Advertisement

Glass in Integrated Photonics

  • Juejun HuEmail author
  • Lan Yang
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Integrated photonics, which generically refers to the technology of combining multiple optical components on a chip-scale platform to form a functional photonic circuit, is often hailed as the optical equivalent of electronic integrated circuits, which holds the potential to revolutionize communications, computing, sensing, and imaging. Similar to microelectronic integrated circuits, which assimilate more than half the Mendeleev periodic table into the manufacturing process, integrated photonics necessarily involves many classes of materials to enable different photonic functionalities essential to photonic circuit operation. Glassy materials, with their exceptional optical and structural properties, constitute critical building blocks in state-of-the-art integrated photonic systems. The progress in these materials will help diversify the choices of materials for novel devices and components and will, therefore, push forward the development of integrated photonics with advanced functionalities. This chapter addresses the key facets of glassy materials in the context of integrated photonics, including material characteristics and processing technologies with specific application examples based on different glass composition families.

Notes

Acknowledgements

The authors gratefully acknowledge funding support provided by the National Science Foundation under award number 1506605.

References

  1. K.C. Kao, G.A. Hockham: Dielectric-fibre surface waveguides for optical frequencies, Proc. Inst. Elect. Eng.-Lond. 113, 1151 (1966)CrossRefGoogle Scholar
  2. S.E. Miller: Integrated Optics—An introduction, Bell Syst. Tech. J. 48, 2059 (1969)CrossRefGoogle Scholar
  3. D.W. Wilmot, E. Schinell: Optical waveguides formed by proton irradiation of fused silica, J. Opt. Soc. Am. 56, 1434 (1966)CrossRefGoogle Scholar
  4. J.E. Goell, R.D. Standley: Sputtered glass waveguide for integrated optical circuits, Bell Syst. Tech. J. 48, 3445 (1969)CrossRefGoogle Scholar
  5. J.E. Goell, R.D. Standley: Integrated optical circuits, Proc. Inst. Elect. Electron. Eng. 58, 1504 (1970)CrossRefGoogle Scholar
  6. S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe: Prediction of loss minima in infrared optical fibers, Electron. Lett. 17, 775–777 (1981)CrossRefGoogle Scholar
  7. M.E. Lines: Scattering losses in optic fiber materials. 1. A new parametrization, J. Appl. Phys. 55, 4052–4057 (1984)CrossRefGoogle Scholar
  8. M.E. Lines: Scattering losses in optic fiber materials. 2. Numerical estimates, J. Appl. Phys. 55, 4058–4063 (1984)CrossRefGoogle Scholar
  9. X.C. Long, S.R.J. Brueck: Large photosensitivity in lead-silicate glasses, Appl. Phys. Lett. 74, 2110–2112 (1999)CrossRefGoogle Scholar
  10. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, R. Vallee: Direct femtosecond laser writing of waveguides in As2S3 thin films, Opt. Lett. 29, 748–750 (2004)CrossRefGoogle Scholar
  11. S. Ramachandran, S.G. Bishop: Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses, Appl. Phys. Lett. 74, 13–15 (1999)CrossRefGoogle Scholar
  12. A.V. Kolobov, J. Tominaga: Chalcogenides Metastability and Phase Change Phenomena (Springer, Berlin 2012)CrossRefGoogle Scholar
  13. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao: Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21, 1729–1731 (1996)CrossRefGoogle Scholar
  14. B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, S. Gujrathi: Photosensitivity in phosphorus-doped silica glass and optical wave-guides, Appl. Phys. Lett. 65, 394–396 (1994)CrossRefGoogle Scholar
  15. A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J.J. Hu, J.D. Musgraves, K. Richardson, A. Agarwal, L.C. Kimerling, A. Melloni: Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass, Opt. Lett. 36, 4002–4004 (2011)CrossRefGoogle Scholar
  16. Q. Wang, E.T.F. Rogers, B. Gholipour, C.M. Wang, G.H. Yuan, J.H. Teng, N.I. Zheludev: Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photonics 10, 60–65 (2016)CrossRefGoogle Scholar
  17. M. Takahashi, K. Sugimoto, R. Maeda: Nanoimprint of glass materials with glassy carbon molds fabricated by focused-ion-beam etching, Jpn. J. Appl. Phys. Part 1(44), 5600–5605 (2005)CrossRefGoogle Scholar
  18. C. Peroz, C. Heitz, E. Barthel, E. Sondergard, V. Goletto: Glass nanostructures fabricated by soft thermal nanoimprint, J. Vac. Sci. Technol. B 25, L27–L30 (2007)CrossRefGoogle Scholar
  19. T. Han, S. Madden, D. Bulla, B. Luther-Davies: Low loss chalcogenide glass waveguides by thermal nano-imprint lithography, Opt. Express 18, 19286–19291 (2010)CrossRefGoogle Scholar
  20. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Ultra-high-Q toroid microcavity on a chip, Nature 421, 925–928 (2003)CrossRefGoogle Scholar
  21. S. Tanabe: Glass and rare-earth elements: A personal perspective, Int. J. Appl. Glass Sci. 6, 305–328 (2015)CrossRefGoogle Scholar
  22. R.W. Boyd: Nonlinear Optics (Academic, Cambridge 2003)Google Scholar
  23. D.J. Moss, R. Morandotti, A.L. Gaeta, M. Lipson: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics, Nat. Photonics 7, 597–607 (2013)CrossRefGoogle Scholar
  24. V.G. Ta'eed, N.J. Baker, L.B. Fu, K. Finsterbusch, M.R.E. Lamont, D.J. Moss, H.C. Nguyen, B.J. Eggleton, D.Y. Choi, S. Madden, B. Luther-Davies: Ultrafast all-optical chalcogenide glass photonic circuits, Opt. Express 15, 9205–9221 (2007)CrossRefGoogle Scholar
  25. M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, T. Cardinal: Thermal poling of optical glasses: Mechanisms and second-order optical properties, Int. J. Appl. Glass Sci. 3, 309–320 (2012)CrossRefGoogle Scholar
  26. Y. Shen: Surface properties probed by second-harmonic and sum-frequency generation, Nature 337, 519–525 (1989)CrossRefGoogle Scholar
  27. M. Cazzanelli, J. Schilling: Second order optical nonlinearity in silicon by symmetry breaking, Appl. Phys. Rev. 3, 011104 (2016)CrossRefGoogle Scholar
  28. A. Hedler, S.L. Klaumunzer, W. Wesch: Amorphous silicon exhibits a glass transition, Nat. Mater. 3, 804–809 (2004)CrossRefGoogle Scholar
  29. J.T. Tippett: Optical and Electro-optical Information Processing (MIT Press, Cambridge 1965)Google Scholar
  30. D.B. Anderson, R.R. August, W.A. Mcdowell, S.G. Plouski: Rectangular dielectric optical wave-guide of width about one-half wave-length of the transmitted light (1971) US patent US3563630AGoogle Scholar
  31. D. Hülsenberg, A. Harnisch, A. Bismarck: Microstructuring of Glasses (Springer, Berlin 2008)CrossRefGoogle Scholar
  32. E. Mcgoldrick, P. Beaud, J. Schutz, W. Hodel, C. Deutsch, N. Thomas, S.A. Hubbard: Optical characterization of arsenic-doped silica-on-silicon wave-guides using femtosecond optical-time-domain-reflectometry techniques, Opt. Lett. 15, 1354–1356 (1990)CrossRefGoogle Scholar
  33. R.R.A. Syms, A.S. Holmes: Reflow and burial of channel wave-guides formed in sol-gel glass on Si substrates, IEEE Photonics Technol. Lett. 5, 1077–1079 (1993)CrossRefGoogle Scholar
  34. R. Adar, M.R. Serbin, V. Mizrahi: Less-than-1 dB per meter propagation loss of silica wave-guides measured using a ring-resonator, J. Lightwave Technol. 5, 1369–1372 (1994)CrossRefGoogle Scholar
  35. T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, Y. Hibino: Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection, In: Proc. ECOC pp, 5–9 (2004)Google Scholar
  36. H. Lee, T. Chen, J. Li, O. Painter, K.J. Vahala: Ultra-low-loss optical delay line on a silicon chip, Nat. Commun. 3, 867 (2012)CrossRefGoogle Scholar
  37. T.J. Kippenberg, J. Kalkman, A. Polman, K.J. Vahala: Demonstration of an erbium-doped microdisk laser on a silicon chip, Phys. Rev. A 74, 051802(R) (2006)CrossRefGoogle Scholar
  38. H. Lee, T. Chen, J. Li, K.Y. Yang, S. Jeon, O. Painter, K.J. Vahala: Chemically etched ultrahigh-Q wedge-resonator on a silicon chip, Nat. Photonics 6, 369–373 (2012)CrossRefGoogle Scholar
  39. J.A. Frantz, L.B. Shaw, J.S. Sanghera, I.D. Aggarwal: Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass, Opt. Express 14, 1797–1803 (2006)CrossRefGoogle Scholar
  40. J.J. Hu, V. Tarasov, N. Carlie, N.N. Feng, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides, Opt. Express 15, 11798–11807 (2007)CrossRefGoogle Scholar
  41. J. Hu, N.-N. Feng, N. Carlie, L. Petit, J. Wang, A. Agarwal, K. Richardson, L. Kimerling: Low-loss high-index-contrast planar waveguides with graded-index cladding layers, Opt. Express 15, 14566–14572 (2007)CrossRefGoogle Scholar
  42. J.J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films, Opt. Mater. 30, 1560–1566 (2008)CrossRefGoogle Scholar
  43. J.J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Demonstration of chalcogenide glass racetrack microresonators, Opt. Lett. 33, 761–763 (2008)CrossRefGoogle Scholar
  44. V. Mittal, A. Aghajani, L.G. Carpenter, J.C. Gates, J. Butement, P.G.R. Smith, J.S. Wilkinson, G.S. Murugan: Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides, Opt. Lett. 40, 2016–2019 (2015)CrossRefGoogle Scholar
  45. Y. Gao, B. Boulard, M. Lemiti, R. Rimet, P. Loeffler, H. Poignant: Design and fabrication of lead-based fluoride glass channel waveguides, J. Non-Cryst. Solids 256, 183–188 (1999)CrossRefGoogle Scholar
  46. J.-L. Adam, E. Lebrasseur, B. Boulard, B. Jacquier, G. Fonteneau, Y. Gao, R. Sramek, C. Legein, S. Guy: Rare-earth-doped fluoride-glass channel waveguides for optical amplification. In: Proc. Symp. Integr. Optoelectron (2000) pp. 130–138Google Scholar
  47. C.C. Evans, C.Y. Liu, J. Suntivich: Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process, Opt. Express 23, 11160–11169 (2015)CrossRefGoogle Scholar
  48. N.Y. Duan, H.T. Lin, L. Li, J.J. Hu, L. Bi, H.P. Lu, X.L. Weng, J.L. Xie, L.J. Deng: ZrO2-TiO2 thin films: A new material system for mid-infrared integrated photonics, Opt. Mater. Express 3, 1537–1545 (2013)CrossRefGoogle Scholar
