Advertisement

Amorphous Thin Film Deposition

  • Virginie NazabalEmail author
  • Petr Němec
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

This chapter is devoted to the description of available experimental methods which are used for the fabrication of glassy and amorphous thin films or coatings on glass. Current deposition techniques offer great flexibility for the fabrication of such thin films with specific chemistry and microstructure leading to films and coatings with distinctive properties. After a brief introduction to amorphous thin films' processing, general information regarding film nucleation and growth, its microstructure and films' characterization techniques, the main focus is on physical vapor deposition techniques, with special emphasis on plasma processing techniques, i. e., sputter deposition and pulsed laser deposition. The classical vapor deposition techniques as well as ion plating and ion beam-assisted deposition are also briefly described. The chapter then describes the exploitation of chemical vapor deposition, after which a comparison of physical vapor deposition processes with chemical vapor deposition is given. Amorphous thin film fabrication via liquids is shortly reviewed, and finally an outlook regarding the contribution of amorphous thin films and coatings to societal development in the 21st century closes the chapter.

Notes

Acknowledgements

The financial support of the French National Agency of Research (ANR) for the LOUISE project (N\({}^{\circ}\)ANR-15-CE04-0001-01) and the Czech Science Foundation under project No. 16-17921S is acknowledged. We dedicate this chapter to the memory of Patrick Smutek of the Plassys company.

References

  1. D.M. Mattox (Ed.): Handbook of Physical Vapor Deposition (PVD) Processing, 2nd edn. (Elsevier, Amsterdam 2010)Google Scholar
  2. L. Holland (Ed.): The Vaccum Deposition of Thin Films (Springer, Heidelberg 1956)Google Scholar
  3. L.I. Maissel, R. Glang (Eds.): Handbook of Thin Film Technology (McGraw-Hill, New York 1970)Google Scholar
  4. H.K. Pulker (Ed.): Coatings on Glass (Elsevier, Amsterdam 1999)Google Scholar
  5. H.K. Bach, D. Krause (Eds.): Thin Films on Glass (Springer, Heidelberg 2003)Google Scholar
  6. S. Rossnagel: Sputtering and sputter deposition. In: Handbook of Thin Film Deposition Processes and Techniques, ed. by K. Seshan (William Andrew, Norwich 2001) pp. 319–348CrossRefGoogle Scholar
  7. K.K. Wasa, I. Kanno, H. Kotera (Eds.): Handbook of Sputter Deposition Technology (Elsevier, Amsterdam 2012)Google Scholar
  8. M. Volmer, A. Weber: Germ-formation in oversaturated figures, Z. Phys. Chem. 119, 277–301 (1926), in GermanGoogle Scholar
  9. F.C. Frank, J.H. van der Merwe: One-dimensional dislocations. 1. Static theory, Proc. R. Soc. A 198, 205–216 (1949)CrossRefGoogle Scholar
  10. I.N. Stranski, L. Krastanow: Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander, Sitzungsber. Akad. Wiss. Wien. Math.-Naturwiss. 146, 797–810 (1938)Google Scholar
  11. J. Venables (Ed.): Introduction to Surface and Thin Film Processes (Cambridge Univ. Press, Cambridge 2000)Google Scholar
  12. B.A. Movchan, A.V. Demchishin: Study of structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide, Phys. Met. Metallogr. (USSR) 28, 83–90 (1969)Google Scholar
  13. M.M. Hawkeye, M.T. Taschuk, M.J. Brett (Eds.): Glancing Angle Deposition of Thin Films: Engineering the Nanoscale (Wiley, Hoboken 2014)Google Scholar
  14. S.F. Ahmed, G.-H. Rho, K.-R. Lee, A. Vaziri, M.-W. Moon: High aspect ratio wrinkles on a soft polymer, Soft Matter 6, 5709–5714 (2010)CrossRefGoogle Scholar
