Crystallization and Glass-Ceramics

  • Mathieu AllixEmail author
  • Laurent Cormier
Part of the Springer Handbooks book series (SHB)


Glass-ceramics are innovative technological materials made up of crystals dispersed in a glass matrix. This dual feature enables the combination of the advantages of glass, mostly ease of shaping/forming, with the specific properties of crystalline phases. Since their discovery in the 1950s, numerous studies have been devoted to glass crystallization mechanisms. Such an understanding is of primary importance to further design glass-ceramics with tailored properties that are closely related to their microstructure. This chapter will thus start with a description of the different nucleation and growth processes. Some practical examples will be provided to illustrate the particular interest of nucleating agents and phase separation in order to master nucleation and growth processes. A brief overview of the complementary characterization techniques used to finely describe the multiscale structure of these glass-ceramic materials will then be presented. Finally, the large range of accessible glass-forming compositions and microstructures will be illustrated by a variety of technological materials combining mechanical, thermal, optical, energetic, and bioactive properties.


  1. 4.1
    W. Höland, G.H. Beall: Glass-Ceramic Technology, 2nd edn. (Wiley, Hoboken 2012)CrossRefGoogle Scholar
  2. 4.2
    D.R. Neuville, L. Cormier, D. Caurant, L. Montagne (Eds.): From Glass to Crystal – Nucleation, Growth and Phase Separation: From Research to Applications (EDP-Sciences, Les Ulis 2017)Google Scholar
  3. 4.3
    M. Montazerian, S.P. Singh, E.D. Zanotto: An analysis of glass-ceramic research and commercialiation, Am. Ceram. Soc. Bull. 94, 30–35 (2015)Google Scholar
  4. 4.4
    R.J. Kirkpatrick: Theory of nucleation in silicate melts, Am. Mineral. 68, 66–77 (1983)Google Scholar
  5. 4.5
    J.W. Gibbs: On the equilibrium of heterogeneous substances, Trans. Conn. Acad. Arts Sci. 3, 108–248 (1876), (1874–1878)Google Scholar
  6. 4.6
    M. Volmer, A. Weber: Keimbildung in übersättigten Gebilden, Z. Phys. Chem. 119, 277 (1926)Google Scholar
  7. 4.7
    R. Becker, W. Döring: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Phys. 24, 719–752 (1935)CrossRefGoogle Scholar
  8. 4.8
    E.D. Zanotto, V.M. Fokin: Recent studies of internal and surface nucleation in silicate glasses, Philos. Trans. R. Soc. A 361, 591–612 (2003)CrossRefGoogle Scholar
  9. 4.9
    Y. Takahashi, M. Osada, H. Masai, T. Fujiwara: Transmission electron microscopy and in situ Raman studies of glassy sanbornite: An insight into nucleation trend and its relation to structural variation, J. Appl. Phys. 108, 063507 (2010)CrossRefGoogle Scholar
  10. 4.10
    J. Deubener, R. Bruckner, M. Sternitzke: Induction time analysis of nucleation and crystal growth in di- and metasilicate glasses, J. Non-Cryst. Solids 163, 1–12 (1993)CrossRefGoogle Scholar
  11. 4.11
    P.C. Soares Jr, E.D. Zanotto, V.M. Fokin, H. Jain: TEM and XRD study of early crystallization of lithium disilicate glasses, J. Non-Cryst. Solids 331, 217–227 (2003)CrossRefGoogle Scholar
  12. 4.12
    V.M. Fokin, E.D. Zanotto, J.W.P. Schmelzer: Homogeneous nucleation versus glass transition temperature of silicate glasses, J. Non-Cryst. Solids 321, 52–65 (2003)CrossRefGoogle Scholar
  13. 4.13
    Y. Takahashi, H. Masai, T. Fujiara: Nucleation tendency and crystallizing phase in silicate glasses: A structural aspect, Appl. Phys. Lett. 95, 071904 (2009)CrossRefGoogle Scholar
  14. 4.14
    E.D. Zanotto: Isothermal and adiabatic nucleation in glass, J. Non-Cryst. Solids 89, 361–370 (1987)CrossRefGoogle Scholar
  15. 4.15
    E.D. Zanotto: Glass crystallization research – A 36-year retrospective. Part I, fundamental studies, Int. J. Appl. Glass Sci. 4, 105–116 (2013)CrossRefGoogle Scholar
  16. 4.16
    J. Schneider, V.R. Mastelaro, H. Panepucci, E.D. Zanotto: 29Si MAS-NMR studies of Qn structural units in metasilicate glasses and their nucleating ability, J. Non-Cryst. Solids 273, 8–18 (2000)CrossRefGoogle Scholar
  17. 4.17
    V.R. Mastelaro, E.D. Zanotto, N. Lequeux, R. Cortes: Relationship between short-range order and ease of nucleation in Na2Ca2Si3O9, CaSiO3 and PbSiO3 glasses, J. Non-Cryst. Solids 262, 191–199 (2000)CrossRefGoogle Scholar
  18. 4.18
    J.G. Longstaffe, U. Werner-Zwanziger, J.F. Schneider, M.L.F. Nascimento, E.D. Zanotto, J.W. Zwanziger: Intermediate-range order of alkali disilicate glasses and its relation to the devitrification mechanism, J. Phys. Chem. C 112, 6151–6159 (2008)CrossRefGoogle Scholar
  19. 4.19
    B. Chen, U. Werner-Zwanziger, M.L.F. Nascimento, L. Ghussn, E.D. Zanotto, J.W. Zwanziger: Structural similarity on multiple length scales and its relation to devitrification mechanism: A solid-state NMR study of alkali diborate glasses and crystals, J. Phys. Chem. C 113, 20725–20732 (2009)CrossRefGoogle Scholar
  20. 4.20
    B. Chen, U. Werner-Zwanziger, J.W. Zwanziger, M.L.F. Nascimento, L. Ghussn, E.D. Zanotto: Correlation of network structure with devitrification mechanism in lithium and sodium diborate glasses, J. Non-Cryst. Solids 356, 2641–2644 (2010)CrossRefGoogle Scholar
  21. 4.21
    D. Kashchiev: Solution of the non-steady state problem in nucleation kinetics, Surf. Sci. 14, 209–220 (1969)CrossRefGoogle Scholar
  22. 4.22
    V.M. Fokin, E.D. Zanotto: Continuous compositional changes of crystal and liquid during crystallization of a sodium calcium silicate glass, J. Non-Cryst. Solids 353, 2459–2468 (2007)CrossRefGoogle Scholar
  23. 4.23
    S. Sen, T. Mukerji: A generalized classical nucleation theory for rough interfaces: Application in the analysis of homogenous nucleation in silicate liquids, J. Non-Cryst. Solids 246, 229–239 (1999)CrossRefGoogle Scholar
  24. 4.24
    M. Roskosz, M.J. Toplis, P. Beson, P. Richet: Nucleation mechanisms: a crystal-chemical investigation of phase forming in highly supercooled aluminosilicate liquids, J. Non-Cryst. Solids 351, 1266–1282 (2005)CrossRefGoogle Scholar
  25. 4.25
    M. Roskosz, M.J. Toplis, P. Richet: Experimental determination of crystal growth rates in highly supercooled aluminosilicate liquids: implications for rate-controlling processes, Am. Mineral. 90, 1146–1156 (2005)CrossRefGoogle Scholar
  26. 4.26
    G. Gruener, P. Odier, D. De Sousa Meneses, P. Florian, P. Richet: Bulk and local dynamics in glass-forming liquids: a viscosity, electrical conductivity, and NMR study of aluminosilicate melts, Phys. Rev. B 64, 24206–24201–24205 (2001)CrossRefGoogle Scholar
  27. 4.27
    T. Kawasaki, H. Tanaka: Formation of a crystal nucleus from liquid, Proc. Natl. Acad. Sci. USA 107, 14036–14041 (2010)CrossRefGoogle Scholar
  28. 4.28
    O. Dargaud, L. Cormier, N. Menguy, G. Patriarche, G. Calas: Mesoscopic scale description of nucleation processes in glasses, Appl. Phys. Lett. 99, 021904 (2011), Scholar
  29. 4.29
    O. Dargaud, L. Cormier, N. Menguy, G. Patriarche: Multi-scale structuration of glasses: Observations of phase separation and nanoscale heterogeneities in glasses by Z-contrast scanning electron transmission microscopy, J. Non-Cryst. Solids 358, 1257–1262 (2012)CrossRefGoogle Scholar
  30. 4.30
    J. Russo, H. Tanaka: The microscopic pathway to crystallization in supercooled liquids, Sci. Rep. 2, 505 (2012)CrossRefGoogle Scholar
  31. 4.31
    J. Russo, H. Tanaka: Nonclassical pathways of crystallization in colloidal systems, MRS Bulletin 41, 369–374 (2016)CrossRefGoogle Scholar