  49. F.P. Jiang, L. Bi, H.T. Lin, Q.Y. Du, J.J. Hu, A.R. Guo, C.Y. Li, J.L. Xie, L.J. Deng: Microstructure, optical properties, and optical resonators of Hf1-xTixO2 amorphous thin films, Opt. Mater. Express 6, 1871–1880 (2016)CrossRefGoogle Scholar
  50. W.D. Li, W. Wu, R.S. Williams: Combined helium ion beam and nanoimprint lithography attains 4 nm half-pitch dense patterns, J. Vac. Sci. Technol. B 30, 06F304 (2012)CrossRefGoogle Scholar
  51. F. Hua, Y.G. Sun, A. Gaur, M.A. Meitl, L. Bilhaut, L. Rotkina, J.F. Wang, P. Geil, M. Shim, J.A. Rogers, A. Shim: Polymer imprint lithography with molecular-scale resolution, Nano Lett. 4, 2467–2471 (2004)CrossRefGoogle Scholar
  52. H. Schift, A. Kristensen: Nanoimprint lithography—patterning of resists using molding. In: Springer Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Berlin 2010) pp. 271–312CrossRefGoogle Scholar
  53. Z.G. Man, W.J. Pan, D. Furniss, T.M. Benson, A.B. Seddon, T. Kohoutek, J. Orava, T. Wagner: Embossing of chalcogenide glasses: Monomode rib optical waveguides in evaporated thin films, Opt. Lett. 34, 1234–1236 (2009)CrossRefGoogle Scholar
  54. T. Han, S. Madden, S. Debbarma, B. Luther-Davies: Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating, Opt. Express 19, 25447–25453 (2011)CrossRefGoogle Scholar
  55. A.B. Seddon, W.J. Pan, D. Furniss, C.A. Miller, H. Rowe, D. Zhang, E. McBrearty, Y. Zhang, A. Loni, P. Sewell, T.M. Benson: Fine embossing of chalcogenide glasses—A new fabrication route for photonic integrated circuits, J. Non-Cryst. Solids 352, 2515–2520 (2006)CrossRefGoogle Scholar
  56. M. Solmaz, H. Park, C.K. Madsen, X. Cheng: Patterning chalcogenide glass by direct resist-free thermal nanoimprint, J. Vac. Sci. Technol. B 26, 606–610 (2008)CrossRefGoogle Scholar
  57. M.T. Li, H. Tan, L. Chen, J. Wang, S.Y. Chou: Large area direct nanoimprinting of SiO2-TiO2 gel gratings for optical applications, J. Vac. Sci. Technol. B 21, 660–663 (2003)CrossRefGoogle Scholar
  58. M. Okinaka, K. Tsukagoshi, Y. Aoyagi: Direct nanoimprint of inorganic–organic hybrid glass, J. Vac. Sci. Technol. B 24, 1402–1404 (2006)CrossRefGoogle Scholar
  59. Y. Zou, L. Moreel, H.T. Lin, J. Zhou, L. Li, S. Danto, J.D. Musgraves, E. Koontz, K. Richardson, K.D. Dobson, R. Birkmire, J.J. Hu: Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: Inorganic–organic hybrid photonic integration, Adv. Opt. Mater. 2, 759–764 (2014)CrossRefGoogle Scholar
  60. H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, M. Takahashi: Micro lens imprinted on Pyrex glass by using amorphous Ni-P alloy mold, Microelectron. Eng. 85, 873–876 (2008)CrossRefGoogle Scholar
  61. C. Tsay, Y.L. Zha, C.B. Arnold: Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides, Opt. Express 18, 26744–26753 (2010)CrossRefGoogle Scholar
  62. Y.L. Zha, M. Waldmann, C.B. Arnold: A review on solution processing of chalcogenide glasses for optical components, Opt. Mater. Express 3, 1259–1272 (2013)CrossRefGoogle Scholar
  63. H. Krause, W. Mönch, H. Zappe: Replicated, high-aspect-ratio micro-optical components fabricated from inorganic solgel materials, Appl. Opt. 45, 4843–4849 (2006)CrossRefGoogle Scholar
  64. V.K. Parashar, A. Sayah, M. Pfeffer, F. Schoch, J. Gobrecht, M.A.M. Gijs: Nano-replication of diffractive optical elements in sol-gel derived glasses, Microelectron. Eng. 67/68, 710–719 (2003)CrossRefGoogle Scholar
  65. M.T. Gale: Replication technology for micro-optics and optical microsystems, Proc. SPIE 5177, 113–120 (2003)CrossRefGoogle Scholar
  66. X.C. Yuan, W.X. Yu, M. He, J. Bu, W.C. Cheong, H.B. Niu, X. Peng: Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass, Appl. Phys. Lett. 86, 114102 (2005)CrossRefGoogle Scholar
  67. Y. Huang, L.J. Liu, M. Johnson, A.C. Hillier, M. Lu: One-step sol-gel imprint lithography for guided-mode resonance structures, Nanotechnology 27, 095–302 (2016)Google Scholar
  68. S.K. Smoukov, K.J.M. Bishop, R. Klajn, C.J. Campbell, B.A. Grzybowski: Cutting into solids with micropatterned gels, Adv. Mater. 17, 1361 (2005)CrossRefGoogle Scholar
  69. B.A. Grzybowski, K.J.M. Bishop: Micro- and nanoprinting into solids using reaction-diffusion etching and hydrogel stamps, Small 5, 22–27 (2009)CrossRefGoogle Scholar
  70. G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O'Brien: Laser written waveguide photonic quantum circuits, Opt. Express 17, 12546–12554 (2009)CrossRefGoogle Scholar
  71. C. Corbari, A. Champion, M. Gecevicius, M. Beresna, Y. Bellouard, P.G. Kazansky: Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass, Opt. Express 21, 3946–3958 (2013)CrossRefGoogle Scholar
  72. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann: Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63, 109–115 (1996)CrossRefGoogle Scholar
  73. H. Ebendorff-Heidepriem: Laser writing of waveguides in photosensitive glasses, Opt. Mater. 25, 109–115 (2004)CrossRefGoogle Scholar
  74. A.K. Mairaj, P. Hua, H.N. Rutt, D.W. Hewak: Fabrication and characterization of continuous wave direct UV (lambda = 244 nm) written channel waveguides in chalcogenide (Ga:La:S) glass, J. Lightwave Technol. 20, 1578–1584 (2002)CrossRefGoogle Scholar
  75. W.X. Yu, X.C. Yuan, N.Q. Ngo, W.X. Qui, W.C. Cheong, V. Koudriachov: Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing, Opt. Express 10, 443–448 (2002)CrossRefGoogle Scholar
  76. M. Svalgaard, C.V. Poulsen, A. Bjarklev, O. Poulsen: Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films, Electron. Lett. 30, 1401–1403 (1994)CrossRefGoogle Scholar
  77. M. Svalgaard, M. Kristensen: Directly UV written silica-on-silicon planar waveguides with low loss, Electron. Lett. 33, 861–863 (1997)CrossRefGoogle Scholar
  78. C.B.E. Gawith, A. Fu, T. Bhutta, P. Hua, D.P. Shepherd, E.R. Taylor, P.G.R. Smith, D. Milanese, M. Ferraris: Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass, Appl. Phys. Lett. 81, 3522–3524 (2002)CrossRefGoogle Scholar
  79. T. Anderson, L. Petit, N. Carlie, J. Choi, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, M. Richardson: Femtosecond laser photo-response of Ge23Sb7S70 films, Opt. Express 16, 20081–20098 (2008)CrossRefGoogle Scholar
  80. S. Ramachandran, S.G. Bishop, J.P. Guo, D.J. Brady: Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening, IEEE Photonics Technol. Lett. 8, 1041–1043 (1996)CrossRefGoogle Scholar
  81. I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, A. Lipovskii: Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam, J. Appl. Phys. 93, 2343–2348 (2003)CrossRefGoogle Scholar
  82. S. Nolte, M. Will, J. Burghoff, A. Tuennermann: Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics, Appl. Phys. A 77, 109–111 (2003)CrossRefGoogle Scholar
  83. J. Lapointe, M. Gagne, M.J. Li, R. Kashyap: Making smart phones smarter with photonics, Opt. Express 22, 15473–15483 (2014)CrossRefGoogle Scholar
  84. J. Lapointe, F. Parent, E.S. de Lima, S. Loranger, R. Kashyap: Toward the integration of optical sensors in smartphone screens using femtosecond laser writing, Opt. Lett. 40, 5654–5657 (2015)CrossRefGoogle Scholar
  85. M. Beresna, M. Gecevicius, P.G. Kazansky: Ultrafast laser direct writing and nanostructuring in transparent materials, Adv. Opt. Photonics 6, 293–339 (2014)CrossRefGoogle Scholar
  86. R.R. Gattass, E. Mazur: Femtosecond laser micromachining in transparent materials, Nat. Photonics 2, 219–225 (2008)CrossRefGoogle Scholar
  87. R. Osellame, G. Cerullo, R. Ramponi: Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, Berlin 2012)CrossRefGoogle Scholar
  88. G.D. Valle, R. Osellame, P. Laporta: Micromachining of photonic devices by femtosecond laser pulses, J. Opt. A Pure Appl. Opt. 11, 013001 (2009)CrossRefGoogle Scholar
  89. M. Ams, G.D. Marshall, P. Dekker, J.A. Piper, M.J. Withford: Ultrafast laser written active devices, Laser Photonics Rev. 3, 535–544 (2009)CrossRefGoogle Scholar
  90. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, B. Poumellec: Anatomy of a femtosecond laser processed silica waveguide, Opt. Mater. Express 1, 998–1008 (2011)CrossRefGoogle Scholar
  91. F. Watt, M.B.H. Breese, A.A. Bettiol, J.A. van Kan: Proton beam writing, Mater. Today 10, 20–29 (2007)CrossRefGoogle Scholar
  92. A.A. Bettiol, S.Y. Chiam, E.J. Teo, C. Udalagama, S.F. Chan, S.K. Hoi, J.A. van Kan, M.B.H. Breese, F. Watt: Advanced applications in microphotonics using proton beam writing, Nucl. Instr. Meth. Phys. Res. B 267, 2280–2284 (2009)CrossRefGoogle Scholar
  93. Q. An, C. Cheng, S.K. Vanga, A.A. Bettiol, F. Chen: Proton beam writing of chalcogenide glass: A new approach for fabrication of channel waveguides at telecommunication O and C bands, J. Lightwave Technol. 32, 4365–4369 (2014)CrossRefGoogle Scholar
  94. A.A. Bettiol, S.V. Rao, E.J. Teo, J.A. van Kan, F. Watt: Fabrication of buried channel waveguides in photosensitive glass using proton beam writing, Appl. Phys. Lett. 88, 171106 (2006)CrossRefGoogle Scholar
  95. K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, F. Watt: Erbium-doped waveguide amplifiers fabricated using focused proton beam writing, Appl. Phys. Lett. 84, 684–686 (2004)CrossRefGoogle Scholar
  96. Y. Handa, T. Suhara, H. Nishihara, J. Koyama: Microgratings for high-efficiency guided-beam deflection fabricated by electron-beam direct-writing techniques, Appl. Opt. 19, 2842–2847 (1980)CrossRefGoogle Scholar
  97. T. Suhara, H. Nishihara, J. Koyama: Electron-beam-induced refractive-index change of amorphous-semiconductors, Jpn. J. Appl. Phys. 14, 1079–1080 (1975)CrossRefGoogle Scholar
  98. E.-B. Kley, M. Cumme, L.-C. Wittig, C. Wu: Adapting existing e-beam writers to write HEBS-glass gray-scale masks. In: Proc. Optoelectron. 99, Integr. Optoelectron. Devices (1999) pp. 35–45Google Scholar
  99. S. Rizvi: Handbook of Photomask Manufacturing Technology (CRC, Boca Raton 2005)Google Scholar
  100. M. Baba, T. Ikeda: A new inorganic electron resist using amorphous Wo3 film, Jpn. J. Appl. Phys. 20, L149–L152 (1981)CrossRefGoogle Scholar
  101. J. Stowers, D.A. Keszler: High resolution, high sensitivity inorganic resists, Microelectron. Eng. 86, 730–733 (2009)CrossRefGoogle Scholar
  102. M. Kang, S. Kim, J. Jung, H. Kim, I. Shin, C. Jeon, H. Lee: Inorganic resist materials based on zirconium phosphonate for atomic force microscope lithography, Proc. SPIE 9051, 905110 (2014)CrossRefGoogle Scholar
  103. M.S.M. Saifullah, H. Namatsu, T. Yamaguchi, K. Yamazaki, K. Kurihara: Spin-coatable Al2O3 resists in electron beam nanolithography, Proc. SPIE 3678, 633–642 (1999)CrossRefGoogle Scholar
  104. K.D. Kolwicz, M.S. Chang: Silver-halide chalcogenide glass inorganic resists for x-ray-lithography, J. Electrochem. Soc. 127, 135–138 (1980)CrossRefGoogle Scholar
  105. H. Jain, M. Vlcek: Glasses for lithography, J. Non-Cryst. Solids 354, 1401–1406 (2008)CrossRefGoogle Scholar
  106. A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima: New inorganic electron resist of high contrast, Appl. Phys. Lett. 31, 161–163 (1977)CrossRefGoogle Scholar
  107. A. Yoshikawa, O. Ochi, Y. Mizushima: Dry development of Se-Ge inorganic photoresist, Appl. Phys. Lett. 36, 107–109 (1980)CrossRefGoogle Scholar
  108. K. Balasubramanyam, L. Karapiperis, C.A. Lee, A.L. Ruoff: An inorganic resist for ion-beam microfabrication, J. Vac. Sci. Technol. 19, 18–22 (1981)CrossRefGoogle Scholar
  109. A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Heffner, H. Jain: Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning, J. Micro/Nanolith., MEMS MOEMS 8, 043012 (2009)CrossRefGoogle Scholar
  110. V. Lyubin: Chalcogenide glassy photoresists: History of development, properties, and applications, Phys. Status Solidi (b) 246, 1758–1767 (2009)CrossRefGoogle Scholar
  111. I. Utke, S. Moshkalev, P. Russell: Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford Univ. Press, Oxford 2012)Google Scholar
  112. C.A. Volkert, A.M. Minor: Focused ion beam microscopy and micromachining, MRS Bulletin 32, 389–399 (2007)CrossRefGoogle Scholar
  113. R.M. Langford, P.M. Nellen, J. Gierak, Y. Fu: Focused ion beam micro-and nanoengineering, MRS Bulletin 32, 417–423 (2007)CrossRefGoogle Scholar
  114. T. Izawa, H. Nakagome: Optical waveguide formed by electrically induced migration of ions in glass plates, Appl. Phys. Lett. 21, 584 (1972)CrossRefGoogle Scholar
  115. T.G. Giallorenzi, E.J. West, R. Kirk, R. Ginther, R.A. Andrews: Optical waveguides formed by thermal migration of ions in glass, Appl. Opt. 12, 1240–1245 (1973)CrossRefGoogle Scholar
  116. E. Fogret, G. Fonteneau, J. Lucas, R. Rimet: Fluoride glass planar optical waveguides by anionic exchange, Opt. Mater. 5, 87–95 (1996)CrossRefGoogle Scholar
  117. E. Josse, G. Fonteneau, J. Lucas: Low-phonon waveguides made by F-/Cl- exchange on fluoride glasses, Mater. Res. Bull. 32, 1139–1146 (1997)CrossRefGoogle Scholar
  118. J.L. Jackel: Glass waveguides made using low melting point nitrate mixtures, Appl. Opt. 27, 472–475 (1988)CrossRefGoogle Scholar
  119. A. Tervonen, B.R. West, S. Honkanen: Ion-exchanged glass waveguide technology: A review, Opt. Eng. 50, 071107 (2011)CrossRefGoogle Scholar
  120. P. Camy, J.E. Roman, F.W. Willems, M. Hempstead, J.C. van der Plaats, C. Prel, A. Beguin, A.M.J. Koonen, J.S. Wilkinson, C. Lerminiaux: Ion-exchanged planar lossless splitter at 1.5 \(\upmu\)m, Electron. Lett. 32, 321–323 (1996)CrossRefGoogle Scholar
  121. S. Das, D.F. Geraghty, S. Honkanen, N. Peyghambarian: MMI splitters by ion-exchange in glass. In: Proc. Symp. Integr. Optoelectron (2000) pp. 239–247Google Scholar
  122. A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi: A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing, IEEE Photonics Technol. Lett. 3, 516–518 (1991)CrossRefGoogle Scholar
  123. B. Buchold, E. Voges: Polarisation insensitive arrayed-waveguide grating multiplexers with ion-exchanged waveguides in glass, Electron. Lett. 32, 2248–2250 (1996)CrossRefGoogle Scholar
  124. A. Yiyan, W.K. Chan, T.J. Gmitter, L.T. Florez, J.L. Jackel, E. Yablonovitch, R. Bhat, J.P. Harbison: Grafted GaAs detectors on lithium-niobate and glass optical wave-guides, IEEE Photonics Technol. Lett. 1, 379–380 (1989)CrossRefGoogle Scholar
  125. M. Nannini, E. Grondin, A. Gorin, V. Aimez, J.E. Broquin: Hybridization of III–V semiconductor membranes onto ion-exchanged waveguides, IEEE J. Sel. Top. Quantum Electron. 11, 547–554 (2005)CrossRefGoogle Scholar
  126. S. Honkanen, B.R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, R. Kostuk, J. Castro, D. Geraghty: Recent advances in ion exchanged glass waveguides and devices, Phys. Chem. Glasses 47, 110–120 (2006)Google Scholar
  127. S. Wong, E. Pun, P. Chung: Er3+/Yb3+ codoped phosphate glass waveguide amplifier using Ag+/Li+ ion exchange, IEEE Photonics Technol. Lett. 14, 80–82 (2002)CrossRefGoogle Scholar
  128. C. Florea, K.A. Winick: Ytterbium-doped glass waveguide laser fabricated by ion exchange, J. Lightwave Technol. 17, 1593–1601 (1999)CrossRefGoogle Scholar
  129. K.A. Winick, G.L. Vossler: Erbium:ytterbium planar waveguide laser in ion-exchanged glass, Proc. SPIE 2996, 121–134 (1997)CrossRefGoogle Scholar
  130. P.D. Townsend, P. Chandler, L. Zhang: Optical Effects of Ion Implantation, Vol. 13 (Cambridge Univ. Press, Cambridge 2006)Google Scholar
  131. M. Nastasi, J. Mayer, J.K. Hirvonen: Ion–Solid Interactions: Fundamentals and Applications (Cambridge Univ. Press, Cambridge 1996)CrossRefGoogle Scholar
  132. G.C. Righini, A. Chiappini: Glass optical waveguides: A review of fabrication techniques, Opt. Eng. 53, 071819 (2014)CrossRefGoogle Scholar
  133. W. Wesch, E. Wendler: Ion Beam Modification of Solids: Ion-Solid Interaction and Radiation Damage (Springer, Cham 2016)CrossRefGoogle Scholar
  134. F. Chen, X.L. Wang, K.M. Wang: Development of ion-implanted optical waveguides in optical materials: A review, Opt. Mater. 29, 1523–1542 (2007)CrossRefGoogle Scholar
  135. A. Polman: Erbium implanted thin film photonic materials, J. Appl. Phys. 82, 1–39 (1997)CrossRefGoogle Scholar
  136. B. Min, T.J. Kippenberg, L. Yang, K.J. Vahala, J. Kalkman, A. Polman: Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip, Phys. Rev. A 70, 033803 (2004)CrossRefGoogle Scholar
  137. A. Polman, B. Min, J. Kalkman, T.J. Kippenberg, K.J. Vahala: Ultralow-threshold erbium-implanted toroidal microlaser on silicon, Appl. Phys. Lett. 84, 1037–1039 (2004)CrossRefGoogle Scholar
  138. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour: Inkjet printing-process and its applications, Adv. Mater. 22, 673–685 (2010)CrossRefGoogle Scholar
  139. R. Danzebrink, M.A. Aegerter: Deposition of micropatterned coating using an ink-jet technique, Thin Solid Films 351, 115–118 (1999)CrossRefGoogle Scholar
  140. H.Y. Fan, Y.F. Lu, A. Stump, S.T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G.P. Lopez, C.J. Brinker: Rapid prototyping of patterned functional nanostructures, Nature 405, 56–60 (2000)CrossRefGoogle Scholar
  141. D. Kim, Y. Jeong, C.Y. Koo, K. Song, J. Moon: Thin film transistors with ink-jet printed amorphous oxide semiconductors, Jpn. J. Appl. Phys. 49, 05EB06 (2010)Google Scholar
  142. T. Vidmar, M. Topic, P. Dzik, U.O. Krasovec: Inkjet printing of sol-gel derived tungsten oxide inks, Sol. Energy Mater. Sol. Cells 125, 87–95 (2014)CrossRefGoogle Scholar
  143. E.A. Sanchez, M. Waldmann, C.B. Arnold: Chalcogenide glass microlenses by inkjet printing, Appl. Opt. 50, 1974–1978 (2011)CrossRefGoogle Scholar
  144. J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, J.A. Rogers: High-resolution electrohydrodynamic jet printing, Nat. Mater. 6, 782–789 (2007)CrossRefGoogle Scholar
  145. C.W. Sele, T. von Werne, R.H. Friend, H. Sirringhaus: Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution, Adv. Mater. 17, 997–1001 (2005)CrossRefGoogle Scholar
  146. N.P. Bansal, R.H. Doremus: Handbook of Glass Properties (Academic, Orlando 1986)Google Scholar
  147. J.C. Mauro, Y.Z. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106, 19780–19784 (2009)CrossRefGoogle Scholar
  148. N.M. Parikh: Effect of atmosphere on surface tension of glass, J. Am. Ceram. Soc. 41, 18–22 (1958)CrossRefGoogle Scholar
  149. F.T. O'Neill, J.T. Sheridan: Photoresist reflow method of microlens production Part I: Background and experiments, Optik 113, 391–404 (2002)CrossRefGoogle Scholar
  150. D. Nieto, J. Arines, C. Gomez-Reino, G.M. O'Connor, M.T. Flores-Arias: Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques, J. Appl. Phys. 110, 023108 (2011)CrossRefGoogle Scholar
  151. S.K. Lee, M.G. Kim, K.W. Jo, S.M. Shin, J.H. Lee: A glass reflowed microlens array on a Si substrate with rectangular through-holes, J. Opt. Pure Appl. Opt. 10, 044003 (2008)CrossRefGoogle Scholar
  152. N.P. Eisenberg, M. Klebanov, V. Lyubin, M. Manevich, S. Noach: Infrared microlens arrays based on chalcogenide photoresist, fabricated by thermal reflow process, J. Optoelectron. Adv. Mater. 2, 147–152 (2000)Google Scholar
  153. J. Jackle, K. Kawasaki: Intrinsic roughness of glass surfaces, J. Phys. Cond. Matt. 7, 4351–4358 (1995)CrossRefGoogle Scholar
  154. J.J. Hu, N.N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow, Opt. Express 18, 1469–1478 (2010)CrossRefGoogle Scholar
  155. P.J. Roberts, F. Couny, H. Sabert, B.J. Mangan, D.P. Williams, L. Farr, M.W. Mason, A. Tomlinson, T.A. Birks, J.C. Knight, P.S.J. Russell: Ultimate low loss of hollow-core photonic crystal fibres, Opt. Express 13, 236–244 (2005)CrossRefGoogle Scholar
  156. D. Vernooy, V.S. Ilchenko, H. Mabuchi, E. Streed, H. Kimble: High-Q measurements of fused-silica microspheres in the near infrared, Opt. Lett. 23, 247–249 (1998)CrossRefGoogle Scholar
  157. T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip, Appl. Phys. Lett. 85, 6113–6115 (2004)CrossRefGoogle Scholar
  158. K.J. Vahala: Optical microcavities, Nature 424, 839–846 (2003)CrossRefGoogle Scholar
  159. A.J. Maker, A.M. Armani: Fabrication of silica ultra high quality factor microresonators, J. Vis. Exp. 65, e4164–e4164 (2012)Google Scholar
  160. C. Tsay, E. Mujagic, C.K. Madsen, C.F. Gmachl, C.B. Arnold: Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides, Opt. Express 18, 15523–15530 (2010)CrossRefGoogle Scholar