  15. X.R. Su, M. Li, Z.K. Zhou, Y.Y. Zhai, Q. Fu, C. Huang, H. Song, Z.H. Hao: Microstructure and multiphoton luminescence of Au nanocrystals prepared by using glancing deposition method, J. Luminescence 128, 642–646 (2008)CrossRefGoogle Scholar
  16. J.A. Thornton: High-rate thick-film growth, Annu. Rev. Mater. Sci. 7, 239–260 (1977)CrossRefGoogle Scholar
  17. R. Messier, A.P. Giri, R.A. Roy: Revised structure zone model for thin-film physical structure, J. Vac. Sci. Technol. A 2, 500–503 (1984)CrossRefGoogle Scholar
  18. C.R.M. Grovenor, H.T.G. Hentzell, D.A. Smith: The development of grain structure during growth of metallic films, Acta Metall 32, 773–781 (1984)CrossRefGoogle Scholar
  19. J.A. Thornton: The microstructure of sputter-deposited coatings, J. Vac. Sci. Technol. A 4, 3059–3065 (1986)CrossRefGoogle Scholar
  20. P.B. Barna, M. Adamik: Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films 317, 27–33 (1998)CrossRefGoogle Scholar
  21. I. Petrov, P.B. Barna, L. Hultman, J.E. Greene: Microstructural evolution during film growth, J. Vac. Sci. Technol. A 21, S117–S128 (2003)CrossRefGoogle Scholar
  22. A. Anders: A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films 518, 4087–4090 (2010)CrossRefGoogle Scholar
  23. M. Ohring: Materials Science of Thin Films, 2nd edn. (Academic, Cambridge 2002) pp. 559–640, Chap. “Characterization of thin films and surfaces”CrossRefGoogle Scholar
  24. D.M. Mattox: Physical sputtering and sputter deposition (sputtering). In: Handbook of Physical Vapor Deposition (PVD) Processing, 2nd edn., ed. by D.M. Mattox (Elsevier, Amsterdam 2010) pp. 237–286CrossRefGoogle Scholar
  25. R. Behrisch, W. Eckstein (Eds.): Sputtering by Particle Bombardment (Springer, Heidelberg 2007)Google Scholar
  26. P. Sigmund: Theory of sputtering: I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184, 383 (1969)CrossRefGoogle Scholar
  27. R.V. Stuart, G.K. Wehner: Sputtering yields at very low bombarding ion energies, J. Appl. Phys. 33, 2345 (1962)CrossRefGoogle Scholar
  28. D. Rosenberg, G.K. Wehner: Sputtering yields for low energy He+, Kr+, and Xe+ ion bombardment, J. Appl. Phys. 33, 1842 (1962)CrossRefGoogle Scholar
  29. N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara: Energy-dependence of the ion-induced sputtering yields of monatomic solids, Atomic Data Nucl. Data Tables 31, 1–80 (1984)CrossRefGoogle Scholar
  30. M.P. Seah: An accurate semi-empirical equation for sputtering yields, II: For neon, argon and xenon ions, Nucl. Instrum. Methods Phys. Res. Sect. B 229, 348–358 (2005)CrossRefGoogle Scholar
  31. M.P. Seah, C.A. Clifford, F.M. Green, I.S. Gilmore: An accurate semi-empirical equation for sputtering yields I: For argon ions, Surf. Interface Anal. 37, 444–458 (2005)CrossRefGoogle Scholar
  32. M.P. Seah, T.S. Nunney: Sputtering yields of compounds using argon ions, J. Phys. D 43, 253001 (2010)CrossRefGoogle Scholar
  33. J.A. Thornton: Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings, J. Vac. Sci. Technol. 12, 830–835 (1975)CrossRefGoogle Scholar
  34. E. Baudet, M. Sergent, P. Němec, C. Cardinaud, E. Rinnert, K. Michel, L. Jouany, B. Bureau, V. Nazabal: Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors, Sci. Rep. 7, 3500 (2017)CrossRefGoogle Scholar
  35. B. Window: Recent advances in sputter deposition, Sur. Coat. Technol. 71, 93–97 (1995)CrossRefGoogle Scholar
  36. R.K. Waits: Planar magnetron sputtering, J. Vac. Sci. Technol. 15, 179–187 (1978)CrossRefGoogle Scholar
  37. B. Window, N. Savvides: Unbalanced DC magnetrons as sources of high ion fluxes, J. Vac. Sci. Technol. A 4, 453–456 (1986)CrossRefGoogle Scholar
  38. J. Vossen (Ed.): Thin Film Processes (Academic, Cambridge 1978)Google Scholar
  39. H.M. Urbassek, W.O. Hofer: Sputtering of molecules and clusters, K. Dan. Vidensk. Selsk. Det. Mat. Fys. Medd. 43, 97–125 (1993)Google Scholar
