Sol-Gel Glasses

  • Lisa C. KleinEmail author
Part of the Springer Handbooks book series (SHB)


Sol–gel processing is a nonmelting path to forming primarily silicate glasses. The most widely used precursors for the sol–gel process are metal alkoxides that undergo hydrolysis and condensation polymerization. Pure silica, binary compositions and multicomponent compositions are reacted to generate oxide polymers in the presence of water and alcohols. The oxide polymers grow and crosslink to produce a gel network at the sol–gel transition. After gelation, the solvents are removed, leaving behind a microporous skeleton that can be collapsed to a chemical and physical duplicate of a melted glass. The sol–gel process also refers to solution routes that involve soluble salts and colloidal routes that involve metastable suspensions of oxide nanoparticles. Combinations of alkoxides, salts and colloids are all considered sol–gel routes. The advantage of the sol–gel process, compared to melting and quenching, is that the process is carried out largely at room temperature. The low temperature makes the sol–gel process compatible with organic polymers, which enables formation of organic–inorganic hybrids. Also, when it is not necessary to remove the porosity, the sol–gel process is a means to form microporous and macroporous glasses.



Over the years, I have had the privilege of working with many excellent undergraduates, graduate students, postdoctoral fellows, research associates and colleagues at Rutgers University, and I thank them all. For specific figures that have not been published previously, I want to thank Varadh Ranganathan (Figs. 38.11 and 38.12), Max Freedman (Fig. 38.18) and Brooke McClarren and James Davanzo (Fig. 38.19). One impetus to put this information together was the course offered through the Lehigh University–Penn State University International Materials Institute for new functionality in glass (IMI-NFG) on glass processing in spring 2015. Currently, my research is supported by NSF Award 1313544 Materials World Network-SusChEM, in collaboration with M. Aparicio, Instituto de Ceramica y Vidrio Consejo Superior de Investigaciones Cientaficas (CSIC), Madrid, Spain and Andrei Jitianu, Lehman College-CUNY and The Graduate Center, The City University of New York.


  1. 38.1
    L.C. Klein: Sol–Gel Technology: For Thin Films, Fibers, Preforms, Electronics and Specialty Shapes (Noyes, Park Ridge 1988)Google Scholar
  2. 38.2
    L.C. Klein: Sol–Gel Optics: Processing and Applications (Kluwer Academic, Boston 1994)CrossRefGoogle Scholar
  3. 38.3
    M. Aparicio, A. Jitianu, L.C. Klein: Sol–Gel Processing for Conventional and Alternative Energy (Springer, New York 2012)CrossRefGoogle Scholar
  4. 38.4
    C.J. Brinker, G.W. Scherer: Sol–Gel Science (Academic, Boston 1990)Google Scholar
  5. 38.5
    A.C. Pierre: Introduction to Sol–Gel Processing (Kluwer Academic, Boston 1998)CrossRefGoogle Scholar
  6. 38.6
    D.C. Bradley, R.C. Mehrotra, D.P. Gaur: Metal Alkoxides (Academic, London 1978)Google Scholar
  7. 38.7
