Optical Fibers

  • Thierry ChartierEmail author
Part of the Springer Handbooks book series (SHB)


Optical fibers are dielectric waveguides that transport light between two points. They are usually made of high-purity glasses. It is well known that light travels in a straight line in free space but when light is trapped in an optical fiber, it can propagate with bends and can carry information anywhere from a few meters to thousands of kilometers. This property of optical fibers has driven the fabrication of low-loss optical fibers for telecommunication applications. Nowadays, optical fibers are used in many other fields such as lasers, amplifiers, and sensing.

This chapter is organized as follows: In the first part, fundamentals of light guiding in optical fibers will be given. In the second part, after a brief presentation of the fabrication process of optical fibers, some properties of optical fibers such as attenuation, dispersion, polarization effects, and nonlinearities will be presented. In the third part, some types of specialty optical fibers will be described, in particular rare-earth-doped fibers, photonic crystal fibers, nonsilica fibers, and fiber Bragg gratings. Finally, in the fourth part, a focus will be put on some usual applications of optical fibers, in particular for telecommunications, amplifiers, lasers, and sensing.



The author is grateful to Margaux Barbier, Claire Le Page, Michel Joindot (University of Rennes 1, Enssat, France), and Irène Joindot for stimulating discussions and critical reading of the manuscript. The author would also like to thank Thierry Taunay (Photonics Bretagne, France) for his collaboration for writing Sect. 41.2.1 on the fabrication of optical fibers.