  32. 4.32
    W. Ostwald: Studien über die Bildung und Umwandlung fester Körper, Z. Phys. Chem. 22, 289–330 (1897)Google Scholar
  33. 4.33
    S.Y. Chung, Y.M. Kim, J.G. Kim, Y.J. Kim: Multiphase transformation and Ostwald's rule of stages during crystallization of a metal phosphate, Nat. Phys. 5, 68–73 (2009)CrossRefGoogle Scholar
  34. 4.34
    L. Burgner, M. Weinberg: Crystal growth mechanisms in inorganic glasses, Phys. Chem. Glass.-Eur. J. Glass Sci. Technol. B 42, 184–190 (2001)Google Scholar
  35. 4.35
    R.J. Kirkpatrick: Crystal growth form the melt: A review, Am. Mineral. 60, 798–814 (1975)Google Scholar
  36. 4.36
    J.W. Christian: The Theory of Transformations in Metals and Alloys (Pergamon, Oxford 1975)Google Scholar
  37. 4.37
    M. Avrami: Kinetics of Phase Change. I General Theory, J. Chem. Phys. 7, 1103–1112 (1939)CrossRefGoogle Scholar
  38. 4.38
    A.N. Kolmogorov: On the statistical theory of the crystallization of metals, Bull. Acad. Sci. URSS (Cl. Sci. Math. Nat.) 3, 355 (1937)Google Scholar
  39. 4.39
    W.A. Johnson, R.F. Mehl: Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Min. Eng. 135, 416–458 (1939)Google Scholar
  40. 4.40
    C.N.R. Rao, K.J. Rao: Phase Transitions in Solids (McGraw-Hill, New York 1978)Google Scholar
  41. 4.41
    V.M. Fokin, E.D. Zanotto, N.S. Yuritsyn, J.W.P. Schmelzer: Homogeneous crystal nucleation in silicate glasses: A 40 years perspective, J. Non-Cryst. Solids 352, 2681–2714 (2006)CrossRefGoogle Scholar
  42. 4.42
    J.W.P. Schmelzer, A.R. Gokhman, V.M. Fokin: Dynamics of first-order phase transitions in multicomponent systems: A new theoretical approach, J. Colloid. Interface Sci. 272, 109–133 (2004)CrossRefGoogle Scholar
  43. 4.43
    P.G. Vekilov: Nucleation, Cryst. Growth Des. 10, 5007–5019 (2010)CrossRefGoogle Scholar
  44. 4.44
    K.F. Kelton, A.L. Greer, C.V. Thompson: Transient nucleation in condensed systems, J. Chem. Phys. 79, 6261–6276 (1983)CrossRefGoogle Scholar
  45. 4.45
    A. Dillmann, G.E.A. Meier: Homogeneous nucleation of supersaturated vapors, Chem. Phys. Lett. 160, 71–74 (1989)CrossRefGoogle Scholar
  46. 4.46
    K. Lakshmi Narayan, K.F. Kelton, C.S. Ray: Effect of Pt doping on nucleation and crystallization in Li2O-2SiO2 glass: experimental measurements and computer modeling, J. Non-Cryst. Solids 195, 148–157 (1996)CrossRefGoogle Scholar
  47. 4.47
    K.S. Ranasinghe, P.F. Wei, K.F. Kelton, C.S. Ray, D.E. Day: Verification of an analytical method for measuring crystal nucleation rates in glasses from DTA data, J. Non-Cryst. Solids 337, 261–267 (2004)CrossRefGoogle Scholar
  48. 4.48
    J.W. Cahn, J.E. Hilliard: Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28, 258–267 (1958)CrossRefGoogle Scholar
  49. 4.49
    J.W. Cahn: Spinodal decomposition, Acta Metall. 9, 795–801 (1961)CrossRefGoogle Scholar
  50. 4.50
    J.W. Cahn, R.J. Charles: Initial stages of phase separation in glasses, Phys. Chem. Glasses 6, 181–191 (1965)Google Scholar
  51. 4.51
    J.W.P. Schmelzer: Crystal nucleation and growth in glass-forming melts: Experiment and theory, J. Non-Cryst. Solids 354, 269–278 (2008)CrossRefGoogle Scholar
  52. 4.52
    P.G. Vekilov: Dense liquid precursor for the nucleation of ordered solid phases from solution, Cryst. Growth Des. 4, 671–685 (2004)CrossRefGoogle Scholar
  53. 4.53
    J.W.P. Schmelzer, V.G. Baidakov, G.S. Boltachev: Kinetics of boiling in binary liquid-gas solutions: Comparison of different approaches, J. Chem. Phys. 119, 6166–6183 (2003)CrossRefGoogle Scholar
  54. 4.54
    J.W.P. Schmelzer, G.S. Boltachev, V.G. Baidakov: Classical and generalized Gibbs' approaches and the work of critical cluster formation in nucleation theory, J. Chem. Phys. 124, 194503 (2006)CrossRefGoogle Scholar
  55. 4.55
    A.S. Abyzov, J.W.P. Schmelzer, A.A. Kovalchuk, V.V. Slezov: Evolution of cluster size-distributions in nucleation-growth and spinodal decomposition processes in a regular solution, J. Non-Cryst. Solids 356, 2915–2922 (2010)CrossRefGoogle Scholar
  56. 4.56
    J.W.P. Schmelzer, A.S. Abyzov, J. Moller: Nucleation versus spinodal decomposition in phase formation processes in multicomponent solutions, J. Chem. Phys. 121, 6900–6917 (2004)CrossRefGoogle Scholar
  57. 4.57
    J.F. Lutsko, G. Nicolis: Theoretical evidence for a dense fluid precursor to crystallization, Phys. Rev. Lett. (2006), Scholar
  58. 4.58
    P.R. ten Wolde, D. Frenkel: Enhancement of protein crystal nucleation by critical density fluctuations, Science 277, 1975–1978 (1997)CrossRefGoogle Scholar
  59. 4.59
    V.J. Anderson, H.N.W. Lekkerkerker: Insights into phase transition kinetics from colloid science, Nature 416, 811–815 (2002)CrossRefGoogle Scholar
  60. 4.60
    S.T. Yau, P.G. Vekilov: Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization, J. Am. Chem. Soc. 123, 1080–1089 (2001)CrossRefGoogle Scholar
  61. 4.61
    D. Erdemir, A.Y. Lee, A.S. Myerson: Nucleation of crystals from solution: Classical and two-step models, Acc. Chem. Res. 42, 621–629 (2009)CrossRefGoogle Scholar
  62. 4.62
    W. Pan, A.B. Kolomeisky, P.G. Vekilov: Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach, J. Chem. Phys. 122, 174905 (2005)CrossRefGoogle Scholar
  63. 4.63
    J. de Yoreo: Crystal nucleation: More than one pathway, Nat. Mater. 12, 284–285 (2013)CrossRefGoogle Scholar
  64. 4.64
    W. Holand, V. Rheinberger, M. Schweiger: Control of nucleation in glass ceramics, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 361, 575–588 (2003)CrossRefGoogle Scholar
  65. 4.65
    L.R. Pinckney, G.H. Beall: Microstructural evolution in some silicate glass-ceramics: A review, J. Am. Ceram. Soc. 91, 773–779 (2008)CrossRefGoogle Scholar
  66. 4.66
    E.D. Zanotto, V.M. Fokin: Recent studies of internal and surface nucleation in silicate glasses, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 361, 591–0612 (2003)CrossRefGoogle Scholar
  67. 4.67
    S.D. Stookey: Catalyzed crystallization of glass in theory and practice, Ind. Eng. Chem. 51, 805–808 (1959)CrossRefGoogle Scholar
  68. 4.68
    M. Dittmer, M. Müller, C. Rüssel: Self-organized nanocrystallinity in MgO-Al2O3-SiO2 glasses with ZrO2 as nucleating agent, Mater. Chem. Phys. 124, 1083–1088 (2010)CrossRefGoogle Scholar
  69. 4.69
    G.H. Beall, B.R. Karstett, H.L. Rittler: Crystallization and chemical strengthening of stuffed beta-quartz glass-ceramics, J. Am. Ceram. Soc. 50, 181–190 (1967)CrossRefGoogle Scholar
  70. 4.70
    G.H. Beall: Design and properties of glass-ceramics, Annu. Rev. Mater. Sci. 22, 91–119 (1992)CrossRefGoogle Scholar
  71. 4.71
    C. Patzig, T. Höche, M. Dittmer, C. Rüssel: Temporal evolution of crystallization in MgO-Al2O3-SiO2-ZrO2 glass ceramics, Cryst. Growth Des. 12, 2059–2067 (2012)CrossRefGoogle Scholar
  72. 4.72
    S. Bhattacharyya, C. Bocker, T. Heil, J.R. Jinschek, T. Höche, C. Rüssel, H. Kohl: Experimental evidence of self-limited growth of nanocrystals in glass, Nano Lett. 9, 2493–2496 (2009)CrossRefGoogle Scholar
  73. 4.73
    T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Rüssel, I. Avramov: Temporal evolution of diffusion barriers surrounding ZrTiO4 nuclei in lithia aluminosilicate glass-ceramics, Cryst. Growth Des. 12, 1556–1563 (2012)CrossRefGoogle Scholar
  74. 4.74
    G.H. Beall, L.R. Pinckney: Nanophase glass-ceramics, J. Am. Ceram. Soc. 82, 5–16 (1999)CrossRefGoogle Scholar
  75. 4.75