  40. K. Shibahara, S. Nishino, H. Matsunami: Antiphase-domain-free growth of cubic sic on Si(100), Appl. Phys. Lett. 50, 1888–1890 (1987)CrossRefGoogle Scholar
  41. C. May, J. Strumpfel: ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing, Thin Solid Films 351, 48–52 (1999)CrossRefGoogle Scholar
  42. M. Scherer, P. Wirz: Reactive high-rate d.c. sputtering of oxides, Thin Solid Films 119, 203–209 (1984)CrossRefGoogle Scholar
  43. P.A. Cormier, D. Gravis, R. Snyders: Study of the sputtering regime during the growth of Cu2ZnSnS4 thin films by reactive magnetron sputtering, Plasma Process. Polym. 14, 1700009 (2017)CrossRefGoogle Scholar
  44. A.P. Ehiasarian: Fundamentals and applications of HIPIMS. In: Plasma Surface Engineering Research and its Practical Applications, ed. by R. Wei (Academic, Trivandrum 2008)Google Scholar
  45. V. Kouznetsov, K. Macak, J.M. Schneider, U. Helmersson, I. Petrov: A novel pulsed magnetron sputter technique utilizing very high target power densities, Surf. Coat. Technol. 122, 290–293 (1999)CrossRefGoogle Scholar
  46. A.P. Ehiasarian, J.G. Wen, I. Petrov: Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion, J. Appl. Phys. 101, 054301 (2007)CrossRefGoogle Scholar
  47. C. Buzea, K. Robbie: State of the art in thin film thickness and deposition rate monitoring sensors, Rep. Prog. Phys. 68, 385–409 (2005)CrossRefGoogle Scholar
  48. V. Teixeira, H.N. Cui, L.J. Meng, E. Fortunato, R. Martins: Amorphous ITO thin films prepared by DC sputtering for electrochromic applications, Thin Solid Films 420/421, 70–75 (2002)CrossRefGoogle Scholar
  49. P.M. Martin, L.C. Olsen, J.W. Johnston, D.M. Depoy: Investigation of sputtered HfF4 films and application to interference filters for thermophotovoltaics, Thin Solid Films 420/421, 8–12 (2002)CrossRefGoogle Scholar
  50. T. Mitsuyu, K. Wasa: High dielectric-constant films of amorphous LiNbO3 prepared by sputtering deposition, Jpn. J. Appl. Phys. 20, L48–L50 (1981)CrossRefGoogle Scholar
  51. M. Kitabatake, T. Mitsuyu, K. Wasa: Structure and electrical-properties of amorphous PbTiO3 thin-films sputtered on cooled substrates, J Non-Cryst. Solids 53, 1–10 (1982)CrossRefGoogle Scholar
  52. M.S. Chae, J.H. Park, H.W. Son, K.S. Hwang, T.G. Kim: IGZO-based electrolyte-gated field-effect transistor for in situ biological sensing platform, Sens. Actuators B 262, 876–883 (2018)CrossRefGoogle Scholar
  53. T. Tohda, K. Wasa, S. Hayakawa: Effects of target materials on the structural-properties of sputtered SiC films, J. Electrochem. Soc. 127, 44–47 (1980)CrossRefGoogle Scholar
  54. T.D. Moustakas, R. Friedman, B.R. Weinberger: Effect of phosphorus and boron impurities on amorphous-silicon solar-cells, Appl. Phys. Lett. 40, 587–588 (1982)CrossRefGoogle Scholar
  55. T.D. Moustakas, R. Friedman: Amorphous-silicon p-i-n solar-cells fabricated by reactive sputtering, Appl. Phys. Lett. 40, 515–517 (1982)CrossRefGoogle Scholar
  56. W. Paul, D.A. Anderson: Properties of amorphous hydrogenated silicon, with special emphasis on preparation by sputtering, Solar Energy Mater. 5, 229–316 (1981)CrossRefGoogle Scholar
  57. S. Gerke, H.W. Becker, D. Rogalla, F. Singer, N. Brinkmann, S. Fritz, A. Hammud, P. Keller, D. Skorka, D. Sommer, C. Weiß, S. Flege, G. Hahn, R. Job, B. Terheiden: Influence of post-hydrogenation upon electrical, optical and structural properties of hydrogen-less sputter-deposited amorphous silicon, Thin Solid Films 598, 161–169 (2016)CrossRefGoogle Scholar
  58. G.N. van den Hoven, R.J.I.M. Koper, A. Polman, C. van Dam, J.W.M. van Uffelen, M.K. Smit: Net optical gain at 1.53 $$\upmu$$m in Er-doped Al2O3 waveguides on silicon, Appl. Phys. Lett. 68, 1886–1888 (1996)CrossRefGoogle Scholar