  1. A. Ghatak, K. Thyagarajan: Introduction to Fiber Optics (Cambridge Univ. Press, Cambridge 1998)CrossRefGoogle Scholar
  2. A.W. Snyder, J.D. Love: Optical Waveguide Theory (Chapman Hall, London 1983)Google Scholar
  3. B.E.A. Saleh, M.C. Teich: Fundamentals of Photonics, 2nd edn. (Wiley, Chichester 2007)Google Scholar
  4. D. Gloge: Weakly guiding fibers, Appl. Opt. 10(10), 2252 (1971)CrossRefGoogle Scholar
  5. C. Vassallo: Optical Waveguide Concepts (Elsevier, Amsterdam 1991)Google Scholar
  6. T.A. Birks, Y.W. Li: The shape of fiber tapers, J. Lightwave Technol. 10(4), 432 (1992)CrossRefGoogle Scholar
  7. M. Hirano, T. Nakanishi, T. Okuno, M. Onishi: Silica-based highly nonlinear fibers and their application, IEEE J. Sel. Top. Q 15(1), 103 (2009)CrossRefGoogle Scholar
  8. N.G.R. Broderick, H.L. Offerhaus, D.J. Richardson, R.A. Sammut, J. Caplen, L. Dong: Large mode area fibers for high power applications, Opt. Fiber Technol. 5(2), 185 (1999)CrossRefGoogle Scholar
  9. G.P. Agrawal: Nonlinear Fiber Optics, 4th edn. (Academic, Boston 2006)Google Scholar
  10. G.P. Agrawal: Fiber-Optic Communications Systems, 3rd edn. (Wiley, Chichester 2002)CrossRefGoogle Scholar
  11. K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, Y. Chigusa: Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of tranmission distance, Electron. Lett. 38(20), 1168 (2002)CrossRefGoogle Scholar
  12. S.D. Le, D.M. Nguyen, M. Thual, L. Bramerie: M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, J. Troles: Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber, Opt. Express 19(26), B653 (2011)CrossRefGoogle Scholar
  13. G. Genty, S. Coen, J.M. Dudley: Fiber supercontinuum sources, J. Opt. Soc. Am. B 24(8), 1771 (2007)CrossRefGoogle Scholar
  14. M.E. Marhic: Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge Univ. Press, Cambridge 2008)Google Scholar
  15. K. Inoue: Four-wave mixing in an optical fiber in the zero-dispersion wavelength region, J. Lightwave Technol. 10(11), 1553 (1992)CrossRefGoogle Scholar
  16. H. Hu, E. Palushani, M. Galili, H.C. Hansen Mulvad, A. Clausen, L. Katsuo Oxenløwe, P. Jeppesen: 640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion, Opt. Express 18(10), 9961 (2010)CrossRefGoogle Scholar
  17. F.C. Cruz: Optical frequency combs generated by fourwave mixing in optical fibers for astrophysical spectrometer calibration and metrology, Opt. Express 16(17), 13267 (2008)CrossRefGoogle Scholar
  18. A. Mendez, T.F. Morse: Specialty Optical Fibers Handbook (Academic Press, Boston 2007)Google Scholar
  19. M.J.F. Digonnet (Ed.): Rare Earth Doped Fiber Lasers and Amplifiers, 2nd edn. (CRC, Boca Raton 2001)Google Scholar
  20. E. Desurvire: Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, Chichester 1994)Google Scholar
  21. D.J. Richardson, J. Nilsson, W.A. Clarkson: High power fiber lasers: Current status and future perspectives, J. Opt. Soc. Am. B 27(11), B63 (2010)CrossRefGoogle Scholar
  22. A. Bjarklev, J. Broeng, A.S. Bjarklev: Photonics crystal fibres (Springer, Dordrecht 2012)Google Scholar
  23. K. Tajima: Low loss PCF by reduction of hole surface imperfection. In: Proc. 33rd Eur. Conf. Exhib. Opt. Commun. - Post-Deadline Papers (VDE, Frankfurt a.M. 2007) pp. 1–2Google Scholar
  24. J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin: All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21, 1547 (1996)CrossRefGoogle Scholar
  25. P.S.J. Russell: Photonic-crystal fibers, J. Lightwave Technol. 24(12), 4729 (2006)CrossRefGoogle Scholar
  26. M. Michieletto, J.K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, T.T. Alkeskjold: Hollow-core fibers for high power pulse delivery, Opt. Express 24(7), 7103 (2016)CrossRefGoogle Scholar
  27. P.S.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, J.C. Travers: Hollow-core photonic crystal fibres for gas-based nonlinear optics, Nat. Photonics 8, 278–286 (2014)CrossRefGoogle Scholar
  28. T. Ritari, J. Tuominen, H. Ludvigsen, J.C. Petersen, T. Sørensen, T.P. Hansen, H.R. Simonsen: Gas sensing using air-guiding photonic bandgap fibers, Opt. Express 12(17), 4080 (2004)CrossRefGoogle Scholar
  29. S. Février, D.D. Gaponov, P. Roy, M.E. Likhachev, S.L. Semjonov, M.M. Bubnov, E.M. Dianov, M.Y. Yashkov, V.F. Khopin, M.Y. Salganskii, A.N. Guryanov: High-power photonic-bandgap fiber laser, Opt. Lett. 33(9), 989 (2008)CrossRefGoogle Scholar
  30. J.-P. Yehouessi, O. Vanvincq, A. Cassez, M. Douay, Y. Quiquempois, G. Bouwmans, L. Bigot: Extreme large mode area in single-mode pixelated Bragg fiber, Opt. Express 24(5), 4761 (2016)CrossRefGoogle Scholar
  31. J. Marcou (Ed.): Plastic Optical Fibre, Practical Applications (Wiley, Chichester 1997)Google Scholar
  32. M. Saad: Heavy metal fluoride glass fibers and their applications. In: Proc. Asia Commun. Photonics, Conf (2011), Scholar
  33. J.A. Harrington: Infrared Fibers and their Applications (SPIE, Bellingham 2004)CrossRefGoogle Scholar
  34. P. Toupin, L. Brilland, J. Trolès, J.-L. Adam: Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses, Opt. Mater. Express 2, 1359 (2012)CrossRefGoogle Scholar
  35. J. Trolès, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, E. Renversez, F. Smektala, M. El Amraoui, J.-L. Adam, T. Chartier, D. Mechin, L. Brilland: Low loss microstructered chalcogenide fibers for large non linear effects at 1995 nm, Opt. Express 18, 26647 (2010)CrossRefGoogle Scholar
  36. J. Trolès, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T.N. Nguyen, J.L. Adam, G. Renversez: Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization, Fiber Integr. Opt. 28(1), 11 (2009)CrossRefGoogle Scholar
  37. S.D. Le, M. Gay, L. Bramerie, T. Chartier, M. Thual, J.-C. Simon, L. Brilland, D. Méchin, P. Toupin, J. Trolès: All-optical time-domain demultiplexing of 170.8 Gbit/s signal in chalcogenide GeAsSe microstructured fibre, Electron. Lett. 49(2), 136 (2013)CrossRefGoogle Scholar
  38. U. Møller, Y. Yu, I. Kubat, C.R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Trolès, B. Luther-Davies, O. Bang: Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber, Opt. Express 23(3), 3282 (2015)CrossRefGoogle Scholar
  39. K.H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, J. Trolès: Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser, IEEE Photonics Technol. Lett. 25(3), 238 (2013)CrossRefGoogle Scholar
  40. C. Baker, M. Rochette: Highly nonlinear hybrid AsSe-PMMA microtapers, Opt. Express 18(12), 12391–12398 (2010)CrossRefGoogle Scholar
  41. K.T.V. Grattan, D.T. Sun: Fiber optic sensor technology: An overview, Sens. Actuators A 82, 40 (2000)CrossRefGoogle Scholar
  42. R. Kashyap: Fiber Bragg Gratings (Academic, Boston 1999)Google Scholar
  43. J. Hecht: City of Light: The Story of Fiber Optics (Oxford Univ. Press, Oxford 1999)Google Scholar
  44. T.H. Maiman: Stimulated optical radiation in ruby, Nature 187, 493 (1960)CrossRefGoogle Scholar
  45. R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson: Coherent light emission from GaAs junctions, Phys. Rev. Lett. 9(9), 366 (1962)CrossRefGoogle Scholar
  46. K.C. Kao, G.A. Hockham: Dielectric-fibre surface waveguides for optical frequencies, Proc. IEEE 133, 191 (1966)Google Scholar
  47. F.P. Kapron, D.B. Keck, R.D. Maurer: Radiation losses in glass optical waveguides, Appl. Phys. Lett. 17, 423 (1970)CrossRefGoogle Scholar
  48. T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita: Ultimate low-loss single-mode fiber at 1.55 \(\upmu\)m, Electron. Lett. 15, 106 (1979)CrossRefGoogle Scholar
  49. R.J. Mears, L. Reekie, M. Jauncey, D.N. Payne: Low-noise erbium-doped fiber amplifier operating at 1.54 \(\upmu\)m, Electron. Lett. 26, 1026 (1987)CrossRefGoogle Scholar
  50. D.J. Richardson, J.M. Fini, L.E. Nelson: Space-division multiplexing in optical fibres, Nat. Photonics 7, 354 (2013)CrossRefGoogle Scholar
  51. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, B.C. McCollum: Double-clad, offset-core Nd fiber laser. In: Optical Fiber Sensors, OSA Technical Digest Series, PD 5, Vol. 2 (Optical Society of America, New Orleans 1988)Google Scholar
  52. S. Yin, P.B. Ruffin, F.T.S. Yu (Eds.): Fiber Optic Sensors, 2nd edn. (CRC Press, Boca Raton 2008)Google Scholar
  53. H.C. Lefèvre: The Fiber-Optic Gyroscope, 2nd edn. (Artech House, Norwood 2014)Google Scholar
  54. A. Cusano, A. Cutolo, J. Albert (Eds.): Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science, Sharjah 2011)Google Scholar
  55. F. Charpentier, J. Trolès, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, C. Boussard-Plédel, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, B. Bureau: CO2 detection using microstructured chalcogenide fibers, Sens. Lett. 7(5), 745 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CNRS, Institute FotonUniversity of Rennes 1LannionFrance

Personalised recommendations