  161. J.D. Wright, N.A. Sommerdijk: Sol-Gel Materials: Chemistry and Applications (CRS, Boca Raton 2000)Google Scholar
  162. L. Yang, T. Carmon, B. Min, S.M. Spillane, K.J. Vahala: Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process, Appl. Phys. Lett. 86, 091114 (2005)CrossRefGoogle Scholar
  163. V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, L. Maleki: Nonlinear optics and crystalline whispering gallery mode cavities, Phys. Rev. Lett. 92, 043903 (2004)CrossRefGoogle Scholar
  164. S.M. Spillane, T.J. Kippenberg, K.J. Vahala: Ultralow-threshold Raman laser using a spherical dielectric microcavity, Nature 415, 621–623 (2002)CrossRefGoogle Scholar
  165. T. Carmon, K.J. Vahala: Visible continuous emission from a silica microphotonic device by third-harmonic generation, Nat. Phys. 3, 430–435 (2007)CrossRefGoogle Scholar
  166. P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg: Optical frequency comb generation from a monolithic microresonator, Nature 450, 1214–1217 (2007)CrossRefGoogle Scholar
  167. B. Min, T.J. Kippenberg, K.J. Vahala: Compact, fiber-compatible, cascaded Raman laser, Opt. Lett. 28, 1507–1509 (2003)CrossRefGoogle Scholar
  168. S. Montant, A. Le Calvez, E. Freysz, A. Ducasse, M. Couzi: Time-domain separation of nuclear and electronic contributions to the third-order nonlinearity in glasses, J. Opt. Soc. Am. B 15, 2802–2807 (1998)CrossRefGoogle Scholar
  169. J. Li, H. Lee, T. Chen, K.J. Vahala: Characterization of a high coherence, Brillouin microcavity laser on silicon, Opt. Express 20, 20170–20180 (2012)CrossRefGoogle Scholar
  170. P. Del'Haye, T. Herr, E. Gavartin, M.L. Gorodetsky, R. Holzwarth, T.J. Kippenberg: Octave spanning tunable frequency comb from a microresonator, Phys. Rev. Lett. 107, 063901 (2011)CrossRefGoogle Scholar
  171. T. Herr, V. Brasch, J.D. Jost, C.Y. Wang, N.M. Kondratiev, M.L. Gorodetsky, T.J. Kippenberg: Temporal solitons in optical microresonators, Nat. Photonics 8, 145–152 (2014)CrossRefGoogle Scholar
  172. T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity, Phys. Rev. Lett. 93, 083904 (2004)CrossRefGoogle Scholar
  173. X. Yi, Q.F. Yang, K.Y. Yang, M.G. Suh, K. Vahala: Soliton frequency comb at microwave rates in a high-Q silica microresonator, Optica 2, 1078–1085 (2015)CrossRefGoogle Scholar
  174. F. Vollmer, L. Yang: Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices, Nanophotonics 1, 267–291 (2012)CrossRefGoogle Scholar
  175. Y.Y. Zhi, X.C. Yu, Q.H. Gong, L. Yang, Y.F. Xiao: Single nanoparticle detection using optical microcavities, Adv. Mater. 29, 1604920 (2017)CrossRefGoogle Scholar
  176. F. Vollmer, S. Arnold, D. Keng: Single virus detection from the reactive shift of a whispering-gallery mode, Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008)CrossRefGoogle Scholar
  177. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold: Protein detection by optical shift of a resonant microcavity, Appl. Phys. Lett. 80, 4057–4059 (2002)CrossRefGoogle Scholar
  178. J.G. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L.N. He, D.R. Chen, L. Yang: On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, Nat. Photonics 4, 46–49 (2010)CrossRefGoogle Scholar
  179. L.B. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, Q.H. Gong: Detection of single nanoparticles and lentiviruses using microcavity resonance broadening, Adv. Mater. 25, 5616 (2013)CrossRefGoogle Scholar
  180. C.M. Bender, S. Boettcher: Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80, 5243–5246 (1998)CrossRefGoogle Scholar
  181. B. Peng, S.K. Ozdemir, F.C. Lei, F. Monifi, M. Gianfreda, G.L. Long, S.H. Fan, F. Nori, C.M. Bender, L. Yang: Parity-time-symmetric whispering-gallery microcavities, Nat. Phys. 10, 394–398 (2014)CrossRefGoogle Scholar
  182. X.Y. Sun, Q. Du, T. Goto, M.C. Onbasli, D.H. Kim, N.M. Aimon, J. Hu, C.A. Ross: Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation, ACS Photonics 2, 856–863 (2015)CrossRefGoogle Scholar
  183. L. Bi, J. Hu, P. Jiang, H.S. Kim, D.H. Kim, M.C. Onbasli, G.F. Dionne, C.A. Ross: Magneto-optical thin films for on-chip monolithic integration of non-reciprocal photonic devices, Materials 6, 5094–5117 (2013)CrossRefGoogle Scholar
  184. G.S. Wiederhecker, S. Manipatruni, S. Lee, M. Lipson: Broadband tuning of optomechanical cavities, Opt. Express 19, 2782–2790 (2011)CrossRefGoogle Scholar
  185. G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, T.J. Kippenberg: Ultralow-dissipation optomechanical resonators on a chip, Nat. Photonics 2, 627–633 (2008)CrossRefGoogle Scholar
  186. T. Carmon, K.J. Vahala: Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency, Phys. Rev. Lett. 98, 123901 (2007)CrossRefGoogle Scholar
  187. M. Aspelmeyer, T.J. Kippenberg, F. Marquard: Cavity optomechanics, Rev. Mod. Phys. 86, 1391–1452 (2014)CrossRefGoogle Scholar
  188. T.J. Kippenberg, K.J. Vahala: Cavity optomechanics: Back-action at the mesoscale, Science 321, 1172–1176 (2008)CrossRefGoogle Scholar
  189. F. Ruesink, M.A. Miri, A. Alu, E. Verhagen: Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7, 13662 (2016)CrossRefGoogle Scholar
  190. A.H. Safavi-Naeini, T.P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D.E. Chang, O. Painter: Electromagnetically induced transparency and slow light with optomechanics, Nature 472, 69–73 (2011)CrossRefGoogle Scholar
  191. Y.C. Chen, S. Kim, G. Bahl: Brillouin cooling in a linear waveguide, New J. Phys. 18, 115004 (2016)CrossRefGoogle Scholar
  192. C.H. Dong, Z. Shen, C.L. Zou, Y.L. Zhang, W. Fu, G.C. Guo: Brillouin-scattering-induced transparency and non-reciprocal light storage, Nat. Commun. 6, 6193 (2015)CrossRefGoogle Scholar
  193. B. Peng, S.K. Ozdemir, M. Liertzer, W.J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, L. Yang: Chiral modes and directional lasing at exceptional points, Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016)CrossRefGoogle Scholar
  194. B. Peng, S.K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C.M. Bender, F. Nori, L. Yang: Loss-induced suppression and revival of lasing, Science 346, 328–332 (2014)CrossRefGoogle Scholar
  195. W. Chen, Ş.K. Özdemir, G.M. Zhao, J. Wiersig, L. Yang: Exceptional points enhance sensing in an optical microcavity, Nature 548, 192 (2017)CrossRefGoogle Scholar
  196. M.E. Lines: Oxide glasses for fast photonic switching—A comparative-study, J. Appl. Phys. 69, 6876–6884 (1991)CrossRefGoogle Scholar
  197. S.H. Kim, T. Yoko: Nonlinear-optical properties of TeO2-based glasses: MOx-TeO2 (M = Sc, Ti, V, Nb, Mo, Ta, and W) binary classes, J. Am. Ceram. Soc. 78, 1061–1065 (1995)CrossRefGoogle Scholar
  198. G.S. Murugan, T. Suzuki, Y. Ohishi: Raman characteristics and nonlinear optical properties of tellurite and phosphotellurite glasses containing heavy metal oxides with ultrabroad Raman bands, J. Appl. Phys. 100, 023107 (2006)CrossRefGoogle Scholar
  199. R. Stegeman, C. Rivero, K. Richardson, G. Stegeman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, J.C. Champarnaud-Mesjard: Raman gain measurements of thallium-tellurium oxide glasses, Opt. Express 13, 1144–1149 (2005)CrossRefGoogle Scholar
  200. D.W. Hall, M.A. Newhouse, N.F. Borrelli, W.H. Dumbaugh, D.L. Weidman: Nonlinear optical susceptibilities of high-index glasses, Appl. Phys. Lett. 54, 1293–1295 (1989)CrossRefGoogle Scholar
  201. R. Reisfeld, Y. Eckstein: Radiative and non-radiative transition-probabilities and quantum yields for excited-states of Er3+ in germanate and tellurite glasses, J. Non-Cryst. Solids 15, 125–140 (1974)CrossRefGoogle Scholar
  202. K. Sun, W.M. Risen: Rare-earth phosphate-glasses, Solid State Commun 60, 697–700 (1986)CrossRefGoogle Scholar
  203. O. Ogbuu, Q. Du, H. Lin, L. Li, Y. Zou, E. Koontz, C. Smith, S. Danto, K. Richardson, J. Hu: Impact of stoichiometry on structural and optical properties of sputter deposited multicomponent tellurite glass films, J. Am. Ceram. Soc. 98, 1731–1738 (2015)CrossRefGoogle Scholar
  204. P.T. Lin, M. Vanhoutte, N.S. Patel, V. Singh, J. Hu, Y. Cai, R. Camacho-Aguilera, J. Michel, L.C. Kimerling, A. Agarwal: Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals, Opt. Express 20, 2124–2135 (2012)CrossRefGoogle Scholar
  205. M.W. Sckerl, S. Guldberg-Kjaer, M.R. Poulsen, P. Shi, J. Chevallier: Precipitate coarsening and self organization in erbium-doped silica, Phys. Rev. B 59, 13494–13497 (1999)CrossRefGoogle Scholar
  206. S. Tanabe: Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication, C.R. Chim. 5, 815–824 (2002)CrossRefGoogle Scholar
  207. D.L. Yang, E.Y.B. Pun, B.J. Chen, H. Lin: Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides, J. Opt. Soc. Am. B 26, 357–363 (2009)CrossRefGoogle Scholar
  208. S.F. Wong, E.Y.B. Pun, P.S. Chung: Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange, IEEE Photonics Technol. Lett. 14, 80–82 (2002)CrossRefGoogle Scholar
  209. T.T. Fernandez, S.M. Eaton, G.D. Valle, R.M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, P. Laporta: Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass, Opt. Express 18, 20289–20297 (2010)CrossRefGoogle Scholar
  210. S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, A. Fuerbach, M.J. Withford, D.G. Lancaster, H. Ebendorff-Heidepriem: Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics, Int. J. Appl. Glass Sci. 3, 332–348 (2012)CrossRefGoogle Scholar
  211. D.P. Shepherd, D.J.B. Brinck, J. Wang, A.C. Tropper, D.C. Hanna, G. Kakarantzas, P.D. Townsend: 1.9-\(\upmu\)m operation of a Tm: lead germanate glass waveguide laser, Opt. Lett. 19, 954–956 (1994)CrossRefGoogle Scholar
  212. K. Vu, S. Madden: Tellurium dioxide erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain, Opt. Express 18, 19192–19200 (2010)CrossRefGoogle Scholar
  213. K. Vu, S. Farahani, S. Madden: 980 nm pumped erbium doped tellurium oxide planar rib waveguide laser and amplifier with gain in S, C and L band, Opt. Express 23, 747–755 (2015)CrossRefGoogle Scholar
  214. C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, J. Lucas: Chalcogenide glasses with high non linear optical properties for telecommunications, J. Phys. Chem. Solids 62, 1435–1440 (2001)CrossRefGoogle Scholar