  59. A. Nazarov, J.M. Sun, W. Skorupa, R.A. Yankov, I.N. Osiyuk, I.P. Tjagulskii, V.S. Lysenko, T. Gebel: Light emission and charge trapping in Er-doped silicon dioxide films containing silicon nanocrystals, Appl. Phys. Lett. 86, 151914 (2005)CrossRefGoogle Scholar
  60. L. Jin, D. Li, L. Xiang, F. Wang, D. Yang, D. Que: The modulation on luminescence of Er3+-doped silicon-rich oxide films by the structure evolution of silicon nanoclusters, Nanoscale Res. Lett. 8, 34 (2013)CrossRefGoogle Scholar
  61. A. Fafin, J. Cardin, C. Dufour, F. Gourbilleau: Theoretical investigation of the more suitable rare earth to achieve high gain in waveguide based on silica containing silicon nanograins doped with either Nd3+ or Er3+ ions, Opt. Express 22, 12296–12306 (2014)CrossRefGoogle Scholar
  62. S. Valligatla, A. Chiasera, S. Varas, N. Bazzanella, D.N. Rao, G.C. Righini, M. Ferrari: High quality factor 1-D Er3+-activated dielectric microcavity fabricated by RF-sputtering, Opt. Express 20, 21214–21222 (2012)CrossRefGoogle Scholar
  63. M. Pollnau: Rare-earth-ion-doped waveguide lasers on a silicon chip. In: Optical Components and Materials XII, Proc. SPIE, Vol. 9359, ed. by S. Jiang, M.J.F. Digonnet (SPIE, Bellingham 2015)Google Scholar
  64. P. Loiko, N. Ismail, J.D.B. Bradley, M. Gotelid, M. Pollnau: Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films, J. Non-Cryst. Solids 476, 95–99 (2017)CrossRefGoogle Scholar
  65. A.R. Zanatta: An alternative experimental approach to produce rare-earth-doped SiOx films, J. Appl. Phys. 119, 145302 (2016)CrossRefGoogle Scholar
  66. V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M.L. Anne, J. Charrier, J.L. Adam: Luminescence at 2.8 \(\upmu\)m: Er3+-doped chalcogenide micro-waveguide, Opt. Mater. 58, 390–397 (2016)CrossRefGoogle Scholar
  67. J.A. Frantz, L.B. Shaw, J.D. Myers, K.J. Ewing, J.S. Sanghera: Mid-IR emission in erbium-doped gallium lanthanum sulfide glass integrated optic waveguides. In: IEEE Photonics Society Summer Topical Meeting Series (2014) pp. 49–50CrossRefGoogle Scholar
  68. L. Bodiou, F. Starecki, J. Lemaitre, V. Nazabal, J.-L. Doualan, E. Baudet, R. Chahal, A. Gutierrez-Arroyo, Y. Dumeige, I. Hardy, A. Braud, R. Soulard, P. Camy, P. Němec, G. Palma, F. Prudenzano, J. Charrier: Mid-infrared guided photoluminescence from integrated Pr3+-doped selenide ridge waveguides, Opt. Mater. 75, 109–115 (2018)CrossRefGoogle Scholar
  69. J.W. Miller, Z. Khatami, J. Wojcik, J.D.B. Bradley, P. Mascher: Integrated ECR-PECVD and magnetron sputtering system for rare-earth-doped Si-based materials, Surf. Coat. Technol. 336, 99–105 (2018)CrossRefGoogle Scholar
  70. K. Vu, S. Madden: Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain, Opt. Express 18, 19192–19200 (2010)CrossRefGoogle Scholar
  71. P.T. Lin, M. Vanhoutte, N.S. Patel, V. Singh, J. Hu, Y. Cai, R. Camacho-Aguilera, J. Michel, L.C. Kimerling, A. Agarwal: Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals, Opt. Express 20, 2124–2135 (2012)CrossRefGoogle Scholar
  72. K. Vu, K. Yan, Z. Jin, X. Gai, D.-Y. Choi, S. Debbarma, B. Luther-Davies, S. Madden: Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics, Opt. Lett. 38, 1766–1768 (2013)CrossRefGoogle Scholar
  73. A. Chiasera, I. Vasilchenko, D. Dorosz, M. Cotti, S. Varas, E. Iacob, G. Speranza, A. Vaccari, S. Valligatla, L. Zur, A. Lukowiak, G.C. Righini, M. Ferrari: SiO2-P2O5-HfO2-Al2O3-Na2O glasses activated by Er3+ ions: From bulk sample to planar waveguide fabricated by rf-sputtering, Opt. Mater. 63, 153–157 (2017)CrossRefGoogle Scholar
  74. B.G. Aitken, C.W. Ponader, R.S. Quimby: Clustering of rare earths in GeAs sulfide glass, C. R. Chim. 5, 865–872 (2002)CrossRefGoogle Scholar
