  95. J.E. Trebes, K.W. Dolan, W.S. Haddad, J.J. Haskins, R.A. Lerche, C.M. Logan, D.E. Perkins, D.J. Schneberk, D. Rikard: High-resolution large-area high-energy x-ray tomography, Proc. SPIE Int. Soc. Opt. Eng. 3149, 173–176 (1997)Google Scholar
  96. P.F. Van der Stelt: Filmless imaging – The uses of digital radiography in dental practice, J. Am. Dent. Assoc. 136, 1379–1387 (2005)CrossRefGoogle Scholar
  97. R. Scholz: On the sensitivity of children to radiation, Med. Global Surviv. 1, 38–44 (1994)Google Scholar
  98. A. Heller: A CAT scanner for nuclear weapon components. In: Science & Technology Review (Lawrence Livermore National Laboratory, Livermore 2009)Google Scholar
  99. H.E. Martz, C.M. Logan, D.J. Schneberk, P.J. Shull: Radiation detectors. In: X-Ray Imaging (CRC, Boca Raton 2016) pp. 187–202CrossRefGoogle Scholar
  100. K. Hashimoto, H. Irie, A. Fujishima: TiO2 photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys. 44, 8269 (2005)CrossRefGoogle Scholar
  101. A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  102. E.H. Lehmann, S. Hartmann, M.O. Speidel: Investigation of the content of ancient tibetan metallic Buddha statues by means of neutron imaging methods, Archaeometry 52, 416–428 (2010)CrossRefGoogle Scholar
  103. M.F. L'Annunziata: Radiation physics and radionuclide decay. In: Handbook of Radioactivity Analysis, 3rd edn., (Academic Press, Amsterdam 2012) pp. 1–162Google Scholar
  104. L. Coates, M.J. Cuneo, M.J. Frost, J. He, K.L. Weiss, S.J. Tomanicek, H. McFeeters, V.G. Vandavasi, P. Langan, E.B. Iverson: The macromolecular neutron diffractometer MaNDi at the spallation neutron source, J. Appl. Cryst. 48, 1302–1306 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Mechanical, Aerospace, and Biomedical Engineering (MABE)The University of Tennessee Space InstituteTullahoma, TNUSA
  2. 2.Dept. of Mechanical, Aerospace, and Biomedical Engineering (MABE)The University of Tennessee Space InstituteTullahoma, TNUSA

Personalised recommendations