    N.Y. Turova, E.P. Turevskaya, V.G. Kessler, M.I. Yanovskaya: The Chemistry of Metal Alkoxides (Kluwer Academic, Boston 2002)Google Scholar
  8. 38.8
    L.C. Klein: Processing of nanostructured sol–gel oxide materials. In: Processing of Nanostructured Materials, ed. by A. Edelstein, R.C. Cammarata (Institute of Physics, Bristol 1996) pp. 147–164Google Scholar
  9. 38.9
    L.C. Klein: Advanced ceramics processing. In: Handbook of Materials Selection, ed. by M. Kutz (Wiley, New York 2002) pp. 1113–1128CrossRefGoogle Scholar
  10. 38.10
    R.A. McCauley: Corrosion of Ceramic Materials, 3rd edn. (Taylor Francis, Boca Raton 2013)Google Scholar
  11. 38.11
    D.R. Uhlmann, M.C. Weinberg, G. Teowee: Crystallization of gel-derived glasses, J. Non-Cryst. Solids 100, 154–161 (1988)CrossRefGoogle Scholar
  12. 38.12
    R.M. Almeida, M.C. Goncalves: Crystallization of solgel-derived glasses, Int. J. Appl. Glass Sci. 5, 114–125 (2014)CrossRefGoogle Scholar
  13. 38.13
    G.C. Righini, A. Chiappini: Glass optical waveguides: A review of fabrication techniques, Opt. Eng. 53, 071819-1-15 (2014)CrossRefGoogle Scholar
  14. 38.14
    A.B. Seddon: Applicability of sol–gel processing in production of silica based optical fibres, Mater. Sci. Technol. 9, 729–736 (1993)Google Scholar
  15. 38.15
    L.C. Klein: Sol–gel processing of silicates, Ann. Rev. Mater. Sci. 15, 227–248 (1985)CrossRefGoogle Scholar
  16. 38.16
    L.L. Hench: Sol–Gel Silica: Properties, Processing and Technology Transfer (Noyes, Westwood 1998)Google Scholar
  17. 38.17
    T.W. Zerda, G. Hoang: Effect of solvents on the hydrolysis reaction of tetramethyl orthosilicate, Chem. Mater. 2, 372–376 (1990)CrossRefGoogle Scholar
  18. 38.18
    R.K. Iler: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (Wiley, Hoboken 1979)Google Scholar
  19. 38.19
    B.E. Yoldas: Hydrolysis of aluminum alkoxides and bayerite conversion, J. Appl. Chem. Biotechnol. 23, 803–809 (1973)CrossRefGoogle Scholar
  20. 38.20
    L.F. Nazar, L.C. Klein: Early stages of alumina sol–gel in acidic formation media: An 27Al NMR investigation, J. Am. Ceram. Soc. 71, C85–C87 (1988)CrossRefGoogle Scholar
  21. 38.21
    R. Roy: Ceramics by the solution-sol–gel route, Science 238, 1664–1669 (1987)CrossRefGoogle Scholar
  22. 38.22
    R.A. Assink, B.D. Kay: Study of sol–gel chemical reaction kinetics by NMR, Annu. Rev. Mater. Sci. 21, 491–513 (1991)CrossRefGoogle Scholar
  23. 38.23
    T. Katagiri, T. Maekawa: Influence of solvents on the structure of SiO2 gel from hydrolysis of tetramethylorthosilicate, J. Non-Cryst. Solids 134, 181–190 (1991)CrossRefGoogle Scholar
  24. 38.24
    D.P. Partlow, B.E. Yoldas: Colloidal versus polymer gels and monolithic transformations in glass-forming systems, J. Non-Cryst. Solids 46, 153–161 (1981)CrossRefGoogle Scholar
  25. 38.25
    M. Yamane, S. Aso, T. Sakaino: Preparation of a gel from metal alkoxide and its properties as a precursor of oxide glass, J. Mater. Sci. 13, 865–870 (1978)CrossRefGoogle Scholar
  26. 38.26
    S. Sakka, K. Kamiya: The sol–gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films, J. Non-Cryst. Solids 48, 31–46 (1982)CrossRefGoogle Scholar
  27. 38.27
    S.-P. Szu, L.C. Klein, M. Greenblatt: Effect of precursors on the structure of phosphosilicate gels: 29Si and 31P MAS NMR study, J. Non-Cryst. Solids 143, 21–30 (1992)CrossRefGoogle Scholar
  28. 38.28
    M. Aparicio, L.C. Klein: Synthesis and characterization of SiO2-P2O5-ZrO2, J. Sol–Gel Sci. Technol. 28, 199–204 (2003)CrossRefGoogle Scholar
  29. 38.29
    L.C. Klein, N. Giszpenc: Preparation of crack-free titania-silica gels, Adv. Mater. Manuf. Process. 4, 439–448 (1989)CrossRefGoogle Scholar
  30. 38.30
    H. de Lambilly, L.C. Klein: Crystallization of lithium alumino silicate gels, J. Non-Cryst. Solids 102, 269–274 (1988)CrossRefGoogle Scholar
  31. 38.31
    L.C. Klein, G.J. Garvey: Silicon alkoxides in glass technology. In: Soluble Silicates, ACS Symposium Series, Vol. 194, ed. by J.S. Falcore Jr. (ACS, Washington 1982) pp. 293–304CrossRefGoogle Scholar
  32. 38.32
    D. Gallagher, L.C. Klein: Silica membranes by the sol–gel process, J. Colloid Interface Sci. 109, 40–45 (1986)CrossRefGoogle Scholar
  33. 38.33
    S. Yacoub, S. Calas-Etienne, J. Jabbour, R. Courson, R. Tauk, A. Khoury, A. Mehdi, P. Etienne: Synthesis of new vinyl ether functionalized silica for UV-patterning, J. Sol–Gel Sci. Technol. 67, 384–393 (2013)CrossRefGoogle Scholar
  34. 38.34
    I.A. David, G.W. Scherer: An organic/inorganic single-phase composite, Chem. Mater. 7, 1957–1967 (1995)CrossRefGoogle Scholar
  35. 38.35
    D. Stauffer, A. Aharony: Introduction to Percolation Theory, revised 2 edn. (Taylor Francis, Philadelphia 1994)Google Scholar
  36. 38.36
    J. Zarzycki, M. Prassas, J. Phalippou: Synthesis of glasses from gels: The problem of monolithic gels, J. Mater. Sci. 17, 3371–3379 (1982)CrossRefGoogle Scholar
  37. 38.37
    G.W. Scherer: Recent progress in drying of gels, J. Non-Cryst. Solids 147/148, 363–374 (1992)CrossRefGoogle Scholar
  38. 38.38
    G.W. Scherer: Effect of drying on properties of silica gel, J. Non-Cryst. Solids 215, 155–168 (1997)CrossRefGoogle Scholar
  39. 38.39
    D.M. Smith, G.W. Scherer, J.M. Anderson: Shrinkage during drying of silica gel, J. Non-Cryst. Solids 188, 191–206 (1995)CrossRefGoogle Scholar
  40. 38.40
    G.W. Scherer, S. Haereid, E. Nilsen, M.-A. Einarsrud: Shrinkage of silica gels aged in TEOS, J. Non-Cryst. Solids 202, 42–52 (1996)CrossRefGoogle Scholar
  41. 38.41
    L.C. Klein, G.J. Garvey: Monolithic dried gels, J. Non-Cryst. Solids 48, 97–104 (1982)CrossRefGoogle Scholar
  42. 38.42
    T.A. Gallo, L.C. Klein: Apparent viscosity of sol–gel processed silica, J. Non-Cryst. Solids 82, 198–204 (1986)CrossRefGoogle Scholar
  43. 38.43
    M.A. Aegerter, N. Leventis, M.M. Koebel: Aerogels Handbook (Springer, New York 2011)CrossRefGoogle Scholar
  44. 38.44
    A.V. Rao, G.M. Pajonk, N.N. Parvathy: Influence of molar ratios of precursor, catalyst, solvent and water on monolithicity and physical properties of TMOS silica aerogels, J. Sol–Gel Sci. Technol. 3, 205–217 (1994)CrossRefGoogle Scholar
  45. 38.45
  46. 38.46
  47. 38.47
    C.J. Brinker, R. Sehgal, S.L. Hietala, R. Deshpande, D.M. Smith, D. Loy, C.S. Ashley: Sol–gel strategies for controlled porosity inorganic materials, J. Membr. Sci. 94, 85–102 (1994)CrossRefGoogle Scholar
  48. 38.48
    D.M. Liu: Porous Ceramic Materials: Fabrication, Characterization, Applications (Trans Tech, Zurich 1996)Google Scholar
  49. 38.49
    T.H. Elmer: Flow of air, nitrogen and hydrogen through porous glass tubes, Sep. Sci. Technol. 27, 2041–2054 (1992)CrossRefGoogle Scholar
  50. 38.50
    M.M. Collinson: Sol–gel strategies for the preparation of selective materials for chemical analysis, Crit. Rev. Anal. Chem. 29, 289–311 (1999)CrossRefGoogle Scholar
  51. 38.51
    E. Bakangura, L. Wu, L. Ge, Z. Yang, T. Xu: Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives, Prog. Polym. Sci. 57, 103–152 (2016)CrossRefGoogle Scholar
  52. 38.52
    R.R. Bhave: Inorganic Membranes: Synthesis Characteristics, and Applications (Van Nostrand Reinhold, New York 1991)CrossRefGoogle Scholar
  53. 38.53
    B.E. Yoldas: Zirconium oxides formed by hydrolytic condensation of alkoxides and parameters that affect their morphology, J. Mater. Sci. 21, 1080–1086 (1986)CrossRefGoogle Scholar
  54. 38.54
    T. Jin, Y. Ma, W. Masuda, M. Nakajima, K. Ninomiya, T. Hiraoka, J.-Y. Fukunaga, Y. Daiko, T. Yazawa: Preparation of surface-modified mesoporous silica membranes and separation mechanism of their pervaporation properties, Desalination 280, 139–145 (2011)CrossRefGoogle Scholar
  55. 38.55
    M. Eriksson, L.C. Klein, E. Liden, K. Lindqvist: Preparation of nano-porous silica-zirconia layers by an in-situ sol–gel method, J. Mater. Sci. Technol. 22, 611–614 (2006)CrossRefGoogle Scholar
  56. 38.56
    Y.S. Lin, A.J. Burggraaf: Experimental studies on pore size change of porous ceramic membranes after modification, J. Membr. Sci. 79, 65–82 (1993)CrossRefGoogle Scholar
  57. 38.57
    G.W. Scherer, C.J. Brinker, E.P. Roth: Sol\(\rightarrow\)Gel\(\rightarrow\)Glass. 3. Viscous sintering, J. Non-Cryst. Solids 72, 369–389 (1985)CrossRefGoogle Scholar
  58. 38.58
    G.W. Scherer: Cell models for viscous sintering, J. Am. Ceram. Soc. 74, 1523–1531 (1991)CrossRefGoogle Scholar
  59. 38.59
    G.W. Scherer, S. Calas, R. Sempere: Densification kinetics and structural evolution during sintering of silica aerogel, J. Non-Cryst. Solids 240, 118–130 (1998)CrossRefGoogle Scholar
  60. 38.60
    V. Ranganathan, L.C. Klein: Sol–gel synthesis of erbium-doped yttrium silicate glass-ceramics, J. Non-Cryst. Solids 354, 3567–3571 (2008)CrossRefGoogle Scholar
  61. 38.61
    N. Yao, K. Hou, C.D. Haines, N. Etessami, V. Ranganathan, S.B. Halpern, B.H. Kear, L.C. Klein, G.H. Sigel: Nanostructure of Er+3 doped silicates, J. Electron Microsc. 54, 309–315 (2005)Google Scholar
  62. 38.62
    I.M. Azzouz, L.C. Klein: Red, violet and up conversion luminescence of Eu/Sm codoped SiO2-TiO2, Opt. Mater. 35, 292–296 (2012)CrossRefGoogle Scholar
  63. 38.63