    M.J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149–155 (1998)CrossRefGoogle Scholar
  76. 4.76
    M. Höland, A. Dommann, W. Holand, V. Rheinberger: Microstructure formation and surface properties of a rhenanite-type glass-ceramic containing 6.0 wt% P2O5, Glass Sci. Technol. 78, 153–158 (2005)Google Scholar
  77. 4.77
    J. Macdowell, G.H. Beall: Immiscibility and crystallization in Al2O3-SiO2 glasses, J. Am. Ceram. Soc. 52, 17–25 (1969)CrossRefGoogle Scholar
  78. 4.78
    S. Chenu, E. Véron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, M. Allix: Tuneable nanostructuring of highly transparent zinc gallogermanate glasses and glass-ceramics, Adv. Opt. Mater. 2, 364–372 (2014)CrossRefGoogle Scholar
  79. 4.79
    S. Chenu, E. Véron, C. Genevois, A. Garcia, G. Matzen, M. Allix: Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics, J. Mater. Chem. C 2, 10002–10010 (2014)CrossRefGoogle Scholar
  80. 4.80
    P.F. James: Glass-ceramics – New compositions and uses, J. Non-Cryst. Solids 181, 1–15 (1995)CrossRefGoogle Scholar
  81. 4.81
    C.J. Brinker, G.W. Scherer: Sol-Gel Science (Academic, New York 1990)Google Scholar
  82. 4.82
    T. Ban, Y. Ohta, Y. Takahashi: Low-temperature crystallization of forsterite and orthoenstatite, J. Am. Ceram. Soc. 82, 22–26 (1999)CrossRefGoogle Scholar
  83. 4.83
    E. Bernardo, G. Scarinci, E. Edme, U. Michon, N. Planty: Fast-sintered gehlenite glass-ceramics from plasma-vitrified municipal solid waste incinerator fly ashes, J. Am. Ceram. Soc. 92, 528–530 (2009)CrossRefGoogle Scholar
  84. 4.84
    D.T. Weaver, D.C. Van Aken, J.D. Smith: The role of bulk nucleation in the formation of crystalline cordierite coatings produced by air plasma spraying, Mater. Sci. Eng. A 339, 96–102 (2003)CrossRefGoogle Scholar
  85. 4.85
    C.R. Chang, J.H. Jean: Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B2O3-SiO2 glass-ceramics, J. Am. Ceram. Soc. 82, 1725–1732 (1999)CrossRefGoogle Scholar
  86. 4.86
    W. Wisniewski, M. Patschger, S. Murdzheva, C. Thieme, C. Rüssel: Oriented nucleation of both Ge-fresnoite and benitoite/BaGe4O9 during the surface crystallisation of glass studied by electron backscatter diffraction, Sci. Rep. (2016), Scholar
  87. 4.87
    T. Höche, R. Keding, C. Rüssel, R. Hergt: Microstructural characterization of grain-oriented glass-ceramics in the system Ba2TiSi2O8-SiO2, J. Mater. Sci. 34, 195–208 (1999)CrossRefGoogle Scholar
  88. 4.88
    W. Holand, M. Frank, V. Rheinberger: Surface crystallization of leucite in glasses, J. Non-Cryst. Solids 180, 292–307 (1995)CrossRefGoogle Scholar
  89. 4.89
    J. Schneider, V.R. Mastelaro, H. Panepucci, E.D. Zanotto: Si-29 MAS-NMR studies of Q(n) structural units in metasilicate glasses and their nucleating ability, J. Non-Cryst. Solids 273, 8–18 (2000)CrossRefGoogle Scholar
  90. 4.90
    D.S. Jung, J.M. Han, Y.C. Kang: Sintering characteristics of CaO-B2O3-SiO2 glass-ceramic powders prepared by spray pyrolysis, J. Ceram. Process. Res. 10, 77–80 (2009)Google Scholar
  91. 4.91
    M. Albakry, M. Guazzato, M.V. Swain: Influence of hot pressing on the microstructure and fracture toughness of two pressable dental glass-ceramics, J. Biomed. Mater. Res. Part B 71B, 99–107 (2004)CrossRefGoogle Scholar
  92. 4.92
    W. Wisniewski, M. Patschger, C. Rüssel: Viscous fingering and dendritic growth of surface crystallized Sr2TiSi2O8 fresnoite, Sci. Rep. (2013), Scholar
  93. 4.93
    M. Wada, M. Ninomiya: Glass-ceramic architectural cladding materials, Sci. Tech. Compost. Mater. 30, 846–850 (1995)Google Scholar
  94. 4.94
    M. Hubert, G. Delaizir, J. Monnier, C. Godart, H.L. Ma, X.H. Zhang, L. Calvez: An innovative approach to develop highly performant chalcogenide glasses and glass-ceramics transparent in the infrared range, Opt. Express 19, 23513–23522 (2011)CrossRefGoogle Scholar
  95. 4.95
    A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, H. Jain: Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5glass by femtosecond laser irradiation, Opt. Express 17, 23284–23289 (2009)CrossRefGoogle Scholar
  96. 4.96
    D. Savytskii, B. Knorr, V. Dierolf, H. Jain: Demonstration of single crystal growth via solid-solid transformation of a glass, Sci. Rep. (2016), Scholar
  97. 4.97
    D.I.H. Atkinson, P.W. McMillan: Glass-ceramics with random and oriented microstructures – Part 2. Physical-properties of a randomly oriented glass-ceramic, J. Mater. Sci. 11, 994–1002 (1976)CrossRefGoogle Scholar
  98. 4.98
    O. Anspach, R. Keding, C. Rüssel: Oriented lithium disilicate glass-ceramics prepared by electrochemically induced nucleation, J. Non-Cryst. Solids 351, 656–662 (2005)CrossRefGoogle Scholar
  99. 4.99
    C. Moisescu, C. Jana, S. Habelitz, G. Carl, C. Rüssel: Oriented fluoroapatite glass-ceramics, J. Non-Cryst. Solids 248, 176–182 (1999)CrossRefGoogle Scholar
  100. 4.100
    U. Ding, Y. Miura, S. Nakaoka, T. Nanba: Oriented surface crystallization of lithium niobate on glass and second harmonic generation, J. Non-Cryst. Solids 259, 132–138 (1999)CrossRefGoogle Scholar
  101. 4.101
    C. Rüssel: Oriented crystallization of glass. A review, J. Non-Cryst. Solids 219, 212–218 (1997)CrossRefGoogle Scholar
  102. 4.102
    Y. Ding, Y. Miura, A. Osaka: Polar-oriented crystallization of fresnoite (Ba2TiSi2O8) on glass-surface due to ultrasonic treatment with suspensions, J. Am. Ceram. Soc. 77, 2905–2910 (1994)CrossRefGoogle Scholar
  103. 4.103
    J. Llorca, V.M. Orera: Directionally solidified eutectic ceramic oxides, Prog. Mater. Sci. 51, 711–809 (2006)CrossRefGoogle Scholar
  104. 4.104
    S.D. Stookey: Photosensitive glass – A new photographic medium, Ind. Eng. Chem. 41, 856–861 (1949)CrossRefGoogle Scholar
  105. 4.105
    V.M. Fokin, G.P. Souza, E.D. Zanotto, J. Lumeau, L. Glebova, L.B. Glebov: Sodium fluoride solubility and crystallization in photo-thermo-refractive glass, J. Am. Ceram. Soc. 93, 716–721 (2010)CrossRefGoogle Scholar
  106. 4.106
    J. Lumeau, A. Sinitskii, L. Glebova, L.B. Glebov, E.D. Zanotto: Spontaneous and photo-induced crystallisation of photo-thermo-refractive glass, Phys. Chem. Glass. – Eur. J. Glass Sci. Technol. B 48, 281–284 (2007)Google Scholar
  107. 4.107
    R. Ihara, T. Honma, Y. Benino, T. Fujiwara, R. Sato, T. Komatsu: Writing of two-dimensional crystal curved lines at the surface of Sm2O3-Bi2O3-B2O3 glass by samarium atom heat processing, Solid State Commun. 136, 273–277 (2005)CrossRefGoogle Scholar
  108. 4.108
    A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, L. Canioni: Silver clusters embedded in glass as a perennial high capacity optical recording medium, Adv. Mater. 22, 5282–5286 (2010)CrossRefGoogle Scholar
  109. 4.109
    E. Véron: Synthèse et étude structurale de la gehlenite au bore Ca2Al2–xBxSiO7: mécanisme de substitution B/Al et ordre local, PhD Thesis (Université d'Orléans, Orléans 2010)Google Scholar
  110. 4.110
    C.S. Ray, Q.Z. Yang, W.H. Huang, D.E. Day: Surface and internal crystallization in classes as determined by differential thermal analysis, J. Am. Ceram. Soc. 79, 3155–3160 (1996)CrossRefGoogle Scholar
  111. 4.111
    C.S. Ray, D.E. Day: An analysis of nucleation-rate type of curves in glass as determined by differential thermal analysis, J. Am. Ceram. Soc. 80, 3100–3108 (1997)CrossRefGoogle Scholar
  112. 4.112
    C.S. Ray, D.E. Day: Determining the nucleation rate curve for lithium disilicate glass by differential thermal-analysis, J. Am. Ceram. Soc. 73, 439–442 (1990)CrossRefGoogle Scholar
  113. 4.113
    A. Marotta, A. Buri, F. Branda: Nucleation in glass and differential thermal-analysis, J. Mater. Sci. 16, 341–344 (1981)CrossRefGoogle Scholar
  114. 4.114
    H.M. Rietveld: A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2, 65–71 (1969)CrossRefGoogle Scholar
  115. 4.115
    A.F. Gualtieri: A guided training exercise of quantitative phase analysis using EXPGUI, gualtieri.pdf (2003)
  116. 4.116
    G.W. Brindley: XLV. The effect of grain or particle size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods, Philos. Mag. Ser. 36, 347–369 (1945)CrossRefGoogle Scholar
  117. 4.117
    A.L. Patterson: The Scherrer formula for x-ray particle size determination, Phys. Rev. 56, 978–982 (1939)CrossRefGoogle Scholar
  118. 4.118
    E.J. Mittemeijer, U. Welzel: The “state of the art” of the diffraction analysis of crystallite size and lattice strain, Z. Kristallog. 223, 552–560 (2008)CrossRefGoogle Scholar
  119. 4.119
    A. Le Bail: Profile fitting, decomposition, and microstructural effects. In: Accuracy in Powder Diffraction II, NIST Special Publication, Vol. 846, ed. by E. Prince, J.K. Stalick (NIST, Gaithersburg 1992) p. 213Google Scholar
  120. 4.120
    L. Lutterotti: Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 334–340 (2010)CrossRefGoogle Scholar
  121. 4.121
    O. Dargaud, L. Cormier, N. Menguy, L. Galoisy, G. Calas, S. Papin, G. Querel, L. Olivi: Structural role of Zr4+ as a nucleating agent in a MgO-Al2O3-SiO2 glass-ceramics: A combined XAS and HRTEM approach, J. Non-Cryst. Solids 356, 2928–2934 (2010)CrossRefGoogle Scholar
  122. 4.122
    W. Wisniewski, C. Rüssel: EBSD measurements of phlogopite glass ceramics, CrystEngComm 17, 8671–8675 (2015)CrossRefGoogle Scholar
  123. 4.123
    W. Wisniewski, K. Takano, Y. Takahashi, T. Fujiwara, C. Rüssel: Microstructure of transparent strontium fresnoite glass-ceramics, Sci. Rep. (2015), Scholar
  124. 4.124
    T. Höche: Crystallization in glass: elucidating a realm of diversity by transmission electron microscopy, J. Mater. Sci. 45, 3683–3696 (2010)CrossRefGoogle Scholar
  125. 4.125
    O. Dargaud, G. Calas, L. Cormier, L. Galoisy, C. Jousseaume, G. Querel, M. Newville: In situ study of nucleation of zirconia in an MgO-Al2O3-SiO2 glass, J. Am. Ceram. Soc. 93, 342–344 (2010)CrossRefGoogle Scholar
  126. 4.126
    S. Bhattacharyya, T. Höche, J.R. Jinschek, I. Avramov, R. Wurth, M. Müller, C. Rüssel: Direct evidence of Al-rich layers around nanosized ZrTiO4 in glass: Putting the role of nucleation agents in perspective, Cryst. Growth Des. 10, 379–385 (2010)CrossRefGoogle Scholar
  127. 4.127
    C. Patzig, M. Dittmer, A. Gawronski, T. Hoeche, C. Rüssel: Crystallization of ZrO2-nucleated MgO/Al2O3/SiO2 glasses – A TEM study, CrystEngComm 16, 6578–6587 (2014)CrossRefGoogle Scholar
  128. 4.128
    W. Vogel, L. Horn, H. Reiss, G. Volksch: Electron-microscopical studies of glass, J. Non-Cryst. Solids 49, 221–240 (1982)CrossRefGoogle Scholar
  129. 4.129
    O. Becker, K. Bange: Ultramicrotomy – An alternative cross-section preparation for oxidic thin-films on glass, Ultramicroscopy 52, 73–84 (1993)CrossRefGoogle Scholar
  130. 4.130
    J. Ayache, L. Beaunier, J. Boumendil, G. Ehret, D. Laub: Guide de Préparation des Échantillons Pour la Microscopie Électronique en Transmission (MRCT-CNRS, Meudon 2007)Google Scholar
  131. 4.131
    E. Apel, J. Deubener, A. Bernard, M. Holand, R. Müller, H. Kappert, V. Rheinberger, W. Holand: Phenomena and mechanisms of crack propagation in glass-ceramics, J. Mech. Behav. Biomed. Mater. 1, 313–325 (2008)CrossRefGoogle Scholar
  132. 4.132
    E. Radlein, G.H. Frischat: Atomic force microscopy as a tool to correlate nanostructure to properties of glasses, J. Non-Cryst. Solids 222, 69–82 (1997)CrossRefGoogle Scholar
  133. 4.133
    M. Eden: NMR studies of oxide-based glasses, Annu. Rep. Sect. C 108, 177–221 (2012)CrossRefGoogle Scholar
  134. 4.134
    J.V. Hanna, M.E. Smith: Recent technique developments and applications of solid state NMR in characterising inorganic materials, Solid State Nucl. Magn. Reson. 38, 1–18 (2010)CrossRefGoogle Scholar
  135. 4.135
    D. Massiot, F. Fayon, V. Montouillout, N. Pellerin, J. Hiet, C. Rolland, P. Florian, J.P. Coutures, L. Cormier, D.R. Neuville: Structure and dynamics of oxide melts and glasses: A view from multinuclear and high temperature NMR, J. Non-Cryst. Solids 354, 249–254 (2008)CrossRefGoogle Scholar
  136. 4.136
    M.J. Duer: Introduction to Solid-State NMR Spectroscopy (Wiley, Hoboken 2005)Google Scholar
  137. 4.137
    K. Mackenzie, M. Smith: Multinuclear Solid-State NMR of Inorganic Materials (Pergamon, Oxford 2002)Google Scholar
  138. 4.138
    W.S. Price: Spin dynamics: Basics of nuclear magnetic resonance. In: Concepts in Magnetic Resonance Part A, 2nd edn., Vol. 34 (2009) pp. 60–61Google Scholar
  139. 4.139
    D. Massiot, R.J. Messinger, S. Cadars, M. Deschamps, V. Montouillout, N. Pellerin, E. Véron, M. Allix, P. Florian, F. Fayon: Topological, geometric, and chemical order in materials: Insights from solid-state NMR, Acc. Chem. Res. 46, 1975–1984 (2013)CrossRefGoogle Scholar
  140. 4.140
    M. Guignard, L. Cormier, V. Montouillout, N. Menguy, D. Massiot, A.C. Hannon, B. Beuneu: Rearrangement of the structure during nucleation of a cordierite glass doped with TiO2, J. Phys.-Cond. Matter (2010), Scholar
  141. 4.141
    M. Goswami, G.P. Kothlyal, L. Montagne, L. Delevoye: MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content, J. Solid State Chem. 181, 269–275 (2008)CrossRefGoogle Scholar
  142. 4.142
    D. de Lygny, D.R. Neuville: Raman spectroscopy: A valuable tool to improve our understanding of nucleation and growth mechanism. In: From Glass to Crystal – Nucleation, Growth and Phase Separation: From Research to Applications, ed. by D.R. Neuville, L. Cormier, D. Caurant, L. Montagne (EDP Sciences, Les Ulis 2017)Google Scholar
  143. 4.143
    Y. Takahashi, M. Osada, H. Masai, T. Fujiwara: Transmission electron microscopy and in situ Raman studies of glassy sanbornite: An insight into nucleation trend and its relation to structural variation, J. Appl. Phys. (2010), Scholar
  144. 4.144
    M. Bouska, S. Pechev, Q. Simon, R. Boidin, V. Nazabal, J. Gutwirth, E. Baudet, P. Němec: Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films, Sci. Rep. (2016), Scholar
  145. 4.145
    J. Gaudin, O. Peyrusse, J. Chalupsky, M. Toufarova, L. Vysin, V. Hajkova, R. Sobierajski, T. Burian, S. Dastjani-Farahani, A. Graf, M. Amati, L. Gregoratti, S.P. Hau-Riege, G. Hoffmann, L. Juha, J. Krzywinski, R.A. London, S. Moeller, H. Sinn, S. Schorb, M. Stormer, T. Tschentscher, V. Vorlicek, H. Vu, J. Bozek, C. Bostedt: Amorphous to crystalline phase transition in carbon induced by intense femtosecond x-ray free-electron laser pulses, Phys. Rev. B (2012), Scholar
  146. 4.146
    G.E. Brown, F. Farges, G. Calas: X-ray scattering and x-ray spectroscopy studies of silicate melts, Struct. Dyn. Prop. Silic. Melts 32, 317–410 (1995)Google Scholar
  147. 4.147
    L. Cormier, O. Dargaud, N. Menguy, G.S. Henderson, M. Guignard, N. Trcera, B. Watts: Investigation of the role of nucleating agents in MgO-SiO2-Al2O3-SiO2-TiO2 glasses and glass-ceramics: A XANES study at the Ti K- and L2,3-edges, Cryst. Growth Des. 11, 311–319 (2011)CrossRefGoogle Scholar
  148. 4.148
    H. Schnablegger, Y. Singh: The SAXS Guide – Getting Acquainted with the Principles, 2nd edn. (Anton Paar GmbH, Graz 2011)Google Scholar
  149. 4.149
    G. Lelong, D.L. Price, M.L. Saboungi: Scattering techniques. In: Nanoporous Materials, ed. by N. Kamellopoulos (CRC Press, Boca Raton 2011)Google Scholar
  150. 4.150
    A. Loshmano, V.N. Sigaev, R. Khodakov, N. Pavlushk, I. Yamzin: Small-angle neutron-scattering on silica glasses containing titania, J. Appl. Cryst. 7, 207–210 (1974)CrossRefGoogle Scholar
  151. 4.151
    A.F. Wright, J. Talbot, B.E.F. Fender: Nucleation and growth studies by small-angle neutron-scattering and results for a glass-ceramic, Nature 277, 366–368 (1979)CrossRefGoogle Scholar
  152. 4.152
    A.F. Wright, A.N. Fitch, J.B. Hayter, B.E.F. Fender: Nucleation and crystallization of cordierite TiO2 glass-cermaic. I: Small-angle neutron-scattering measurements and simulations, Phys. Chem. Glasses 26, 113–118 (1985)Google Scholar
  153. 4.153
    U. Lembke, R. Bruckner, R. Kranold, T. Höche: Phase formation kinetics in a glass ceramic studied by small-angle scattering of X-rays and neutrons and by visible-light scattering, J. Appl. Crystallogr. 30, 1056–1064 (1997)CrossRefGoogle Scholar
  154. 4.154
    M.P. Borom, A.M. Turkalo, R.H. Doremus: Strength and microstructure in lithium disilicate glass-ceramics, J. Am. Ceram. Soc. 58, 385–391 (1975)CrossRefGoogle Scholar
  155. 4.155
    P. Bennema: Crystal growth from solution – Theory and experiment, J. Cryst. Growth 24/25, 76–83 (1974)CrossRefGoogle Scholar
  156. 4.156
    K.A. Jackson: Theory of crystal growth. In: Changes of state, Treatise on Solid State Chemistry, Vol. 5, ed. by N.B. Hannay (Plenum, Boston 1975) pp. 233–288CrossRefGoogle Scholar
  157. 4.157
    R.J. Kirkpatrick, L. Klein, D.R. Uhlmann, J.F. Hays: Rates and proceses of crystal growth in the system anorthite-albite, J. Geophys. Res. 84, 3671–3676 (1979)CrossRefGoogle Scholar
  158. 4.158
    Y. Oaki, H. Imai: Experimental demonstration for the morphological evolution of crystals grown in gel media, Cryst. Growth Des. 3, 711–716 (2003)CrossRefGoogle Scholar
  159. 4.159
    N. Steno: De solido intra solidum naturaliter contento, (1669)
  160. 4.160
    J.-B.L. Romé de L'isle: Cristallographie, ou Description des formes propres à tous les corps du règne minéral, dans l'état de combinaison saline, pierreuse ou métallique (Paris 1783)Google Scholar
  161. 4.161
    R.-J. Haüy: Essai d'une Théorie sur la Structure des Crystaux (Paris 1784)Google Scholar
  162. 4.162
    V. Maier, G. Müller: Mechanisms of oxide nucleation in lithium aluminosilicate glass-ceramics, J. Am. Ceram. Soc. 70, C176–C178 (1987)CrossRefGoogle Scholar
  163. 4.163
    G.H. Beall, D.A. Duke: Transparent glass-ceramics, J. Mater. Sci. 4, 340–352 (1969)CrossRefGoogle Scholar
  164. 4.164
    E. Apel, C. van't Hoen, V. Rheinberger, W. Holand: Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system, J. Eur. Ceram. Soc. 27, 1571–1577 (2007)CrossRefGoogle Scholar
  165. 4.165
    H. Shao, K.M. Liang, F. Zhou, G.L. Wang, A.M. Hu: Microstructure and mechanical properties of MgO-Al2O3-SiO2-TiO2 glass-ceramics, Mater. Res. Bull. 40, 499–506 (2005)CrossRefGoogle Scholar
  166. 4.166
    T. Uno, T. Kasuga, K. Nakajima: High-strenght mica-containing glass-ceramics, J. Am. Ceram. Soc. 74, 3139–3141 (1991)CrossRefGoogle Scholar
  167. 4.167
    L.R. Pinckney: Transparent, high strain point spinel glass-ceramics, J. Non-Cryst. Solids 255, 171–177 (1999)CrossRefGoogle Scholar
  168. 4.168
    M.J. Dejneka: Transparent oxyfluoride glass ceramics, MRS Bulletin 23, 57–62 (1998)CrossRefGoogle Scholar
  169. 4.169
    S. Bhattacharyya, T. Höche, N. Hemono, M.J. Pascual, P.A. van Aken: Nano-crystallization in LaF3-Na2O-Al2O3-SiO2 glass, J. Cryst. Growth 311, 4350–4355 (2009)CrossRefGoogle Scholar
  170. 4.170
    S. Roy, B. Basu: On the development of two characteristically different crystal morphology in SiO2-MgO-Al2O3-K2O-B2O3-F glass-ceramic system, J. Mater. Sci.-Mater. Med. 20, 51–66 (2009)CrossRefGoogle Scholar
  171. 4.171
    W.E. Lee, S.E. Arshad, P.F. James: Importance of crystallization hierarchies in microstructural evolution of silicate glass-ceramics, J. Am. Ceram. Soc. 90, 727–737 (2007)CrossRefGoogle Scholar
  172. 4.172
    A. Gebhardt, T. Höche, G. Carl, I.I. Khodos: TEM study on the origin of cabbage-shaped mica crystal aggregates in machinable glass-ceramics, Acta Mater. 47, 4427–4434 (1999)CrossRefGoogle Scholar
  173. 4.173
    W. Holand, M. Frank, V. Rheinberger: Opalescence in dental products, Thermochim. Acta 280, 491–499 (1996)CrossRefGoogle Scholar
  174. 4.174
    W. Holand, V. Rheinberger, S. Wegner, M. Frank: Needle-like apatite-leucite glass-ceramic as a base material for the veneering of metal restorations in dentistry, J. Mater. Sci. – Mater. Med. 11, 11–17 (2000)CrossRefGoogle Scholar
  175. 4.175
    K. Pengpat, D. Holland: Glass-ceramics containing ferroelectric bismuth germanate (Bi2GeO5), J. Eur. Ceram. Soc. 23, 1599–1607 (2003)CrossRefGoogle Scholar
  176. 4.176
    T. Ryll, A. Brunner, S. Ellenbroek, A. Bieberle-Hutter, J.L.M. Rupp, L.J. Gauckler: Electrical conductivity and crystallization of amorphous bismuth ruthenate thin films deposited by spray pyrolysis, Phys. Chem. Chem. Phys. 12, 13933–13942 (2010)CrossRefGoogle Scholar
  177. 4.177
    D.I. Atkinson, P.W. McMillan: Glass-ceramics with an aligned microstructure, J. Mater. Sci. 10, 2012–2014 (1975)CrossRefGoogle Scholar
  178. 4.178
    T. Höche, S. Habelitz, I. Avramov: Crystal morphology engineering in SiO2-Al2O3-MgO-K2O-Na2O-F- mica glass-ceramics, Acta Mater. 47, 735–744 (1999)CrossRefGoogle Scholar
  179. 4.179
    G.H. Beall: Chain silicate glass-ceramics, J. Non-Cryst. Solids 129, 163–173 (1991)CrossRefGoogle Scholar
  180. 4.180
    E.D. Zanotto: A bright future for glass-ceramics, Am. Ceram. Soc. Bull. 89, 19–27 (2010)Google Scholar
  181. 4.181
    W. Pannhorst: Recent developments for commercial applications of low expansion glass ceramics, Glass Technol. 45, 51–53 (2004)Google Scholar
  182. 4.182
    W. Pannhorst: Glass ceramics: state-of-the-art, J. Non-Cryst. Solids 219, 198–204 (1997)CrossRefGoogle Scholar
  183. 4.183
    Z. Strnad: Glass-Ceramic Materials: Liquid Phase Separation, Nucleation, and Crystallization in Glasses (Elsevier, Amsterdam 1986)Google Scholar
  184. 4.184
    J. Zimmer, F. Raether, G. Müller: In-situ investigations of sintering and crystallization of lithium aluminosilicate glass-ceramics, Glastech. Ber. – Glass Sci. Technol. 70, 186–188 (1997)Google Scholar
  185. 4.185
    J. Petzoldt, W. Pannhorst: Chemistry and structure of glass-ceramic materials for high-precision optical applications, J. Non-Cryst. Solids 129, 191–198 (1991)CrossRefGoogle Scholar
  186. 4.186
    U. Schiffner, W. Pannhorst: Nucleation in a precursor glass for a Li2O-Al2O3-SiO2 glass ceramic. Part 1. Nucleation kinetics, Glastech. Ber. – Glass Sci. Technol. 60, 211–221 (1987)Google Scholar
  187. 4.187
    Y.H. Wang, J. Ohwaki: New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency up-conversion, Appl. Phys. Lett. 63, 3268–3270 (1993)CrossRefGoogle Scholar
  188. 4.188
    F. Auzel, D. Pecile, D. Morin: Rare-earth doped vitroceramics – New, efficient, blue and green emitting materials for infrared up-conversion, J. Electrochem. Soc. 122, 101–107 (1975)CrossRefGoogle Scholar
  189. 4.189
    J. Mendez-Ramos, V. Lavin, I.R. Martin, U.R. Rodriguez-Mendoza, V.D. Rodriguez, A.D. Lozano-Gorrin, P. Nunez: Role of the Eu3+ ions in the formation of transparent oxyfluoride glass ceramics, J. Appl. Phys. 89, 5307–5310 (2001)CrossRefGoogle Scholar
  190. 4.190
    G. Mie: Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions, Ann. Phys. 25, 377–445 (1908)CrossRefGoogle Scholar
  191. 4.191
    J. Strutt: On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky, Philosoph. Mag. 47, 375–394 (1899)Google Scholar
  192. 4.192
    T. Berthier, V.M. Fokin, E.D. Zanotto: New large grain, highly crystalline, transparent glass-ceramics, J. Non-Cryst. Solids 354, 1721–1730 (2008)CrossRefGoogle Scholar
  193. 4.193
    M. Kerker: The Scattering of Light (Academic, New York 1969)Google Scholar
  194. 4.194
    R.W. Hopper: Stochastic-theory of scattering from idealized spinodal structures. Part 2. Scattering in general and for the basic late stage model, J. Non-Cryst. Solids 70, 111–142 (1985)CrossRefGoogle Scholar
  195. 4.195
    M. Mattarelli, G. Gasperi, M. Montagna, P. Verrocchio: Transparency and long-ranged fluctuations: The case of glass ceramics, Phys. Rev B (2010), Scholar
  196. 4.196
    L.J. Andrews, G.H. Beall, A. Lempicki: Luminescence of Cr3+ in mullite transparent glass-ceramics, J. Lumin. 36, 65–74 (1986)CrossRefGoogle Scholar
  197. 4.197
    R. Reisfeld: Potential uses of chromium(III)-doped transparent glass-ceramics in tunable lasers and luminescent solar concentrators, Mater. Sci. Eng. 71, 375–382 (1985)CrossRefGoogle Scholar
  198. 4.198
    R. Reisfeld, A. Kisilev, A. Buch, M. Ish-Shalom: Transparent glass-ceramics doped by chromium(III) – Spectroscopic properties and characterization of crystalline phases, J. Non-Cryst. Solids 91, 333–350 (1987)CrossRefGoogle Scholar
  199. 4.199
    A. Kisilev, R. Reisfeld, E. Greenberg, A. Buch, M. Ish-Shalom: Spectroscopy of chromium(III) in beta-quartz and petalite-like transparent glass-ceramics-ligand-field strengths of chromium(III), Chem. Phys. Lett. 105, 405–408 (1984)CrossRefGoogle Scholar
  200. 4.200
    T. Nakanishi, K. Watanabe, J. Ueda, K. Fushimi, S. Tanabe, Y. Hasegawa: Enhanced light storage of SrAl2O4 glass-ceramics controlled by selective europium reduction, J. Am. Ceram. Soc. 98, 423–429 (2015)CrossRefGoogle Scholar
  201. 4.201
    K. Al Saghir, S. Chenu, E. Véron, F. Fayon, M. Suchomel, C. Genevois, F. Porcher, G. Matzen, D. Massiot, M. Allix: Transparency through structural disorder: A new concept for innovative transparent ceramics, Chem. Mater. 27, 508–514 (2015)CrossRefGoogle Scholar
  202. 4.202
    S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto: YAG glass-ceramic phosphor for white LED (II): Luminescence characteristics, Proc. SPIE 5941, 594112-1 (2005)Google Scholar
  203. 4.203
    S. Fujita, A. Sakamoto, S. Tanabe: Luminescence characteristics of YAG glass-ceramic phosphor for white LED, IEEE J. Sel. Top. Quantum Electron. 14, 1387–1391 (2008)CrossRefGoogle Scholar
  204. 4.204
    A. Ikesue, Y.L. Aung: Ceramic laser materials, Nat. Photon. 2, 721–727 (2008)CrossRefGoogle Scholar
  205. 4.205
    A. Ikesue: Polycrystalline Nd: YAG ceramics lasers, Opt. Mater. 19, 183–187 (2002)CrossRefGoogle Scholar
  206. 4.206
    S. Alahraché, M. Deschamps, J. Lambert, M.R. Suchomel, D. De Sousa Meneses, G. Matzen, D. Massiot, E. Véron, M. Allix: Crystallization of Y2O3-Al2O3 Rich Glasses: Synthesis of YAG glass-ceramics, J. Phys. Chem. C 115, 20499–20506 (2011)CrossRefGoogle Scholar
  207. 4.207
    X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, M. Allix: Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics, Nat. Commun. 9, 1175 (2018)CrossRefGoogle Scholar
  208. 4.208
    T. Nakanishi, Y. Katayama, J. Ueda, T. Honma, S. Tanabe, T. Komatsu: Fabrication of Eu:SrAl2O4-based glass ceramics using Frozen sorbet method, J. Ceram. Soc. Jpn. 119, 609–615 (2011)CrossRefGoogle Scholar
  209. 4.209
    T. Nakanishi, S. Tanabe: Novel Eu2+-activated glass ceramics precipitated with green and red phosphors for high-power white LED, IEEE J. Sel. Top. Quantum Electron. 15, 1171–1176 (2009)CrossRefGoogle Scholar
  210. 4.210
    G.H. Beall: Glass-ceramics for photonic applications, Glass Sci. Technol. – Glastech. Ber. 73, 3–11 (2000)Google Scholar
  211. 4.211
    L.R. Pinckney: Transparent beta-willemite glass-ceramics, Glass Sci. Technol. – Glastech. Ber. 73, 329–332 (2000)Google Scholar
  212. 4.212
    J.-S. Wang, F.-H. Shen: The development of SiO2 resistant Cr-doped glass ceramics for high Cr4+ emission, J. Non-Cryst. Solids 358, 246–251 (2012)CrossRefGoogle Scholar
  213. 4.213
    A.M. Malyarevich, I.A. Denisov, Y.V. Volk, K.V. Yumashev, O.S. Dymshits, A.A. Zhilin: Nanosized glass-ceramics doped with transition metal ions: Nonlinear spectroscopy and possible laser applications, J. Alloy. Compd. 341, 247–250 (2002)CrossRefGoogle Scholar
  214. 4.214
    L.R. Pinckney: Transparent Glass-Ceramics Based on ZnO Crystals, Vol. 47 (Society of Glass Technology, Sheffield 2006)Google Scholar
  215. 4.215
    G.H. Beall, L.R. Pinckney, B.N. Samson: Transparent gallate glass-ceramics. US Patent 6632758B2, Assigned to Corning Inc. (2003)Google Scholar
  216. 4.216
    T. Suzuki, Y. Arai, Y. Ohishi: Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics, J. Lumin. 128, 603–609 (2008)CrossRefGoogle Scholar
  217. 4.217
    T. Suzuki, G.S. Murugan, Y. Ohishi: Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals, Appl. Phys. Lett. 86, doi:10.1063/1.1891272 (2005)Google Scholar
  218. 4.218
    D. Deng, H. Ma, S. Xu, Q. Wang, L. Huang, S. Zhao, H. Wang, C. Li: Broadband infrared luminescence of Ni2+-doped silicate glass-ceramics containing lithium aluminate spinel nanocrystals, J. Non-Cryst. Solids 357, 1426–1429 (2011)CrossRefGoogle Scholar
  219. 4.219
    B.N. Samson, L.R. Pinckney, J. Wang, G.H. Beall, N.F. Borrelli: Nickel-doped nanocrystalline glass-ceramic fiber, Opt. Lett. 27, 1309–1311 (2002)CrossRefGoogle Scholar
  220. 4.220
    S.S. Bayya, B.B. Harbison, J.S. Shanghera, I.D. Aggarwal: IR transmitting rare earth gallogermanate glass-ceramics. US Patent (1998)Google Scholar
  221. 4.221
    S.S. Bayya, J.S. Sanghera, I.D. Aggarwal, J.A. Wojcik: Infrared transparent germanate glass-ceramics, J. Am. Ceram. Soc. 85, 3114–3116 (2002)CrossRefGoogle Scholar
  222. 4.222
    S. Zhou, J. Hao, J. Qiu: Ultra-broadband near-infrared luminescence of Ni2+:ZnO-Al2O3-SiO2 nanocomposite glasses prepared by Sol-Gel method, J. Am. Ceram. Soc. 94, 2902–2905 (2011)CrossRefGoogle Scholar
  223. 4.223
    C.X. Fan, B. Poumellec, M. Lancry, X. He, H.D. Zeng, A. Erraji-Chahid, Q.M. Liu, G.R. Chen: Three-dimensional photoprecipitation of oriented LiNbO3-like crystals in silica-based glass with femtosecond laser irradiation, Opt. Lett. 37, 2955–2957 (2012)CrossRefGoogle Scholar
  224. 4.224
    Y. Dai, H.L. Ma, B. Lu, B.K. Yu, B. Zhu, J.R. Qiu: Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass, Opt. Express 16, 3912–3917 (2008)CrossRefGoogle Scholar
  225. 4.225
    Y.J. Dai, X.W. Zhang, G.Y. Zhou: Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics, Appl. Phys. Lett. (2007), Scholar
  226. 4.226
    T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, R. Sato: Technique for writing of nonlinear optical single-crystal lines in glass, Appl. Phys. Lett. 83, 2796–2798 (2003)CrossRefGoogle Scholar
  227. 4.227
    T. Shiosaki, M. Adachi, H. Kobayashi, K. Araki, A. Kawabata: Elastic, piezoelectric, acoustooptic and electro-optic properties of Li2B4O7, Jpn. J. Appl. Phys. 24, 25–27 (1985)CrossRefGoogle Scholar
  228. 4.228
    D.D. Silva, A.R. Boccaccini: Industrial developments in the field of optically transparent inorganic materials: A survey of recent patents, Recent Pat. Mater. Sci. 1, 56 (2008)CrossRefGoogle Scholar
  229. 4.229
    G. Partridge: Inorganic materials. Part 4. Transparent ceramics and glass-ceramics, Adv. Mater. 2, 553–556 (1990)CrossRefGoogle Scholar
  230. 4.230
    M. Richardson, R. Gaume: Transparent ceramics for lasers – A game-changer, Am. Ceram. Soc. Bull. 91, 30–33 (2012)Google Scholar
  231. 4.231
    R. Won: View from…ASSP 2008: Ceramic future, Nat. Photonics 2, 216–217 (2008)CrossRefGoogle Scholar
  232. 4.232
    A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida: Fabrication and optical-properties of high-performance polycristalline Nd-YAG ceramics for solid-state lasers, J. Am. Ceram. Soc. 78, 1033–1040 (1995)CrossRefGoogle Scholar
  233. 4.233
    A. Krell, J. Klimke, T. Hutzler: Transparent compact ceramics: Inherent physical issues, Opt. Mater. 31, 1144–1150 (2009)CrossRefGoogle Scholar
  234. 4.234
    Z.M. Seeley, J.D. Kuntz, N.J. Cherepy, S.A. Payne: Transparent Lu2O3:Eu ceramics by sinter and HIP optimization, Opt. Mater. 33, 1721–1726 (2011)CrossRefGoogle Scholar
  235. 4.235
    U. Peuchert, Y. Okano, Y. Menke, S. Reichel, A. Ikesue: Transparent cubic-ZrO2 ceramics for application as optical lenses, J. Eur. Ceram. Soc. 29, 283–291 (2009)CrossRefGoogle Scholar
  236. 4.236
    M. Boyer, S. Alahraché, C. Genevois, M. Licheron, F.-X. Lefevre, C. Castro, G. Bonnefont, G. Patton, F. Moretti, C. Dujardin, G. Matzen, M. Allix: Enhanced transparency through second phase crystallization in BaAl4O7 scintillating ceramics, Cryst. Growth Des. 16, 386–395 (2016)CrossRefGoogle Scholar
  237. 4.237
    M. Boyer, A.J.F. Carrion, S. Ory, A.I. Becerro, S. Villette, S.V. Eliseeva, S. Petoud, P. Aballea, G. Matzen, M. Allix: Transparent polycrystalline SrREGa3O7 melilite ceramics: potential phosphors for tuneable solid state lighting, J. Mater. Chem. C 4, 3238–3247 (2016)CrossRefGoogle Scholar
  238. 4.238
    S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A.I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.P. Guin, M. Nivard, J.C. Sangleboeuf, G. Matzen, M. Allix: Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization, Chem. Mater. 25, 4017–4024 (2013)CrossRefGoogle Scholar
  239. 4.239
    M. Allix, S. Alahraché, F. Fayon, M. Suchomel, F. Porcher, T. Cardinal, G. Matzen: Highly transparent BaAl4O7 polycrystalline ceramic obtained by full crystallization from glass, Adv. Mater. 24, 5570–5575 (2012)CrossRefGoogle Scholar
  240. 4.240
    A. Bertrand, J. Carreaud, S. Chenu, M. Allix, E. Véron, J.-R. Duclère, Y. Launay, T. Hayakawa, C. Genevois, F. Brisset, F. Célarié, P. Thomas, G. Delaizir: Scalable and formable tellurite-based transparent ceramics for near infrared applications, Adv. Opt. Mater. 4, 1482–1486 (2016)CrossRefGoogle Scholar
  241. 4.241
    M. Boyer, X. Yang, A.J. Fernández Carrión, Q. Wang, E. Véron, C. Genevois, L. Hennet, G. Matzen, E. Suard, D. Thiaudière, C. Castro, D. Pelloquin, L.B. Kong, X. Kuang, M. Allix: First transparent oxide ion conducting ceramics synthesized by full crystallization from glass, J. Mater. Chem. A 6, 5276–5289 (2018)CrossRefGoogle Scholar
  242. 4.242
    A.J. Fernández-Carrión, K. Al Saghir, E. Véron, A.I. Becerro, F. Porcher, W. Wisniewski, G. Matzen, F. Fayon, M. Allix: Local disorder and tuneable luminescence in Sr1–x/2Al2–xSixO4 (0.2 ≤ x ≤ 0.5) transparent ceramics, Inorg. Chem. 56, 14446–14458 (2017)CrossRefGoogle Scholar
  243. 4.243
    J.B. Qiu, A. Makishima: Frequency up-conversion luminescence in Yb3+-Ho3+ co-doped PbxCd1-xF2 nano-crystals precipitated transparent oxyfluoride glass-ceramics, Sci. Technol. Adv. Mater. 5, 313–317 (2004)CrossRefGoogle Scholar
  244. 4.244
    M. Mortier, G. Patriarche: Structural characterisation of transparent oxyfluoride glass-ceramics, J. Mater. Sci. 35, 4849–4856 (2000)Google Scholar
  245. 4.245
    J.M. Jewell, E.J. Friebele, I.D. Aggarwal: Transparent heavy-metal fluoride glass-ceramic, J. Non-Cryst. Solids 188, 285–288 (1995)CrossRefGoogle Scholar
  246. 4.246
    M. Mortier, A. Monteville, G. Patriarche, G. Maze, F. Auzel: New progresses in transparent rare-earth doped glass-ceramics, Opt. Mater. 16, 255–267 (2001)CrossRefGoogle Scholar
  247. 4.247
    F. Auzel, K.E. Lipinska Kalita, P. Santa-Cruz: A new Er3+-doped vitreous fluoride amplification medium with crystal-like cross-sections and reduced inhomogeneous line width, Opt. Mater. 5, 75–78 (1996)CrossRefGoogle Scholar
  248. 4.248
    V. Lavin, I. Iparraguirre, J. Azkargorta, A. Mendioroz, J. Gonzalez-Platas, R. Balda, J. Fernandez: Stimulated and upconverted emissions of Nd3+ in a transparent oxyfluoride glass-ceramic, Opt. Mater. 25, 201–208 (2004)CrossRefGoogle Scholar
  249. 4.249
    B.N. Samson, P.A. Tick, N.F. Borrelli: Efficient neodymium-doped glass-ceramic fiber laser and amplifier, Opt. Lett. 26, 145–147 (2001)CrossRefGoogle Scholar
  250. 4.250
    J. Fu, J.M. Parker, P.S. Flower, R.M. Brown: Eu2+ ions and CaF2-containing transparent glass-ceramics, Mater. Res. Bull. 37, 1843–1849 (2002)CrossRefGoogle Scholar
  251. 4.251
    X.S. Qiao, X.P. Fan, J. Wang, M.Q. Wang: Luminescence behavior of Er3+ ions in glass-ceramics containing CaF2 nanocrystals, J. Non-Cryst. Solids 351, 357–363 (2005)CrossRefGoogle Scholar
  252. 4.252
    S. Ye, B. Zhu, J.X. Chen, J. Luo, J.R. Qiu: Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals, Appl. Phys. Lett. (2008), Scholar
  253. 4.253
    F. Goutaland, P. Jander, W.S. Brocklesby, G.J. Dai: Crystallisation effects on rare earth dopants in oxyfluoride glass ceramics, Opt. Mater. 22, 383–390 (2003)CrossRefGoogle Scholar
  254. 4.254
    S. Ye, B. Zhu, J. Luo, J.X. Chen, G. Lakshminarayana, J.R. Qiu: Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals, Opt. Express 16, 8989–8994 (2008)CrossRefGoogle Scholar
  255. 4.255
    Y. Kawamoto, R. Kanno, J. Qiu: Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramics, J. Mater. Sci. 33, 63–67 (1998)CrossRefGoogle Scholar
  256. 4.256
    A. Biswas, G.S. Maciel, C.S. Friend, P.N. Prasad: Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2 glass-ceramics prepared by sol-gel method, J. Non-Cryst. Solids 316, 393–397 (2003)CrossRefGoogle Scholar
  257. 4.257
    X.S. Qiao, X.P. Fan, J. Wang, M.Q. Wang: Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals, J. Appl. Phys. (2006), Scholar
  258. 4.258
    X.S. Qiao, X.P. Fan, M.Q. Wang: Luminescence behavior of Er3+ in glass ceramics containing BaF2 nanocrystals, Scr. Mater. 55, 211–214 (2006)CrossRefGoogle Scholar
  259. 4.259
    M. Mortier, F. Auzel: Rare-earth doped transparent glass-ceramics with high cross-sections, J. Non-Cryst. Solids 256, 361–365 (1999)CrossRefGoogle Scholar
  260. 4.260
    Z. Pan, A. Ueda, R. Mu, S.H. Morgan: Upconversion luminescence in Er3+-doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics, J. Lumin. 126, 251–256 (2007)CrossRefGoogle Scholar
  261. 4.261
    J. Lucas: Infrared glasses, Curr. Opin. Solid State Mater. Sci. 4, 181–187 (1999)CrossRefGoogle Scholar
  262. 4.262
    X.H. Zhang, L. Calvez, V. Seznec, H.L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, J. Lucas: Infrared transmitting glasses and glass-ceramics, J. Non-Cryst. Solids 352, 2411–2415 (2006)CrossRefGoogle Scholar
  263. 4.263
    C.G. Lin, L. Calvez, B. Bureau, H.Z. Tao, M. Allix, Z.X. Hao, V. Seznec, X.H. Zhang, X.J. Zhao: Second-order optical nonlinearity and ionic conductivity of nanocrystalline GeS2-Ga2S3-LiI glass-ceramics with improved thermo-mechanical properties, Phys. Chem. Chem. Phys. 12, 3780–3787 (2010)CrossRefGoogle Scholar
  264. 4.264
    M. Roze, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, X.H. Zhang: Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system, J. Am. Ceram. Soc. 91, 3566–3570 (2008)CrossRefGoogle Scholar
  265. 4.265
    J.J. Mecholsky, G.R. Srinivas, P.B. Macedo, C.T. Moynihan: Chalcogenide glass-ceramics, Am. Ceram. Soc. Bull. 52, 702–703 (1973)Google Scholar
  266. 4.266
    J.J. Mecholsky: Microstructural Investigations of a Chalcogenide Glass Ceramic, PhD Thesis (Catholic Univ. of America, Washington 1973)Google Scholar
  267. 4.267
    J. Cheng: Properties and structure of the infrared-transmitting arsenic-germanium-selenium-tin glass ceramic system, Huadong Huagong Xueyuan Xuebao 3, 337–351 (1982)Google Scholar
  268. 4.268
    X.H. Zhang, M.A. Hongli, J. Lucas: A new class of infrared transmitting glass-ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix, J. Non-Cryst. Solids 337, 130–135 (2004)CrossRefGoogle Scholar
  269. 4.269
    X.H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, J. Lucas: Glasses for seeing beyond visible, Chem. Eur. J. 14, 432–442 (2008)CrossRefGoogle Scholar
  270. 4.270
    L. Calvez, M. Roze, Y. Ledemi, H.L. Ma, J. Lucas, M. Allix, G. Matzen, X.H. Zhang: Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications, J. Ceram. Soc. Jpn. 116, 1079–1082 (2008)CrossRefGoogle Scholar
  271. 4.271
    R. Balda, S. Garcia-Revilla, J. Fernandez, V. Seznec, V. Nazabal, X.H. Zhang, J.L. Adam, M. Allix, G. Matzen: Upconversion luminescence of transparent Er(3+)-doped chalcohalide glass-ceramics, Opt. Mater. 31, 760–764 (2009)CrossRefGoogle Scholar
  272. 4.272
    M. Guignard, V. Nazabal, H.L. Ma, X.H. Zhang, H. Zeghlache, G. Martinelli, Y. Quiquempois, F. Smektala: Chalcogenide glass-ceramics for second harmonic generation, Phys. Chem. Glass. – Eur. J. Glass Sci. Technol. B 48, 19–22 (2007)Google Scholar
  273. 4.273
    M. Guignard, V. Nazabal, X.H. Zhang, F. Smektala, A. Moreac, S. Pechev, H. Zeghlache, A. Kudlinski, G. Martinelli, Y. Quiquempois: Crystalline phase responsible for the permanent second-harmonic generation in chalcogenide glass-ceramics, Opt. Mater. 30, 338–345 (2007)CrossRefGoogle Scholar
  274. 4.274
    S.R. Ovshinsky: Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett. 21, 1450 (1968)CrossRefGoogle Scholar
  275. 4.275
    J. Kalb, F. Spaepen, M. Wuttig: Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys, Appl. Phys. Lett. 84, 5240–5242 (2004)CrossRefGoogle Scholar
  276. 4.276
    A. Hayashi, K. Minami, F. Mizuno, M. Tatsumisago: Formation of Li+ superionic crystals from the Li2S-P2S5 melt-quenched glasses, J. Mater. Sci. 43, 1885–1889 (2008)CrossRefGoogle Scholar
  277. 4.277
    L.L. Hench: Bioceramics, J. Am. Ceram. Soc. 81, 1705–1728 (1998)CrossRefGoogle Scholar
  278. 4.278
    L.L. Hench: Bioceramics – From concept to clinic, J. Am. Ceram. Soc. 74, 1487–1510 (1991)CrossRefGoogle Scholar
  279. 4.279
    M. Guazzato, M. Albakry, S.P. Ringer, M.V. Swain: Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics, Dent. Mater. 20, 449–456 (2004)CrossRefGoogle Scholar
  280. 4.280
    I. Denry, J.A. Holloway: Ceramics for dental applications: A review, Materials 3, 351–368 (2010)CrossRefGoogle Scholar
  281. 4.281
    W. Höland, G.H. Beall: Applications of Glass-Ceramics. In: Glass-Ceramic Technology, 2nd edn., (Wiley, Hoboken 2012)CrossRefGoogle Scholar
  282. 4.282
    T. Kokubo: A/W Glass-Ceramic: Processing and Properties. In: An Introduction to Bioceramics, ed. by L.L. Hench (World Scientific, Singapore 1993) pp. 75–88CrossRefGoogle Scholar
  283. 4.283
    T. Yamamuro, J. Shikata, H. Okumura, T. Kitsugi, Y. Kakutani, T. Matsui, T. Kokubo: Replacement of the lumbar vertebrae of sheep with ceramic prostheses, J. Bone Jt. Surg. Br. 72, 889–893 (1990)CrossRefGoogle Scholar
  284. 4.284
    I.W. Donald: Immobilisation of radioactive and non-radioactive wastes in glass-based systems: an overview, Glass Technol. – Eur. J. Glass Sci. Technol. Part A 48, 155–163 (2007)Google Scholar
  285. 4.285
    I. Ojovan, W.E. Lee: An Introduction to Nuclear Waste Immobilisation (Elsevier, Oxford 2005)Google Scholar
  286. 4.286
    P. Rigny, B. Bonin, J.M. Gras: The radioactive wastes management, Actual. Chim. 346, 1–10 (2010)Google Scholar
  287. 4.287
    W.E. Lee, M.I. Ojovan, M.C. Stennett, N.C. Hyatt: Immobilisation of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram. 105, 3–12 (2006)CrossRefGoogle Scholar
  288. 4.288
    I.W. Donald, B.L. Metcalfe, R.N.J. Taylor: The immobilization of high level radioactive wastes using ceramics and glasses, J. Mater. Sci. 32, 5851–5887 (1997)CrossRefGoogle Scholar
  289. 4.289
    D. Caurant, P. Loiseau, O. Majérus, V. Aubin-Chevaldonnet, I. Bardez, A. Quintas: Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes (Nova Science, Hauppauge 2009)Google Scholar
  290. 4.290
    R.D. Rawlings, J.P. Wu, A.R. Boccaccini: Glass-ceramics: Their production from wastes – A review, J. Mater. Sci. 41, 733–761 (2006)CrossRefGoogle Scholar
  291. 4.291
    P. Colombo, G. Brusatin, E. Bernardo, G. Scarinci: Inertization and reuse of waste materials by vitrification and fabrication of glass-based products, Curr. Opin. Solid State Mater. Sci. 7, 225–239 (2003)CrossRefGoogle Scholar
  292. 4.292
    M. Romero, R.D. Rawlings, J.M. Rincon: Development of a new glass-ceramic by means of controlled vitrification and crystallisation of inorganic wastes from urban incineration, J. Eur. Ceram. Soc. 19, 2049–2058 (1999)CrossRefGoogle Scholar
  293. 4.293
  294. 4.294
    J. Macdowell, G.H. Beall: Low K glass-ceramics for microelectronic packaging, Ceram. Trans. 15, 259–277 (1990)Google Scholar
  295. 4.295
    I.W. Donald: Preparation, properties and chemistry of glass-ceramic-to-metal and glass-ceramic-to-metal seals and coatings, J. Mater. Sci. 28, 2841–2886 (1993)CrossRefGoogle Scholar
  296. 4.296
    P.A. Lessing: A review of sealing technologies applicable to solid oxide electrolysis cells, J. Mater. Sci. 42, 3465–3476 (2007)CrossRefGoogle Scholar
  297. 4.297
    K.L. Ley, M. Krumpelt, R. Kumar, J.H. Meiser, J. Bloom: Glass-ceramic sealants for solid oxide fuel cells. Part 1. Physical properties, J. Mater. Res. 11, 1489–1493 (1996)CrossRefGoogle Scholar
  298. 4.298
    R.N. Singh: Sealing technology for solid oxide fuel cells (SOFC), Int. J. Appl. Ceram. Technol. 4, 134–144 (2007)CrossRefGoogle Scholar
  299. 4.299
    K. Hirose, T. Honma, Y. Benino, T. Komatsu: Glass-ceramics with LiFePO4 crystals and crystal line patterning in glass by YAG laser irradiation, Solid State Ion 178, 801–807 (2007)CrossRefGoogle Scholar
  300. 4.300
    A. Sakamoto, S. Yamamoto: Glass–Ceramics: Engineering principles and applications, Int. J. Appl. Glass Sci. 1, 237–247 (2010)CrossRefGoogle Scholar
  301. 4.301
    X. Py, N. Calvet, R. Olives, P. Echegut, C. Bessada, F. Jay: Low-cost material for sensible heat based thermal storage to be used in thermodynamic solar power plants. In: Proc. ASME 3rd Int. Conf. Energy Sust, Vol. 2 (2009) pp. 527–532Google Scholar
  302. 4.302
    X. Py, N. Calvet, R. Olives, A. Meffre, P. Echegut, C. Bessada, E. Véron, S. Ory: Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants, J. Solar Energy Eng. (2011), Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of OrléansOrléansFrance
  2. 2.IMPMCSorbonne University – CNRSParisFrance

Personalised recommendations