  75. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, B. Luther-Davies: Experimental demonstration of linearly polarized 2–10 \(\upmu\)m supercontinuum generation in a chalcogenide rib waveguide, Opt. Lett. 41, 958–961 (2016)CrossRefGoogle Scholar
  76. M. Merklein, I.V. Kabakova, T.F.S. Büttner, D.-Y. Choi, B. Luther-Davies, S.J. Madden, B.J. Eggleton: Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits, Nat. Commun. 6, 6396 (2015)CrossRefGoogle Scholar
  77. N. Singh, D.D. Hudson, R. Wang, E.C. Maegi, D.-Y. Choi, C. Grillet, B. Luther-Davies, S. Madden, B.J. Eggleton: Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator, Opt. Express 23, 8681–8686 (2015)CrossRefGoogle Scholar
  78. S.R. Mirnaziry, C. Wolff, M.J. Steel, B.J. Eggleton, C.G. Poulton: Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides, Opt. Express 24, 4786–4800 (2016)CrossRefGoogle Scholar
  79. T. Kuriakose, E. Baudet, T. Halenkovič, M.M.R. Elsawy, P. Němec, V. Nazabal, G. Renversez, M. Chauvet: Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique, Opt. Commun. 403, 352–357 (2017)CrossRefGoogle Scholar
  80. W.D. Shen, M. Cathelinaud, M.D. Lequime, F. Charpentier, V. Nazabal: Light trimming of a narrow bandpass filter based on a photosensitive chalcogenide spacer, Opt. Express 16, 373–383 (2008)CrossRefGoogle Scholar
  81. M.J. Schöning, J.P. Kloock: About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis: Technological aspects of fabrication and miniaturization, Electroanalysis 19, 2029–2038 (2007)CrossRefGoogle Scholar
  82. R. Eason (Ed.): Pulsed Laser Deposition of Thin Films Applications-Led Growth of Functional Materials (Wiley, Hoboken 2007)Google Scholar
  83. P. Schaaf: Laser Processing of Materials: Fundamentals, Applications and Developments (Springer, Heidelberg 2010)CrossRefGoogle Scholar
  84. P. Němec, J. Charrier, M. Cathelinaud, M. Allix, J.-L. Adam, S. Zhang, V. Nazabal: Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications, Thin Solid Films 539, 226–232 (2013)CrossRefGoogle Scholar
  85. J. Schou: Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film, Appl. Surf. Sci. 255, 5191–5198 (2009)CrossRefGoogle Scholar
  86. C. Phipps (Ed.): Laser Ablation and its Applications (Springer, Heidelberg 2007)Google Scholar
  87. S.I. Anisimov, D. Bäuerle, B.S. Luk'yanchuk: Gas-dynamics and film profiles in pulsed-laser deposition of materials, Phys. Rev. B 48, 12076–12081 (1993)CrossRefGoogle Scholar
  88. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta: Characterization of laser-ablation plasmas, J. Phys. B 32, R131–R172 (1999)CrossRefGoogle Scholar
  89. D.B. Chrisey (Ed.): Pulsed Laser Deposition of Thin Films (Wiley, Hoboken 1994)Google Scholar
  90. P. Balling, J. Schou: Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films, Rep. Prog. Phys. 76, 036502 (2013)CrossRefGoogle Scholar
  91. J. Robertson: Diamond-like amorphous carbon, Mater. Sci. Eng. Rep. 37, 129–281 (2002)CrossRefGoogle Scholar
  92. T.W. Reenaas, Y.S. Lee, F.R. Chowdhury, M. Gupta, Y.Y. Tsui, T.Y. Tou, S.L. Yap, S.Y. Kok, S.S. Yap: Femtosecond and nanosecond pulsed laser deposition of silicon and germanium, Appl. Surf. Sci. 354, 206–211 (2015)CrossRefGoogle Scholar
  93. W.O. Siew, S.S. Yap, C. Ladam, O. Dahl, T.W. Reenaas, T.Y. Tou: Nanosecond laser ablation and deposition of silicon, Appl. Phys. A 104, 877–881 (2011)CrossRefGoogle Scholar
  94. Z. Yang, J. Hao, S. Yuan, S. Lin, H.M. Yau, J. Dai, S.P. Lau: Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition, Adv. Mater. 27, 3748–3754 (2015)CrossRefGoogle Scholar
  95. N.R. Glavin, C. Muratore, M.L. Jespersen, J. Hu, P.T. Hagerty, A.M. Hilton, A.T. Blake, C.A. Grabowski, M.F. Durstock, M.E. McConney, D.M. Hilgefort, T.S. