Display Glass

  • Matt DejnekaEmail author
  • T. J. Kiczenski
Part of the Springer Handbooks book series (SHB)


Active matrix displays are rapidly making all other display technologies on the market obsolete. They are all around us, from the smart watches on our wrist, to the phones in our pocket, to the TVs in our homes and they provide us with information, entertainment, biometrics, and a connection to the world, all on a thin bright device. The array of thin film transistors in the backplane of all active matrix devices eliminates cross-talk between pixels, provides a larger dynamic range in brightness, and accelerates the response time of the display. Whether it be a liquid crystal display () or an organic light emitting diode ()-based display, an efficient and responsive active matrix of thin film transistors requires high mobility silicon, which requires high processing temperatures and precise patterning. This puts great demands on the glass substrate that the transistors and the entire display are built upon. The glass must be incredibly flat, smooth, and dimensionally stable at temperatures that would sag common window glass in a heap. This chapter will explore the amazing melting and forming technologies that have been developed to produce precision display glass sheets as well as the glass compositions that are the foundation for glass forming and device fabrication.


  1. M. Graham, A. Shuldiner: Corning and the military: Innovation in an era of permanent mobilization. In: Corning and the Craft of Innovation (Oxford University Press, Oxford 2001) pp. 173–278Google Scholar
  2. L. Neikirk: Plasma TV is officially dead: The last plasma manufacturer has thrown in the towel, (2014)
  3. J.K. Willcox: Plasma TV is dead, so go buy one. Samsung pulls the plug on plasma, leaving LG as the sole plasma brand, (2014)
  4. J. Chen, W. Cranton, M. Fihn: Handbook of Visual Display Technology (Springer, Berlin 2012)CrossRefGoogle Scholar
  5. D. Hsieh: QLED: Quantum dot OLED or quantum dot LCD with LED backlight, or both?, (2016)
  6. G. Morrison: How QLED TV could help Samsung finally beat LG's OLEDs. Samsung is developing TVs based on quantum dot LEDs, pinpricks of light that promise even better picture quality than OLED TVs, (2016)
  7. R. Triggs: Display technology explained: A-Si, LTPS, amorphous IGZO, and beyond, (2016)
  8. L.K. Baxter: Capacitive Sensors: Design and Applications (Wiley-IEEE, Piscataway 1997)Google Scholar
  9. R. Larsen: Touch technology in smartphones explained, (2012)
  10. R.J. Araujo, N.J. Binkowski: Alkali metal ion migration control, US Patent (Application) 5578103 (1996)Google Scholar
  11. P. Bocko: Glass substrates for AMLCD, OLED and emerging display platforms. In: Handbook of Visual Display Technology, ed. by J. Chen, W. Cranton, M. Fihn (Springer, Berlin 2012) pp. 599–623CrossRefGoogle Scholar
  12. G.C.A.M. Janssen, M.M. Abdalla, F. van Keulen, B.R. Pujada, B. van Venrooy: Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers, Thin Solid Films 517, 1858–1867 (2009)CrossRefGoogle Scholar
  13. S.M. Rekhson, O.V. Mazurin: Stress and structural relaxation in Na2O-CaO-SiO2 glass, J. Am. Ceram. Soc. 57, 327–328 (1974)CrossRefGoogle Scholar
  14. S.-R. Ryu, M. Tomozawa: Structural relaxation time of bulk and fiber silica glass as a function of fictive temperature and holding temperature, J. Am. Ceram. Soc. 89, 81–88 (2006)CrossRefGoogle Scholar
  15. A. Einstein: Investigation on the Theory of the Brownian Movement (Dover, New York 1926)Google Scholar
  16. J. Brillo, A. Pommrich, A. Meyer: Relation between self-diffusion and viscosity in dense liquidus: New experimental results from electrostatic levitation, Phys. Rev. Lett. 107, 1–4 (2011)CrossRefGoogle Scholar
  17. F.E. Wooley: Melting/fining. In: Engineered Materials Handbook Ceramics and Glasses, Vol. 4, ed. by S. Schneider (ASM International, Materials Park 1991) pp. 386–393Google Scholar
  18. D.C. Boyd, D.A. Thompson: Glass. In: Encyclopedia of Chemical Technology, 3rd edn., Vol. 11, ed. by J.I. Kroschwitz, A. Seidel (Wiley, Chicester 1980) p. 807Google Scholar
  19. M.S. Pambianchi, M. Dejneka, T. Gross, A. Ellison, S. Gomez, J. Price, Y. Fang, P. Tandon, D. Bookbinder, M.J. Li: Corning incorporated: Designing a new future with glass and optics. In: Materials Research for Manufacturing, ed. by L. Madsen, E. Svedberg (Springer, Cham 2016)Google Scholar
  20. R. Doremus: Glass Science (Wiley, New York 1973)Google Scholar
  21. A. Ellison, C. Cornejo: Glass substrates for liquid crystal displays, Int. J. Appl. Glass Sci. 1(1), 87–103 (2010)CrossRefGoogle Scholar
  22. K. Kim: Redox reaction of multivalent ions in glass melts, J. Korean Ceram. Soc. 52, 83–91 (2015)CrossRefGoogle Scholar
  23. E. Fourcault: Aparatus for the manufacture of plate glass by stretching, Patent US717378 (1902)Google Scholar
  24. M. Cable: Mechanization of glass manufacture, J. Am. Ceram. Soc. 82, 1093–1112 (1999)CrossRefGoogle Scholar
  25. I. Colburn: Method and apparatus for drawing sheet glass, Patent US860528 (1903)Google Scholar
  26. H. Stevens: Forming. In: Engineered Materials Handbook: Ceramics and Glasses, Vol. 4, ed. by S. Schneider (ASM International, Materials Park 1991) pp. 394–401Google Scholar
  27. D.N. Brown: Sheet glass forming apparatus, Patent US2422466A (1947)Google Scholar
  28. R. Mauch, H. Wegener, A. Kruse, N. Hildebrand: Thin glass substrates for mobile applications, Proc. SPIE 4102, 162–168 (2000)CrossRefGoogle Scholar
  29. H. Bessemer: Certain improvements in the manufacture of glass, Patent Br. 12101 (1848)Google Scholar
  30. L.A.B. Pilkington, K. Bickerstaff: Manufacture of flat glass, Patent US2911759A (1959)Google Scholar
  31. L.A.B. Pilkington: Review lecture: The float glass process, Proc. R. Soc. A 314, 1 (1969)CrossRefGoogle Scholar
  32. T. Kloss, G. Lautenschlager, K. Schneider: Advances in the process of floating borosilicate glasses and some recent applications for specialty borosilicate float glasses, Glass Technol. 41, 177–181 (2000)Google Scholar
  33. Asahi Glass Co. Ltd: Asahi glass starts commercial production of new alkali-free glass for TFT-LCDs, (1998)
  34. Y.S. Choi, J.U. Yun, S.E. Park: Flat panel display glass: Current status and future, J. Non-Cryst. Solids 431, 2–7 (2016)CrossRefGoogle Scholar
  35. S.M. Dockerty, G.C. Shay: Downflow sheet drawing method and apparatus, Patent US3149949A (1964)Google Scholar
  36. Corning Incorporated: The fusion process: At the core of Corning's glass innovations, (2012)
  37. P. Bocko: The challenges of higher-generation glass, Inf. Disp. 19, 12–15 (2003)Google Scholar
  38. M. Graham, A. Shuldiner: Reinstitutionalizing R&D: TV, Corning ware, and the search for breakthroughs. In: Corning and the Craft of Innovation (Oxford University Press, Oxford 2001) pp. 260–267Google Scholar
  39. Corning Incorporated: Gorilla glass for automotive: Driving innovation, (2016)
  40. J.W. Alpha, W.H. Dumbaugh: Thin silicon film electronic device, Patent US4180618 (1975)Google Scholar
  41. E.F. Osborn, A. Muan: Fig. 630 CaO-Al2O3-SiO2 in Phase Equilibria Diagrams, CD-ROM Database, NIST Standard Reference Database, Version 4.1 (The American Ceramic Society, Westerville 2014), Scholar
  42. ASTM C829–81(2015): Standard Practices for Measurement of Liquidus Temperature of Glass by the Gradient Furnace Method (ASTM International, West Conshohocken 2015)Google Scholar
  43. W.D. Kingery, H.K. Bowen, D.R. Uhlmann: Introduction to Ceramics (Wiley, New York 1976) pp. 91–100Google Scholar
  44. Corning Incorporated: Corning Lotus™ NXT glass for high-performance displays, (2016)
  45. R. Roberts: Thermal expansion reference data: Silicon 300–850 K, J. Phys. D 14, L163–L166 (1981)CrossRefGoogle Scholar
  46. C. Swenson: Recommended values for the thermal expansivity of silicon from 0 to 1000 K, J. Phys. Chem. Ref. Data 12, 179–182 (1983)CrossRefGoogle Scholar
  47. H. Watanabe, N. Yamada, O. Masahiro: Linear thermal expansion coefficient of silicon from 293 to 1000 K, Int. J. Thermophys. 25, 221–236 (2004)CrossRefGoogle Scholar
  48. Corning Incorporated: Corning Iris™ glass: High-transmission light-guide plate enabling display thicknesses less than 5mm, (2016)
  49. J.S. Olcott: Chemical strengthening of glass, Science 140, 1189–1193 (1963)CrossRefGoogle Scholar
  50. P. Bocko, C. Rosenblatt, L. Morse: Chemical durability and cleaning of flat panel display substrate glasses, SID Symp. Dig. Tech. Pap. 21, 73 (1990)Google Scholar
  51. B.G. Aitken, M.J. Dejneka, A.J. Ellison, T.E. Paulson: High strain point glasses, Patent US7612004 (2009)Google Scholar
  52. Y.Q. Jia: Crystal radii and effective ionic radii of the rare earth ions, J. Solid State Chem. 95, 184–187 (1991)CrossRefGoogle Scholar
  53. R.D. Shannon, C.T. Prewitt: Effective ionic radii in oxides and fluorides, Acta Crystallogr. B 25, 925 (1969)CrossRefGoogle Scholar
  54. I.A. Bondar, F.Y. Galakhov: Fig. 2586 Y2O3-Al2O3-SiO2 in Phase Equilibria Diagrams, CD-ROM Database, NIST Standard Reference Database, Version 4.1 (The American Ceramic Society, Westerville 2010), Scholar
  55. P.S. Danielson, M. Dejneka, A. Ellison, T.J. Kiczenski: Rare earth containing glass material and substrate and device comprising such substrate, Patent US8187715 (2012)Google Scholar
  56. E. Downing, L. Hesselink, J. Ralson, R. Macfarlane: A three-color, solid-state, three-dimensional display, Science 273, 1185 (1996)CrossRefGoogle Scholar
  57. M. Dejneka: Transparent oxyfluoride glass ceramics, MRS Bulletin 23, 57–62 (1998)CrossRefGoogle Scholar
  58. M.J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149–155 (1998)CrossRefGoogle Scholar
  59. R. Silva: 3D TV is dead, (2017)
  60. K.P. Gadkaree, M.J. Dejneka, A.J. Ellison: Substrate compositions and methods for forming semiconductor on insulator devices, Patent US8530998B2 (2013)Google Scholar
  61. B.G. Aitken, M.J. Dejneka, K.P. Gadkaree, L.R. Pinckney: High strain glass/glass-ceramic containing semiconductor-on-insulator structures, Patent US7473969B2 (2009)Google Scholar
  62. K.P. Gadkaree, P.S. Danielson, M.J. Dejneka, J.C. Lapp, L.R. Pinckney: Germanium on glass and glass-ceramic structures, Patent US7456057B2 (2008)Google Scholar
  63. S. Garner: Introduction to flexible glass substrates. In: Flexible Glass, ed. by S. Garner (Wiley, Hoboken 2017) pp. 3–33CrossRefGoogle Scholar
  64. Corning Glass Works: An electronic overcoat. In: Sand and Imagination (Corning Glass Works, Corning 1976) pp. 28–30Google Scholar
  65. M. Sato, N. Monozukuri: World's thinnest glass plate exhibited at show, (2014)
  66. Corning Incorporated: Corning Lotus™ NXT glass chosen for Samsung display's flexible LTPS-OLED line, (2017)
  67. S. Sisk, J. Koh, P. Su, B. Bowden: Corning Lotus™ NXT Glass, Through its Advantaged and Balanced Glass Attributes, was Designed to Address the Challenges of Today's LTPS-OLED Manufacturing Processes, Corning White Paper (Corning Inc, Corning 2016)Google Scholar
  68. Flexible OLEDs: Introduction and market status, (2017)
  69. K. Bourzac: Flexible glass could bring back the flip phone, (2017)
  70. T.M. Gross, R. Youngman: Low modulus, damage resistant glass for ultra-thin applications. In: Flexible Glass, ed. by S. Garner (Wiley, Hoboken 2017) pp. 63–84CrossRefGoogle Scholar
  71. Flat panel demand to grow 7.2% in 2018, says IHS Markit, (2017)
  72. Corning Incorporated: A Day Made of Glass, (2011)
  73. Corning Incorporated: A Day Made of Glass 2: Same Day. Expanded, (2012)
  74. A. Budholiya: Top trends in flat panel display market, TGDaily, (2016)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Glass ResearchCorning Inc.Corning, NYUSA

Personalised recommendations