    L.C. Klein, T.A. Gallo: Densification of sol–gel silica: Constant rate heating, isothermal and step heat treatments, J. Non-Cryst. Solids 121, 119–123 (1990)CrossRefGoogle Scholar
  64. 38.64
    G.W. Scherer, D.L. Bachman: Sintering of low-density glasses: I. Theory, J. Am. Ceram. Soc. 60, 236–239 (1977)CrossRefGoogle Scholar
  65. 38.65
    G.W. Scherer: Sintering of low-density glasses: II. Experimental study, J. Am. Ceram. Soc. 60, 239–246 (1977)CrossRefGoogle Scholar
  66. 38.66
    L.F. Francis: Materials Processing: A Unified Approach to Processing of Metals, Ceramics and Polymers (Academic, London 2016)Google Scholar
  67. 38.67
    T. Gallo, C.J. Brinker, L.C. Klein, G.W. Scherer: The role of water in densification of gels. In: MRS Better Ceramics Through Chemistry, Vol. 32, ed. by C.J. Brinker, D.E. Clark, D.R. Ulrich (Elsevier, New York 1984) pp. 85–90Google Scholar
  68. 38.68
    S. Wallace, L.L. Hench: Structural analysis of water adsorbed in silica gel, J. Sol–Gel Sci. Technol. 1, 153–168 (1994)CrossRefGoogle Scholar
  69. 38.69
    T.A. Gallo, L.C. Klein: Dehydration effect on the viscosity of sol–gel processed silica, J. Non-Cryst. Solids 100, 429–434 (1988)CrossRefGoogle Scholar
  70. 38.70
    L.C. Klein, T.A. Gallo, G.J. Garvey: Densification of monolithic silica gels below 1000 °C, J. Non-Cryst. Solids 63, 23–33 (1984)CrossRefGoogle Scholar
  71. 38.71
  72. 38.72
    3M: 3M™ Nextel™ Ceramic Fibers and Textiles: Technical Reference Guide, (2018)
  73. 38.73
    Canon Global: Optical technologies that consistently produce new value,
  74. 38.74
    S. Sakka: Sol–gel process and applications. In: Handbook of Advanced Ceramics: Materials Applications, Processing and Properties, 2nd edn., ed. by S. Somiya (Elsevier, San Diego 2013) pp. 883–910CrossRefGoogle Scholar
  75. 38.75
    C.J. Brinker, C.S. Ashley, R.A. Cairncross, K.S. Chen, A.J. Hurd, S.T. Reed, J. Samuel, P.R. Shunk, R.T. Schwartz, C.S. Scotto: Sol–gel derived ceramic films—Fundamentals and applications. In: Metallurgical and Ceramic Protective Coatings, ed. by K.H. Stern (Chapman Hall, London 1996) pp. 112–151CrossRefGoogle Scholar
  76. 38.76
    SolGel Way: ACEdip 2.0 Accurate Environmental Dip-coater,
  77. 38.77
    T. Minami: Advanced sol–gel coatings for practical applications, J. Sol–Gel Sci. Technol. 65, 4–11 (2013)CrossRefGoogle Scholar
  78. 38.78
    M.A. Aegerter, M. Mennig: Sol–Gel Technologies for Glass Producers and Users (Kluwer Academic, Norwell 2004)CrossRefGoogle Scholar
  79. 38.79
    D.P. Birnie: A model for drying control cosolvent selection for spin-coating uniformity: The thin film limit, Langmuir 29, 9072–9078 (2013)CrossRefGoogle Scholar
  80. 38.80
    D.P. Birnie, D.M. Kaz, D.J. Taylor: Surface tension evolution during early stages of drying of sol–gel coatings, J. Sol–Gel Sci. Technol. 49, 233–237 (2009)CrossRefGoogle Scholar
  81. 38.81
    D.P. Birnie, S.K. Hau, D.S. Kamber, D.M. Kaz: Effect of ramping-up rate on film thickness for spin-on processing, J. Mater. Sci. Mater. Electron. 16, 715–720 (2005)CrossRefGoogle Scholar
  82. 38.82
    D.P. Birnie: Combined flow and evaporation during spin coating of complex solutions, J. Non-Cryst. Solids 218, 174–178 (1997)CrossRefGoogle Scholar
  83. 38.83
    P.M. Glaser, C.G. Pantano: Effect of H2O/TEOS ratio upon the preparation and nitridation of silica sol–gel films, J. Non-Cryst. Solids 63, 209–221 (1984)CrossRefGoogle Scholar
  84. 38.84
    J. Eamsiri, A. Elyamani, R.E. Riman: Sol–gel synthesis of amorphous 5-component oxide systems using crown-ether complexation-ZBLAN gels, J. Non-Cryst. Solids 163, 133–147 (1994)CrossRefGoogle Scholar
  85. 38.85
    H. Lunden, A. Liotta, D. Chateau, F. Lerouge, F. Chaput, S. Parola, C. Brannlund, Z. Ghadyani, M. Kildemo, M. Lindgren, C. Lopes: Dispersion and self-orientation of gold nanoparticles in sol–gel hybrid silica–optical transmission properties, J. Mater. Chem. C 3, 1026–1034 (2015)CrossRefGoogle Scholar
  86. 38.86
    R.B. Figuiera, I.R. Fontinha, C.J.R. Silva, E.V. Pereira: Hybrid sol–gel coatings: Smart and green materials for corrosion mitigation, Coatings 6, 1–19 (2016)Google Scholar
  87. 38.87
    R.A. Cairncross, L.F. Francis, L.E. Scriven: Competing drying and reaction mechanisms in the formation of sol-to-gel films, fibers, and spheres, Dry. Technol. 10, 893–923 (1992)CrossRefGoogle Scholar
  88. 38.88
    M.N. Ghazzal, O. Deparis, A. Errachid, H. Kebali, P. Simonis, P. Eloy, J.P. Vigneron, J. DeConnick, E.M. Gaigneaux: Porosity control and surface sensitivity of titania/silica mesoporous multilayer coatings: Applications to optical Bragg resonance tuning and molecular sensing, J. Mater. Chem. 22, 25302–25310 (2012)CrossRefGoogle Scholar
  89. 38.89
    B. Yoldas, T. O'Keefe: Deposition of optically transparent IR reflective coatings on glass, Appl. Opt. 23, 3638–3643 (1984)CrossRefGoogle Scholar
  90. 38.90
    C.J. Brinker, M.S. Harrington: Sol–gel derived antireflective coatings for silicon, Sol. Energy Mater. 5, 159–172 (1981)CrossRefGoogle Scholar
  91. 38.91
    B.D. Fabes, D.P. Birnie, B.J.J. Zelinski: Porosity and composition effects in sol–gel derived interference filters, Thin Solid Films 254, 175–180 (1995)CrossRefGoogle Scholar
  92. 38.92
    N.J. Arfsten: Sol–gel derived transparent IR-reflecting ITO semiconductor coatings, properties and technical possibilities, J. Non-Cryst. Solids 63, 243–249 (1984)CrossRefGoogle Scholar
  93. 38.93
    L. Gambino, A. Jitianu, L.C. Klein: Dielectric properties of organically modified siloxane melting gels, J. Non-Cryst. Solids 358, 3501–3504 (2011)CrossRefGoogle Scholar
  94. 38.94
    K. Zhang, X.Q. Zhang, C.X. Zhang, S.J. Zhang, X.C. Wang, D.L. Sun, M.A. Aegerter: Electrochromic behavior of NiO–TiO2 films prepared with sodium dodecyl sulfonate added to the sol, Sol. Energy Mater. Sol. Cells 114, 192–198 (2013)CrossRefGoogle Scholar
  95. 38.95
    C.J. Brinker, D.M. Haaland, R.E. Loehman: Oxynitride glasses prepared from gels and melts, J. Non-Cryst. Solids 56, 179–184 (1983)CrossRefGoogle Scholar
  96. 38.96
    Y.X. Chen, W.M. Liu: Characterization and investigation of the tribological properties of sol–gel zirconia thin films, J. Am. Ceram. Soc. 85, 2367–2369 (2002)CrossRefGoogle Scholar
  97. 38.97
    D. Chateau, A. Liotta, D. Gregori, F. Lerouge, F. Chaput, A. Desert, S. Parola: Controlled surface modification of gold nanostructures with functionalized silicon polymers, J. Sol–Gel Sci. Technol. 81, 147–153 (2017)CrossRefGoogle Scholar
  98. 38.98
    D.J. Taylor, B.D. Fabes: Laser processing of sol–gel coatings, J. Non-Cryst. Solids 147/148, 457–462 (1992)CrossRefGoogle Scholar
  99. 38.99
    Y. Lu, G. Cao, R.P. Kale, S. Prabakar, G.P. Lopez, C.J. Brinker: Microporous silica prepared by organic templating: Relationship between the molecular template and pore structure, Chem. Mater. 11, 1223–1229 (1999)CrossRefGoogle Scholar
  100. 38.100
    B. Dunn, J.I. Zink: Optical properties of sol–gel glasses doped with organic molecules, J. Mater. Chem. 1, 903–913 (1991)CrossRefGoogle Scholar
  101. 38.101
    D. Avnir, L.C. Klein, D. Levy, U. Schubert, A.B. Wojcik: Organo-silica sol–gel materials. In: The Chemistry of Organosilicon Compounds, Vol. 2, ed. by Z. Rappoport, Y. Apeloig (Wiley, London 1998) pp. 2317–2362Google Scholar
  102. 38.102
    C. Sanchez, F. Ribot: Chemical design of hybrid organic–inorganic materials synthesized via sol–gel, New J. Chem. 10, 1007–1040 (1994)Google Scholar
  103. 38.103
    A.B. Wojcik, L.C. Klein: Organic–inorganic gels based on silica and multifunctional acrylates, J. Sol–Gel Sci. Technol. 2, 115–120 (1994)CrossRefGoogle Scholar
  104. 38.104
    A.B. Wojcik, L.C. Klein: Transparent inorganic/organic copolymers by the sol–gel process: Thermal behavior of copolymers of tetraethyl orthosilicate (TEOS), vinyl triethoxysilane (VTES) and (meth) acrylate monomers, J. Sol–Gel Sci. Technol. 5, 77–82 (1995)CrossRefGoogle Scholar
  105. 38.105
    A.B. Wojcik, L.C. Klein: Organic/inorganic hybrids by the sol–gel process: Classification of synthesis methods, Appl. Organomet. Chem. 11, 129–135 (1997)CrossRefGoogle Scholar
  106. 38.106
    L.C. Klein, A. Jitianu: Organic–inorganic hybrid melting gels, J. Sol–Gel Sci. Technol. 55, 86–93 (2010)CrossRefGoogle Scholar
  107. 38.107
    J. Sun, E.K. Akdogan, L.C. Klein, A. Safari: Characterization and optical properties of sol–gel processed PMMA/SiO2 hybrid monoliths, J. Non-Cryst. Solids 353, 2807–2812 (2007)CrossRefGoogle Scholar
  108. 38.108
    K. Nakanishi, N. Soga: Phase separation in silica sol–gel system containing polyacrylic acid. I. Gel formation behavior and effect of solvent composition, J. Non-Cryst. Solids 139, 1–13 (1992)CrossRefGoogle Scholar
  109. 38.109
    H. Kaji, K. Nakanishi, N. Soga: Formation of porous gel morphology by phase separation in gelling alkoxy-derived silica. phenomenological study, J. Non-Cryst. Solids 185, 18–30 (1995)CrossRefGoogle Scholar
  110. 38.110
    S. Wang, D.K. Wang, S. Smart, J.C.D. da Costa: Ternary phase-separation investigation of sol–gel derived silica from ethyl silicate 40, Sci. Rep. 5, 14560 (2015)CrossRefGoogle Scholar
  111. 38.111