  215. T. Wang, X. Gai, W.H. Wei, R.P. Wang, Z.Y. Yang, X. Shen, S. Madden, B. Luther-Davies: Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses, Opt. Mater. Express 4, 1011–1022 (2014)CrossRefGoogle Scholar
  216. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, K. Richardson: Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses, J. Solid State Chem. 182, 2756–2761 (2009)CrossRefGoogle Scholar
  217. B.J. Eggleton, B. Luther-Davies, K. Richardson: Chalcogenide photonics, Nat. Photonics 5, 141–148 (2011)CrossRefGoogle Scholar
  218. G.X. Wang, Q.H. Nie, X.S. Wang, X. Shen, F. Chen, T.F. Xu, S.X. Dai, X.H. Zhang: New far-infrared transmitting Te-based chalcogenide glasses, J. Appl. Phys. 110, 043536 (2011)CrossRefGoogle Scholar
  219. Z.Y. Yang, P. Lucas: Tellurium-based far-infrared transmitting glasses, J. Am. Ceram. Soc. 92, 2920–2923 (2009)CrossRefGoogle Scholar
  220. V. Singh, P.T. Lin, N. Patel, H.T. Lin, L. Li, Y. Zou, F. Deng, C.Y. Ni, J.J. Hu, J. Giammarco, A.P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J.D. Musgraves, K. Richardson, L.C. Kimerling, A.M. Agarwal: Mid-infrared materials and devices on a Si platform for optical sensing, Sci. Technol. Adv. Mater. 15, 014603 (2014)CrossRefGoogle Scholar
  221. L. Labadie, O. Wallner: Mid-infrared guided optics: A perspective for astronomical instruments, Opt. Express 17, 1947–1962 (2009)CrossRefGoogle Scholar
  222. J. Hu, J. Meyer, K. Richardson, L. Shah: Feature issue introduction: Mid-IR photonic materials, Opt. Mater. Express 3, 1571–1575 (2013)CrossRefGoogle Scholar
  223. P.T. Lin, V. Singh, J. Wang, H. Lin, J. Hu, K. Richardson, J.D. Musgraves, I. Luzinov, J. Hensley, L.C. Kimerling: Si-CMOS compatible materials and devices for mid-IR microphotonics, Opt. Mater. Express 3, 1474–1487 (2013)CrossRefGoogle Scholar
  224. H. Lin, Z. Luo, T. Gu, L.C. Kimerling, K. Wada, A. Agarwal, J. Hu: Mid-infrared integrated photonics on silicon: A perspective, Nanophotonics 7, 393–420 (2018)CrossRefGoogle Scholar
  225. J.D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L.C. Kimerling, K.A. Richardson: Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques, Acta Mater 59, 5032–5039 (2011)CrossRefGoogle Scholar
  226. B. Brunetti, V. Piacente, P. Scardala: Torsion measurement of orpiment vapor pressure, J. Chem. Eng. Data 52, 1343–1346 (2007)CrossRefGoogle Scholar
  227. J.D.F. Ramsay, R.G. Avery: Ultrafine oxide powders prepared by electron-beam evaporation. 1. Evaporation and condensation processes, J. Mater. Sci. 9, 1681–1688 (1974)CrossRefGoogle Scholar
  228. E. Lhuillier, S. Keuleyan, P. Zolotavin, P. Guyot-Sionnest: Mid-infrared HgTe/As2S3 field effect transistors and photodetectors, Adv. Mater. 25, 137–141 (2013)CrossRefGoogle Scholar
  229. E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X.Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, B. Dubertret: Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz, Nano Lett. 16, 1282–1286 (2016)CrossRefGoogle Scholar
  230. M.A. Hughes, Y. Fedorenko, B. Gholipour, J. Yao, T.H. Lee, R.M. Gwilliam, K.P. Homewood, S. Hinder, D.W. Hewak, S.R. Elliott, R.J. Curry: n-Type chalcogenides by ion implantation, Nat. Commun. 5, 5346 (2014)CrossRefGoogle Scholar
  231. D. Strand: Ovonics: From science to products, J. Optoelectron. Adv. Mater. 7, 1679–1690 (2005)Google Scholar
  232. T. Katsuyama, S. Satoh, H. Matsumura: Fabrication of high-purity chalcogenide glasses by chemical vapor-deposition, J. Appl. Phys. 59, 1446–1449 (1986)CrossRefGoogle Scholar
  233. C.C. Huang, D.W. Hewak, J.V. Badding: Deposition and characterization of germanium sulphide glass planar waveguides, Opt. Express 12, 2501–2506 (2004)CrossRefGoogle Scholar
  234. E. Sleeckx, P. Nagels, R. Callaerts, M. Vanroy: Plasma-enhanced CVD of amorphous GexS1-X and GexSe1-X films, J. Phys. IV 3, 419–426 (1993)Google Scholar
  235. G.C. Chern, I. Lauks: Spin-coated amorphous-chalcogenide films, J. Appl. Phys. 53, 6979–6982 (1982)CrossRefGoogle Scholar
  236. S. Novak, P.-T. Lin, C. Li, N. Borodinov, Z. Han, C. Monmeyran, N. Patel, Q. Du, M. Malinowski, S. Fathpour, C. Lumdee, C. Xu, P.G. Kik, W. Deng, J. Hu, A. Agarwal, I. Luzinov, K. Richardson: Electrospray deposition of uniform thickness Ge23Sb7S70 and As40S60 chalcogenide glass films, J. Vis. Exp. (2016),  https://doi.org/10.3791/54379CrossRefGoogle Scholar
  237. V. Nazabal, F. Charpentier, J.L. Adam, P. Nemec, H. Lhermite, M.L. Brandily-Anne, J. Charrier, J.P. Guin, A. Moreac: Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films, Int. J. Appl. Ceram. Technol. 8, 990–1000 (2011)CrossRefGoogle Scholar
  238. J. Hu, X. Sun, A.M. Agarwal, J.F. Viens, L.C. Kimerling, L. Petit, N. Carlie, K.C. Richardson, T. Anderson, J. Choi, M. Richardson: Studies on structural, electrical, and optical properties of Cu doped As-Se-Te chalcogenide glasses, J. Appl. Phys. 101, 063520 (2007)CrossRefGoogle Scholar
  239. Y. Zou, H.T. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J.D. Musgraves, K. Richardson, J.J. Hu: Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films, Opt. Mater. Express 2, 1723–1732 (2012)CrossRefGoogle Scholar
  240. A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Heffner, H. Jain: Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning, J. Micro-Nanolithogr. MEMS MOEMS 8, 043012 (2009)CrossRefGoogle Scholar
  241. D.G. Georgiev, P. Boolchand, K.A. Jackson: Intrinsic nanoscale phase separation of bulk As2S3 glass, Philos. Mag. 83, 2941–2953 (2003)CrossRefGoogle Scholar
  242. R.A. Street, R.J. Nemanich, G.A.N. Connell: Thermally induced effects in evaporated chalcogenide films. 2. Optical-absorption, Phys. Rev. B 18, 6915–6919 (1978)CrossRefGoogle Scholar
  243. R.P. Wang, S.J. Madden, C.J. Zha, A.V. Rode, B. Luther-Davies: Annealing induced phase transformations in amorphous As2S3 films, J. Appl. Phys. 100, 063524 (2006)CrossRefGoogle Scholar
  244. D.Y. Choi, S. Madden, D. Bulla, R.P. Wang, A. Rode, B. Luther-Davies: Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance, J. Appl. Phys. 107, 053106 (2010)CrossRefGoogle Scholar
  245. X. Gai, T. Han, A. Prasad, S. Madden, D.Y. Choi, R.P. Wang, D. Bulla, B. Luther-Davies: Progress in optical waveguides fabricated from chalcogenide glasses, Opt. Express 18, 26635–26646 (2010)CrossRefGoogle Scholar
  246. A. Zakery, Y. Ruan, A.V. Rode, M. Samoc, B. Luther-Davies: Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films, J. Opt. Soc. Am. B Opt. Phys. 20, 1844–1852 (2003)CrossRefGoogle Scholar
  247. N. Ho, M.C. Phillips, H. Qiao, P.J. Allen, K. Krishnaswami, B.J. Riley, T.L. Myers, N.C. Anheier: Single-mode low-loss chalcogenide glass waveguides for the mid-infrared, Opt. Lett. 31, 1860–1862 (2006)CrossRefGoogle Scholar
  248. J. Lapointe, Y. Ledemi, S. Loranger, V.L. Iezzi, E.S. de Lima, F. Parent, S. Morency, Y. Messaddeq, R. Kashyap: Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape, Opt. Lett. 41, 203–206 (2016)CrossRefGoogle Scholar
  249. A. Rodenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, R. Thomson: Three-dimensional mid-infrared photonic circuits in chalcogenide glass, Opt. Lett. 37, 392–394 (2012)CrossRefGoogle Scholar
  250. R.M. Bryce, H.T. Nguyen, P. Nakeeran, R.G. DeCorby, P.K. Dwivedi, C.J. Haugen, J.N. McMullin, S.O. Kasap: Direct UV patterning of waveguide devices in AS2Se3 thin films, J. Vac. Sci. Technol. A 22, 1044–1047 (2004)CrossRefGoogle Scholar
  251. R.G. DeCorby, N. Ponnampalam, M.M. Pai, H.T. Nguyen, P.K. Dwivedi, T.J. Clement, C.J. Haugen, J.N. McMullin, S.O. Kasap: High index contrast waveguides in chalcogenide glass and polymer, IEEE J. Select. Top. Quantum Electron. 11, 539–546 (2005)CrossRefGoogle Scholar
  252. M.W. Lee, C. Grillet, C.L.C. Smith, D.J. Moss, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y.L. Ruan, Y.H. Lee: Photosensitive post tuning of chalcogenide photonic crystal waveguides, Opt. Express 15, 1277–1285 (2007)CrossRefGoogle Scholar
  253. J.J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L.C. Kimerling, A. Melloni: Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength, Opt. Lett. 35, 874–876 (2010)CrossRefGoogle Scholar
  254. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B.J. Eggleton, N. Stoltz, P. Petroff, J. Vuckovic: Local tuning of photonic crystal cavities using chalcogenide glasses, Appl. Phys. Lett. 92, 043123 (2008)CrossRefGoogle Scholar
  255. M.W. Lee, C. Grillet, S. Tomljenovic-Hanic, E.C. Magi, D.J. Moss, B.J. Eggleton, X. Gai, S. Madden, D.Y. Choi, D.A.P. Bulla, B. Luther-Davies: Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals, Opt. Lett. 34, 3671–3673 (2009)CrossRefGoogle Scholar
  256. J.F. Viens, C. Meneghini, A. Villeneuve, T.V. Galstian, E.J. Knystautas, M.A. Duguay, K.A. Richardson, T. Cardinal: Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses, J. Lightwave Technol. 17, 1184–1191 (1999)CrossRefGoogle Scholar
  257. S.J. Madden, D.Y. Choi, D.A. Bulla, A.V. Rode, B. Luther-Davies, V.G. Ta'eed, M.D. Pelusi, B.J. Eggleton: Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration, Opt. Express 15, 14414–14421 (2007)CrossRefGoogle Scholar
  258. Q.Y. Du, Y.Z. Huang, J.Y. Li, D. Kita, J. Michon, H.T. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, J.J. Hu: Low-loss photonic device in Ge-Sb-S chalcogenide glass, Opt. Lett. 41, 3090–3093 (2016)CrossRefGoogle Scholar
  259. X. Gai, B. Luther-Davies, T.P. White: Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (\(> \) 750 000), Opt. Express 20, 15503–15515 (2012)CrossRefGoogle Scholar
  260. P. Ma, D.Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies: Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared, Opt. Express 21, 29927–29937 (2013)CrossRefGoogle Scholar
  261. J.J. Hu, L. Li, H.T. Lin, Y. Zou, Q.Y. Du, C. Smith, S. Novak, K. Richardson, J.D. Musgraves: Chalcogenide glass microphotonics: Stepping into the spotlight, Am. Ceram. Soc. Bull. 94, 24–29 (2015)Google Scholar
  262. X. Xia, Q. Chen, C. Tsay, C.B. Arnold, C.K. Madsen: Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared, Opt. Lett. 35, 3228–3230 (2010)CrossRefGoogle Scholar
  263. H.T. Lin, L. Li, F. Deng, C.Y. Ni, S. Danto, J.D. Musgraves, K. Richardson, J.J. Hu: Demonstration of mid-infrared waveguide photonic crystal cavities, Opt. Lett. 38, 2779–2782 (2013)CrossRefGoogle Scholar
  264. H.T. Lin, L. Li, Y. Zou, S. Danto, J.D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P.T. Lin, V. Singh, A. Agarwal, L.C. Kimerling, J.J. Hu: Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators, Opt. Lett. 38, 1470–1472 (2013)CrossRefGoogle Scholar
  265. Y. Zou, D.N. Zhang, H.T. Lin, L. Li, L. Moreel, J. Zhou, Q.Y. Du, O. Ogbuu, S. Danto, J.D. Musgraves, K. Richardson, K.D. Dobson, R. Birkmire, J.J. Hu: High-Performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates, Adv. Opt. Mater. 2, 478–486 (2014)CrossRefGoogle Scholar
  266. T. Kohoutek, J. Orava, A.L. Greer, H. Fudouzi: Sub-micrometer soft lithography of a bulk chalcogenide glass, Opt. Express 21, 9584–9591 (2013)CrossRefGoogle Scholar
  267. I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii: Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass, Opt. Lett. 36, 3882–3884 (2011)CrossRefGoogle Scholar
  268. Y.F. Zhai, R.D. Qi, C.Z. Yuan, W. Zhang, Y.D. Huang: High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling, Appl. Phys. Exp. 9, 052201 (2016)CrossRefGoogle Scholar
  269. Y.L. Zha, P.T. Lin, L. Kimerling, A. Agarwal, C.B. Arnold: Inverted-rib chalcogenide waveguides by solution process, ACS Photonics 1, 153–157 (2014)CrossRefGoogle Scholar
  270. C. Tsay, F. Toor, C.F. Gmachl, C.B. Arnold: Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits, Opt. Lett. 35, 3324–3326 (2010)CrossRefGoogle Scholar
  271. Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. Kimerling, J. Hu: On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors, Appl. Phys. Lett. 109, 071111 (2016)CrossRefGoogle Scholar
  272. V. Singh, T. Zens, J. Hu, J. Wang, J.D. Musgraves, K. Richardson, L.C. Kimerling, A. Agarwal: Evanescently coupled mid-infrared photodetector for integrated sensing applications: Theory and design, Sens. Actuators B Chem. 185, 195–200 (2013)CrossRefGoogle Scholar
  273. L. Li, H.T. Lin, S. Geiger, A. Zerdoum, P. Zhang, O. Ogbuu, Q.Y. Du, X.Q. Jia, S. Novak, C. Smith, K. Richardson, J.D. Musgraves, J.J. Hu: Amorphous thin films for mechanically flexible, multimaterial integrated photonics, Am. Ceram. Soc. Bull. 95, 34–36 (2016)Google Scholar
  274. L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu: High-performance flexible waveguide-integrated photodetectors, Optica 5, 44–51 (2018)CrossRefGoogle Scholar
  275. S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, L. Vivien: Nonlinear optical properties of integrated GeSbS chalcogenide waveguides, Photonics Res. 6, B37–B42 (2018)CrossRefGoogle Scholar
  276. X. Gai, S. Madden, D.Y. Choi, D. Bulla, B. Luther-Davies: Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W-1 m-1 at 1550 nm, Opt. Express 18, 18866–18874 (2010)CrossRefGoogle Scholar
  277. K. Suzuki, T. Baba: Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides, Opt. Express 18, 26675–26685 (2010)CrossRefGoogle Scholar
  278. S. Smolorz, I. Kang, F. Wise, B.G. Aitken, N.F. Borrelli: Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses, J. Non-Cryst. Solids 256, 310–317 (1999)CrossRefGoogle Scholar
  279. T.D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L.K. Oxenløwe, S.J. Madden, D.Y. Choi, D.A. Bulla, M.D. Pelusi, J. Schroder, B. Luther-Davies, B.J. Eggleton: Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal, Opt. Express 18, 17252–17261 (2010)CrossRefGoogle Scholar
  280. Y. Yu, X. Gai, T. Wang, P. Ma, R.P. Wang, Z.Y. Yang, D.Y. Choi, S. Madden, B. Luther-Davies: Mid-infrared supercontinuum generation in chalcogenides, Opt. Mater. Express 3, 1075–1086 (2013)CrossRefGoogle Scholar
  281. K.A. Cerqua-Richardson, J.M. McKinley, B. Lawrence, S. Joshi, A. Villeneuve: Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form, Opt. Mater. 10, 155–159 (1998)CrossRefGoogle Scholar
  282. S. Spalter, H.Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.W. Cheong, R.E. Slusher: Strong self-phase modulation in planar chalcogenide glass waveguides, Opt. Lett. 27, 363–365 (2002)CrossRefGoogle Scholar
  283. Y.L. Ruan, W.T. Li, R. Jarvis, N. Madsen, A. Rode, B. Luther-Davies: Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching, Opt. Express 12, 5140–5145 (2004)CrossRefGoogle Scholar
  284. N.D. Psaila, R.R. Thomson, H.T. Bookey, S.X. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, A.K. Kar: Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide, Opt. Express 15, 15776–15781 (2007)CrossRefGoogle Scholar
  285. Y. Yu, X. Gai, P. Ma, D.Y. Choi, Z.Y. Yang, R.P. Wang, S. Debbarma, S.J. Madden, B. Luther-Davies: A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide, Laser Photonics Rev. 8, 792–798 (2014)CrossRefGoogle Scholar
  286. X. Gai, D.Y. Choi, S. Madden, Z.Y. Yang, R.P. Wang, B. Luther-Davies: Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide, Opt. Lett. 37, 3870–3872 (2012)CrossRefGoogle Scholar
  287. D.S. Zhivotkov, E.A. Romanova, A. Vukovic, S. Phang: Highly non-linear optical microresonators for frequency combs generation. In: Proc. Saratov Fall Meet. 2014: Opt. Technol. Biophys. Med. Xvi; Laser Phys. Photonics Xvi; Comput. Biophys, Vol. 9448 (2015) p. 9448Google Scholar
  288. Y. Guo, J. Wang, Z. Han, Z. Jafari, A. Zarifkar, J. Hu, A.M. Agarwal, L.C. Kimerling, J. Michel, L. Zhang: Wavelength-flexible Kerr frequency comb generation covering a 2000-nm bandwidth in mid-infrared. In: Proc. Mid-Infrared Coherent Sources (2016) p. MM1C.4Google Scholar
  289. Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, J. Hu: Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide, Photonics Res. 6, 506–510 (2018)CrossRefGoogle Scholar
  290. B. Mizaikoff: Waveguide-enhanced mid-infrared chem/bio sensors, Chem. Soc. Rev. 42, 8683–8699 (2013)CrossRefGoogle Scholar
  291. Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, D.T.H. Tan: On-chip mid-infrared gas detection using chalcogenide glass waveguide, Appl. Phys. Lett. 108, 141106 (2016)CrossRefGoogle Scholar
  292. A. Ganjoo, H. Jain, C. Yu, R. Song, J.V. Ryan, J. Irudayaraj, Y.J. Ding, C.G. Pantano: Planar chalcogenide glass waveguides for IR evanescent wave sensors, J. Non-Cryst. Solids 352, 584–588 (2006)CrossRefGoogle Scholar
  293. J.J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, K. Richardson: Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor, Opt. Express 15, 2307–2314 (2007)CrossRefGoogle Scholar
  294. L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, K. Richardson, J.J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson: Development of novel integrated bio/chemical sensor systems using chalcogenide glass materials, Int. J. Nanotechnol. 6, 799–815 (2009)CrossRefGoogle Scholar
  295. K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson: Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors, J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010)CrossRefGoogle Scholar
  296. M.L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compere, B. Bureau: Chalcogenide glass optical waveguides for infrared biosensing, Sensors 9, 7398–7411 (2009)CrossRefGoogle Scholar
  297. J. Charrier, M.L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, V. Nazabal: Evanescent wave optical micro-sensor based on chalcogenide glass, Sens. Actuators B Chem. 173, 468–476 (2012)CrossRefGoogle Scholar
  298. A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, C.G. Pantano: Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films, J. Non-Cryst. Solids 354, 2757–2762 (2008)CrossRefGoogle Scholar
  299. J. Giammarco, B. Zdyrko, L. Petit, J.D. Musgraves, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, I. Luzinov: Towards universal enrichment nanocoating for IR-ATR waveguides, Chem. Commun. 47, 9104–9106 (2011)CrossRefGoogle Scholar
  300. J. Hu, V. Tarasov, N. Carlie, R. Sun, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Low-loss integrated planar chalcogenide waveguides for microfluidic chemical sensing, Proc. SPIE 644, 64440N (2007)CrossRefGoogle Scholar
  301. J.J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L.C. Kimerling: Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: Experiment and analysis, J. Lightwave Technol. 27, 5240–5245 (2009)CrossRefGoogle Scholar
  302. N. Borodinov, A.P. Soliani, Y. Galabura, B. Zdyrko, C. Tysinger, S. Novak, Q. Du, Y. Huang, V. Singh, Z. Han: Gradient polymer nanofoams for encrypted recording of chemical events, ACS Nano 10, 10716–10725 (2016)CrossRefGoogle Scholar
  303. J. Hu, X. Sun, A. Agarwal, L.C. Kimerling: Design guidelines for optical resonator biochemical sensors, J. Opt. Soc. Am. B 26, 1032–1041 (2009)CrossRefGoogle Scholar
  304. J.J. Hu: Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy, Opt. Express 18, 22174–22186 (2010)CrossRefGoogle Scholar
  305. H.T. Lin, Z. Yi, J.J. Hu: Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design, Opt. Lett. 37, 1304–1306 (2012)CrossRefGoogle Scholar
  306. D. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, J. Hu: On-chip infrared spectroscopic sensing: Redefining the benefits of scaling, IEEE J. Select. Top. Quantum Electron. 23, 5900110 (2017)CrossRefGoogle Scholar
  307. L. Su, C.J. Rowlands, S.R. Elliott: Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates, Opt. Lett. 34, 1645–1647 (2009)CrossRefGoogle Scholar
  308. M.J. Schoning, J.P. Kloock: About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis: Technological aspects of fabrication and miniaturization, Electroanalysis 19, 2029–2038 (2007)CrossRefGoogle Scholar
  309. L. Li, H.T. Lin, S.T. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N.S. Lu, J.J. Hu: Integrated flexible chalcogenide glass photonic devices, Nat. Photonics 8, 643–649 (2014)CrossRefGoogle Scholar
  310. H.T. Lin, L. Li, Y. Zou, Q.Y. Du, O. Ogbuu, C. Smith, E. Koontz, J.D. Musgraves, K. Richardson, J.J. Hu: Substrate-blind photonic integration based on high-index glasses, Proc. SPIE 9277, 92770T (2014)CrossRefGoogle Scholar