    C.L. Beaudry, L.C. Klein, R.A. McCauley: Thermal weight loss of silica-poly(vinyl acetate) (PVAc) sol–gel composites, J. Therm. Anal. 46, 55–65 (1996)CrossRefGoogle Scholar
  112. 38.112
    E.J.A. Pope, M. Asami, J.D. Mackenzie: Transparent silica gel-PMMA composites, J. Mater. Res. 4, 1018–1026 (1989)CrossRefGoogle Scholar
  113. 38.113
    B. Abramoff, L.C. Klein: Thermal properties of PMMA-impregnated silica gels. In: Chemical Processing of Advanced Materials, ed. by L.L. Hench, J.K. West (Wiley, New York 1992) pp. 815–821Google Scholar
  114. 38.114
    B. Abramoff, L.C. Klein: Mechanical behavior of PMMA impregnated silica gels. In: Ultrastructure Processing of Advanced Materials, ed. by D.R. Uhlmann, D.R. Ulrich (Wiley, New York 1992) pp. 401–407Google Scholar
  115. 38.115
    D. Avnir, T. Coradin, O. Lev, J. Livage: Recent bio-applications of sol–gel materials, J. Mater. Chem. 16, 1013–1030 (2006)CrossRefGoogle Scholar
  116. 38.116
    C. Rottman, A. Turniansky, D. Avnir: Sol–gel physical and covalent entrapment of three methyl red indicators: A comparative study, J. Sol–Gel Sci. Technol. 13, 17–25 (1998)CrossRefGoogle Scholar
  117. 38.117
    A. Jitianu, G. Amatucci, L.C. Klein: Organic–inorganic sol–gel thick films for humidity barriers, J. Mater. Res. 23, 2084–2090 (2008)CrossRefGoogle Scholar
  118. 38.118
    A. Jitianu, G. Amatucci, L.C. Klein: Phenyl-substituted siloxane hybrid gels that soften below 140 °C, J. Am. Ceram. Soc. 92, 36–40 (2008)CrossRefGoogle Scholar
  119. 38.119
    A. Jitianu, J. Doyle, G. Amatucci, L.C. Klein: Methyl modified siloxane melting gels for hydrophobic films, J. Sol–Gel Sci. Technol. 53, 272–279 (2010)CrossRefGoogle Scholar
  120. 38.120
    A. Jitianu, G. Gonzalez, L.C. Klein: Hybrid sol–gel glasses with glass transition temperatures below room Temperature, J. Am. Ceram. Soc. 98, 3673–3679 (2015)CrossRefGoogle Scholar
  121. 38.121
    A. Jitianu, S. Cadars, F. Zhang, G. Rodriguez, Q. Picard, M. Aparicio, J. Mosa, L.C. Klein: 29Si NMR and SAXS investigation of the hybrid organic–inorganic glasses obtained by consolidation of the melting gels, Dalton Trans. 46, 3729–3741 (2017)CrossRefGoogle Scholar
  122. 38.122
    S. Jeong, S.-J. Ahn, J. Moon: Fabrication of patterned inorganic-organic hybrid film for the optical waveguide by microfluidic lithography, J. Am. Ceram. Soc. 88, 1003–1036 (2005)CrossRefGoogle Scholar
  123. 38.123
    A. Matsuda, Y. Matsuno, M. Tatsumisago, T. Minami: Fine patterning and characterization of gel films derived from methyltriethoxysilane and tetraethoxysilane, J. Am. Ceram. Soc. 81, 2849–2852 (1998)CrossRefGoogle Scholar
  124. 38.124
    F. Back, M. Bockmeyer, E. Rudigier-Voigt, P. Lobmann: Hybrid polymer sol–gel material for UV-nanoimprint: Microstructure and thermal densification, J. Sol–Gel Sci. Technol. 66, 73–83 (2013)CrossRefGoogle Scholar
  125. 38.125
    A.K. Varshneya: Fundamentals of Inorganic Glasses (Academic Press, San Diego 1994)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Materials Science & EngineeringRutgers UniversityPiscataway, NJUSA

Personalised recommendations