  311. E.J. McBrearty, P. Mason, D. Orchard, M. Harris, K. Lewis: Optical bonding of high-refractive-index semiconductors using index-matched chalcogenide glass, Proc. SPIE (2004),  https://doi.org/10.1117/12.513577CrossRefGoogle Scholar
  312. X. Sheng, C.A. Bower, S. Bonafede, J.W. Wilson, B. Fisher, M. Meitl, H. Yuen, S.D. Wang, L. Shen, A.R. Banks, C.J. Corcoran, R.G. Nuzzo, S. Burroughs, J.A. Rogers: Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules, Nat. Mater. 13, 593–598 (2014)CrossRefGoogle Scholar
  313. V. Wood, J. Busch, C. Verber: Design, fabrication and evaluation of chalcogenide glass Luneburg lenses for LiNbO3 integrated optical devices, Technical Report NASA-CR-165972, NASA.26:165972 (NASA Langley Research Center, Hampton 1982)Google Scholar
  314. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, S. Fathpour: Heterogeneous microring and Mach–Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon, Opt. Express 23, 22746–22752 (2015)CrossRefGoogle Scholar
  315. M.E. Solmaz: Tunable ring-coupled Mach–Zehnder interferometer based on lithium niobate, J. Mod. Opt. 61, 419–423 (2014)CrossRefGoogle Scholar
  316. R.J. Martin-Palma, C.G. Pantano, A. Lakhtakia: Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics, Appl. Phys. Lett. 93, 083901 (2008)CrossRefGoogle Scholar
  317. H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo: Chalcogenide glass-on-graphene photonics, Nat. Photonics 11, 798–805 (2017)CrossRefGoogle Scholar
  318. S. Deckoff-Jones, H. Lin, D. Kita, H. Zheng, D. Li, W. Zhang, J. Hu: Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors, J. Opt. 20, 044004 (2018)CrossRefGoogle Scholar
  319. L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, S. Fan: Angle-selective perfect absorption with two-dimensional materials, Light Sci. Appl. 5, e16052 (2016)CrossRefGoogle Scholar
  320. H.C. Ko, M.P. Stoykovich, J.Z. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J.B. Geddes, J.L. Xiao, S.D. Wang, Y.G. Huang, J.A. Rogers: A hemispherical electronic eye camera based on compressible silicon optoelectronics, Nature 454, 748–753 (2008)CrossRefGoogle Scholar
  321. D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L.Z. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y.G. Huang, T. Coleman, J.A. Rogers: Epidermal electronics, Science 333, 838–843 (2011)CrossRefGoogle Scholar
  322. E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, P. Van Daele: Highly reliable flexible active optical links, IEEE Photonics Technol. Lett. 22, 287–289 (2010)CrossRefGoogle Scholar
  323. L. Li, Y. Zou, H.T. Lin, J.J. Hu, X.C. Sun, N.N. Feng, S. Danto, K. Richardson, T. Gu, M. Haney: A fully-integrated flexible photonic platform for chip-to-chip optical interconnects, J. Lightwave Technol. 31, 4080–4086 (2013)CrossRefGoogle Scholar
  324. Y. Chen, H. Li, M. Li: Flexible and tunable silicon photonic circuits on plastic substrates, Sci. Rep. 2, 622 (2012)CrossRefGoogle Scholar
  325. J.J. Hu, L. Li, H.T. Lin, P. Zhang, W.D. Zhou, Z.Q. Ma: Flexible integrated photonics: Where materials, mechanics and optics meet, Opt. Mater. Express 3, 1313–1331 (2013)CrossRefGoogle Scholar
  326. L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav: Monolithically integrated stretchable photonics, Light Sci. Appl. 7, 17138 (2018)CrossRefGoogle Scholar
  327. L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, J. Hu: A new twist on glass: A brittle material enabling flexible integrated photonics, Int. J. Appl. Glass Sci. 8, 61–68 (2017)CrossRefGoogle Scholar
  328. C. Charron, E. Fogret, G. Fonteneau, R. Rimet, J. Lucas: Fluoride glass planar optical waveguides, J. Non-Cryst. Solids 184, 222–224 (1995)CrossRefGoogle Scholar
  329. M.E. Lines: Ultralow-loss glasses, Annu. Rev. Mater. Sci. 16, 113–135 (1986)CrossRefGoogle Scholar
  330. I.D. Aggarwal, G. Lu: Fluoride Glass Fiber Optics (Academic Press, Cambridge 2013)Google Scholar
  331. S. Gross, N. Jovanovic, A. Sharp, M. Ireland, J. Lawrence, M.J. Withford: Low loss mid-infrared ZBLAN waveguides for future astronomical applications, Opt. Express 23, 7946–7956 (2015)CrossRefGoogle Scholar
  332. J.L. Adam, F. Smektala, J. Lucas: Active fluoride glass optical waveguides for laser sources, Opt. Mater. 4, 85–90 (1994)CrossRefGoogle Scholar
  333. B. Boulard, C. Jacoboni: Preparation of fluoride glass-films by evaporation, Mater. Res. Bull. 25, 671–677 (1990)CrossRefGoogle Scholar
  334. K. Fujiura, Y. Nishida, H. Sato, S. Sugawara, K. Kobayashi, Y. Terunuma, S. Takahashi: Plasma-enhanced chemical-vapor-deposition of ZrF4-based fluoride glasses, J. Non-Cryst. Solids 161, 14–17 (1993)CrossRefGoogle Scholar
  335. J. Ballato, R.E. Riman, E. Snitzer: Sol-gel synthesis of fluoride optical materials for planar integrated photonic applications, J. Non-Cryst. Solids 213, 126–136 (1997)CrossRefGoogle Scholar
  336. J.D. Shephard, D. Furniss, P.A. Houston, A.B. Seddon: Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting, J. Non-Cryst. Solids 284, 160–167 (2001)CrossRefGoogle Scholar
  337. D. Ganser, J. Gottmann, U. Mackens, U. Weichmann: Pulsed laser deposition of fluoride glass thin films, Appl. Surf. Sci. 257, 954–959 (2010)CrossRefGoogle Scholar
  338. J. Gottmann, L. Moiseev, I. Vasilief, D. Wortmann: Manufacturing of Er:ZBLAN ridge waveguides by pulsed laser deposition and ultrafast laser micromachining for green integrated lasers, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 146, 245–251 (2008)CrossRefGoogle Scholar
  339. J. Gottmann, L. Moiseev, D. Wortmann, I. Vasilief, L. Starovoytova, D. Ganser, R. Wagner: Laser deposition and structuring of laser active planar waveguides of Er:ZBLAN, Nd:YAG and Nd:GGG for integrated waveguide lasers, Proc. SPIE 6459, 64590W (2007)CrossRefGoogle Scholar
  340. C. Jacoboni, O. Perrot, B. Boulard: Vapor-phase deposition of rare-earth-doped PZG glasses, J. Non-Cryst. Solids 184, 184–189 (1995)CrossRefGoogle Scholar
  341. O. Perrot, L. Guinvarch, D. Benhaddou, P.C. Montgomery, R. Rimet, B. Boulard, C. Jacobini: Optical investigation of fluoride glass planar wave-guides made by vapor-phase deposition, J. Non-Cryst. Solids 184, 257–262 (1995)CrossRefGoogle Scholar
  342. E. Lebrasseur, B. Jacquier, M.C.M. de Lucas, E. Josse, J.L. Adam, G. Fonteneau, J. Lucas, Y. Gao, B. Boulard, C. Jacoboni, J.E. Broquin, R. Rimet: Optical amplification and laser spectroscopy of neodymium-doped fluoride glass channel waveguides, J. Alloys Compd. 275, 716–720 (1998)CrossRefGoogle Scholar
  343. P.J. Morais, M.C. Goncalves, R.M. Almeida: Physical vapor deposition of rare-earth doped ZrF4-based glass planar waveguides, J. Non-Cryst. Solids 256, 194–199 (1999)CrossRefGoogle Scholar
  344. S.H. Cho, W.S. Chang, J.G. Kim, K.R. Kim, J.W. Hong: Fabrication of internal diffraction gratings in planar fluoride glass using low-density plasma formation induced by a femtosecond laser, Appl. Surf. Sci. 255, 2069–2074 (2008)CrossRefGoogle Scholar
  345. K. Miura, J.R. Qiu, H. Inouye, T. Mitsuyu, K. Hirao: Photowritten optical waveguides in various glasses with ultrashort pulse laser, Appl. Phys. Lett. 71, 3329–3331 (1997)CrossRefGoogle Scholar
  346. K. Miura, J.R. Qiu, T. Mitsuyu, K. Hirao: Preparation and optical properties of fluoride glass waveguides induced by laser pulses, J. Non-Cryst. Solids 256, 212–219 (1999)CrossRefGoogle Scholar
  347. E. Fogret, G. Fonteneau, J. Lucas, R. Rimet: Fluoride glass planar optical waveguides by cationic exchange, Opt. Mater. 5, 79–86 (1996)CrossRefGoogle Scholar
  348. V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, J.L. Adam: Fluoride and oxyfluoride glasses for optical applications, J. Fluor. Chem. 134, 18–23 (2012)CrossRefGoogle Scholar
  349. T. Ohtsuki, S. Honkanen, N. Peyghambarian, M. Takahashi, Y. Kawamoto, J. Ingenhoff, A. Tervonen, K. Kadono: Evanescent-field amplification in Nd3+-doped fluoride planar waveguide, Appl. Phys. Lett. 69, 2012–2014 (1996)CrossRefGoogle Scholar
  350. I. Vasilief, S. Guy, B. Jacquier, B. Boulard, Y.P. Gao, C. Duverger, H. Haquin, V. Nazabal, J.L. Adam, M. Couchaud, L. Fulbert, C. Cassagnettes, F. Rooms, D. Barbier: Propagation losses and gain measurements in erbium-doped fluoride glass channel waveguides by use of a double-pass technique, Appl. Opt. 44, 4678–4683 (2005)CrossRefGoogle Scholar
  351. N.D. Psaila, R.R. Thomson, H.T. Bookey, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, S. Shen: Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription, Appl. Phys. Lett. 90, 131102 (2007)CrossRefGoogle Scholar
  352. D. Harwood, A. Fu, E. Taylor, R. Moore, Y. West, D. Payne: A 1317 nm neodymium doped fluoride glass waveguide laser, ECOC Proc. 2, 191–192 (2000)Google Scholar
  353. G. Palmer, S. Gross, A. Fuerbach, D.G. Lancaster, M.J. Withford: High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings, Opt. Express 21, 17413–17420 (2013)CrossRefGoogle Scholar
  354. D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T.M. Monro, M. Ams, A. Fuerbach, M.J. Withford: Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser, Opt. Lett. 36, 1587–1589 (2011)CrossRefGoogle Scholar
  355. D.G. Lancaster, S. Gross, A. Fuerbach, H.E. Heidepriem, T.M. Monro, M.J. Withford: Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers, Opt. Express 20, 27503–27509 (2012)CrossRefGoogle Scholar
  356. D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M.J. Withford, T.M. Monro: 2.1 \(\upmu\)m waveguide laser fabricated by femtosecond laser direct-writing in Ho3+,Tm3+:ZBLAN glass, Opt. Lett. 37, 996–998 (2012)CrossRefGoogle Scholar
  357. D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M.J. Withford, T.M. Monro, S.D. Jackson: Efficient 2.9 \(\upmu\)m fluorozirconate glass waveguide chip laser, Opt. Lett. 38, 2588–2591 (2013)CrossRefGoogle Scholar
  358. E.D. Zanotto: A bright future for glass-ceramics, Am. Ceram. Soc. Bull. 89, 19–27 (2010)Google Scholar
  359. N.F. Borrelli: Electro-optic effect in transparent niobate glass-ceramic systems, J. Appl. Phys. 38, 4243 (1967)CrossRefGoogle Scholar
  360. G.H. Beall, D.A. Duke: Transparent glass-ceramics, J. Mater. Sci. 4, 340 (1969)CrossRefGoogle Scholar
  361. P.A. Tick: Are low-loss glass-ceramic optical waveguides possible?, Opt. Lett. 23, 1904–1905 (1998)CrossRefGoogle Scholar
  362. P. Tick, N. Borrelli, I. Reaney: The relationship between structure and transparency in glass-ceramic materials, Opt. Mater. 15, 81–91 (2000)CrossRefGoogle Scholar
  363. A. Edgar, G.V.M. Williams, J. Hamelin: Optical scattering in glass ceramics, Curr. Appl. Phys. 6, 355–358 (2006)CrossRefGoogle Scholar
  364. M. Mattarelli, M. Montagna, P. Verrocchio: Ultratransparent glass ceramics: The structure factor and the quenching of the Rayleigh scattering, Appl. Phys. Lett. 91, 061911 (2007)CrossRefGoogle Scholar
  365. M. Mortier, A. Monteville, G. Patriarche, G. Maze, F. Auzel: New progresses in transparent rare-earth doped glass-ceramics, Opt. Mater. 16, 255–267 (2001)CrossRefGoogle Scholar
  366. T. Berthier, V.M. Fokin, E.D. Zanotto: New large grain, highly crystalline, transparent glass–ceramics, J. Non-Cryst. Solids 354, 1721–1730 (2008)CrossRefGoogle Scholar
  367. M.C. Gonçalves, L.F. Santos, R.M. Almeida: Rare-earth-doped transparent glass ceramics, C.R. Chim. 5, 845–854 (2002)CrossRefGoogle Scholar
  368. Y. Wang, J. Ohwaki: New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion, Appl. Phys. Lett. 63, 3268–3270 (1993)CrossRefGoogle Scholar
  369. M.J. Dejneka: Transparent oxyfluoride glass ceramics, MRS Bulletin 23, 57–62 (1998)CrossRefGoogle Scholar
  370. M. Mortier, A. Bensalah, G. Dantelle, G. Patriarche, D. Vivien: Rare-earth doped oxyfluoride glass-ceramics and fluoride ceramics: Synthesis and optical properties, Opt. Mater. 29, 1263–1270 (2007)CrossRefGoogle Scholar
  371. M.J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149–155 (1998)CrossRefGoogle Scholar
  372. M.J. Dejneka: Rare-earth fluorescence in novel oxyfluoride glasses and glass-ceramics. In: Proc. Optoelectron. High-Power Lasers Appl. (1998),  https://doi.org/10.1117/12.305402CrossRefGoogle Scholar
  373. S. Berneschi, S. Soria, G. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser: Rare-earth-activated glass–ceramic waveguides, Opt. Mater. 32, 1644–1647 (2010)CrossRefGoogle Scholar
  374. B. Samson, P. Tick, N. Borrelli: Efficient neodymium-doped glass-ceramic fiber laser and amplifier, Opt. Lett. 26, 145–147 (2001)CrossRefGoogle Scholar
  375. V. Tikhomirov, A. Seddon, J. Koch, D. Wandt, B. Chichkov: Fabrication of buried waveguides and nanocrystals in Er3+-doped oxyfluoride glass, Phys. Status Solidi (a) 202, R73–R75 (2005)CrossRefGoogle Scholar
  376. A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, C.D. Arfuso: Rare earth-activated glass-ceramic in planar format, Opt. Eng. 50, 071105 (2011)CrossRefGoogle Scholar
  377. Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, G. Righini: Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach, Appl. Phys. Lett. 91, 071909 (2007)CrossRefGoogle Scholar
  378. O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, Y. Gao: Erbium doped fluoride glass–ceramics waveguides fabricated by PVD, J. Non-Cryst. Solids 354, 3586–3591 (2008)CrossRefGoogle Scholar
  379. F.T. Aquino, J.L. Ferrari, S.J.L. Ribeiro, A. Ferrier, P. Goldner, R.R. Gonçalves: Broadband NIR emission in novel sol-gel Er3+-doped SiO2-Nb2O5 glass ceramic planar waveguides for photonic applications, Opt. Mater. 35, 387–396 (2013)CrossRefGoogle Scholar
  380. J.H. Shin, M.J. Kim, S.Y. Seo, C. Lee: Composition dependence of room temperature 1.54 \(\upmu\)m Er3+ luminescence from erbium-doped silicon: Oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition, Appl. Phys. Lett. 72, 1092–1094 (1998)CrossRefGoogle Scholar
  381. A.J. Kenyon, C.E. Chryssou, C.W. Pitt, T. Shimizu-Iwayama, D.E. Hole, N. Sharma, C.J. Humphreys: Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms, J. Appl. Phys. 91, 367–374 (2002)CrossRefGoogle Scholar
  382. R.D. Kekatpure, M.L. Brongersma: Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity, Nano Lett. 8, 3787–3793 (2008)CrossRefGoogle Scholar
  383. N. Prtljaga, D. Navarro-Urrios, A. Tengattini, A. Anopchenko, J.M. Ramírez, J.M. Rebled, S. Estradé, J.-P. Colonna, J.-M. Fedeli, B. Garrido: Limit to the erbium ions emission in silicon-rich oxide films by erbium ion clustering, Opt. Mater. Express 2, 1278–1285 (2012)CrossRefGoogle Scholar
  384. S. Brovelli, N. Chiodini, R. Lorenzi, A. Lauria, M. Romagnoli, A. Paleari: Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices, Nat. Commun. 3, 690 (2012)CrossRefGoogle Scholar
  385. A. Lipovskii, D. Svistunov, D. Tagantsev, B. Tatarintsev, P. Kazansky: Optical waveguides in electrooptical nanophase glass–ceramics, Mater. Lett. 58, 1231–1233 (2004)CrossRefGoogle Scholar
  386. P.A. Krug, R.M. Rogojan, J. Albert: Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic, Appl. Opt. 48, 3429–3437 (2009)CrossRefGoogle Scholar
  387. K. Richardson, A. Buff, C. Smith, L. Sisken, J. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang: Engineering novel infrared glass ceramics for advanced optical solutions. In: SPIE Defense + Security (2016) p. 982205Google Scholar
  388. L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J.D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T.S. Mayer, K. Richardson: Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications, Opt. Mater. Express 7, 3077–3092 (2017)CrossRefGoogle Scholar
  389. D. Strand, D.V. Tsu, R. Miller, M. Hennessey, D. Jablonski: Optical routers based on ovonic phase change materials. In: Proc. Eur. Phase Change Ovonics Symp. (E/PCOS) (2006)Google Scholar
  390. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, H. Tsuda: Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film, Electron. Lett. 46, 1460–1462 (2010)CrossRefGoogle Scholar
  391. M. Rudé, J. Pello, R.E. Simpson, J. Osmond, G. Roelkens, J.J. van der Tol, V. Pruneri: Optical switching at 1.55 \(\upmu\)m in silicon racetrack resonators using phase change materials, Appl. Phys. Lett. 103, 141119 (2013)CrossRefGoogle Scholar
  392. B. Gholipour, J. Zhang, K.F. MacDonald, D.W. Hewak, N.I. Zheludev: An all-optical, non-volatile, bidirectional, phase-change meta-switch, Adv. Mater. 25, 3050–3054 (2013)CrossRefGoogle Scholar
  393. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, H. Tsuda: Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide, Electron. Lett. 46, 368–369 (2010)CrossRefGoogle Scholar
  394. B.-S. Lee, S.G. Bishop: Optical and electrical properties of phase change materials. In: Phase Change Materials, ed. by S. Raoux, M. Wuttig (Springer, Boston 2009) pp. 175–198CrossRefGoogle Scholar
  395. A. Mendoza-Galvan, J. González-Hernández: Drude-like behavior of Ge:Sb:Te alloys in the infrared, J. Appl. Phys. 87, 760–765 (2000)CrossRefGoogle Scholar
  396. P. Hosseini, C.D. Wright, H. Bhaskaran: An optoelectronic framework enabled by low-dimensional phase-change films, Nature 511, 206–211 (2014)CrossRefGoogle Scholar
  397. A.-K.U. Michel, P. Zalden, D.N. Chigrin, M. Wuttig, A.M. Lindenberg, T. Taubner: Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses, ACS Photonics 1, 833–839 (2014)CrossRefGoogle Scholar
  398. Q. Wang, E.T. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev: Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photonics 10, 60–65 (2016)CrossRefGoogle Scholar
  399. A.-K.U. Michel, D.N. Chigrin, T.W. Maß, K. Schönauer, M. Salinga, M. Wuttig, T. Taubner: Using low-loss phase-change materials for mid-infrared antenna resonance tuning, Nano Lett. 13, 3470–3475 (2013)CrossRefGoogle Scholar
  400. D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, S. Elliott: Breaking the speed limits of phase-change memory, Science 336, 1566–1569 (2012)CrossRefGoogle Scholar
  401. S. Ahn, Y. Song, C. Jeong, J. Shin, Y. Fai, Y. Hwang, S. Lee, K. Ryoo, S. Lee, J. Park: Highly manufacturable high density phase change memory of 64Mb and beyond. In: Electron Devices Meet., 2004. IEDM Tech. Digest. IEEE Int (2004) pp. 907–910CrossRefGoogle Scholar
  402. B.-S. Lee, J.R. Abelson, S.G. Bishop, D.-H. Kang, B.-K. Cheong, K.-B. Kim: Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases, J. Appl. Phys. 97, 093509 (2005)CrossRefGoogle Scholar
  403. J. Olson, H. Li, T. Ju, J. Viner, P. Taylor: Optical properties of amorphous GeTe, Sb2Te3, and Ge2Sb2Te5: The role of oxygen, J. Appl. Phys. 99, 3508 (2006)CrossRefGoogle Scholar
  404. S. Hudgens, B. Johnson: Overview of phase-change chalcogenide nonvolatile memory technology, MRS Bulletin 29, 829–832 (2004)CrossRefGoogle Scholar
  405. Y. Zhang, J. Li, J. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang: Broadband transparent optical phase change materials. In: Proc. CLEO Appl. Technol (2017) p. JTh5C.4Google Scholar
  406. Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, J. Hu: Broadband nonvolatile photonic switching based on optical phase change materials: Beyond the classical figure-of-merit, Opt. Lett. 43, 94–97 (2018)CrossRefGoogle Scholar
  407. T. Nirschl, J. Philipp, T. Happ, G. Burr, B. Rajendran, M.-H. Lee, A. Schrott, M. Yang, M. Breitwisch, C.-F. Chen: Write strategies for 2 and 4-bit multi-level phase-change memory. In: Proc. 2007 IEEE Int. Electron Devices Meet (2007) pp. 461–464CrossRefGoogle Scholar
  408. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W.H. Pernice: Integrated all-photonic non-volatile multi-level memory, Nat. Photonics 9, 725–732 (2015)CrossRefGoogle Scholar
  409. M.N. Kozicki, P. Dandamudi, H.J. Barnaby, Y. Gonzalez-Velo: Programmable metallization cells in memory and switching applications, ECS Transaction 58, 47–52 (2013)CrossRefGoogle Scholar
  410. S. Dong, K. Zhang, Z. Yu, J.A. Fan: Electrochemically programmable plasmonic antennas, ACS Nano 10, 6716–6724 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridge, MAUSA
  2. 2.Dept. of Electrical and Systems EngineeringWashington University in St. LouisSt. Louis, MOUSA

Personalised recommendations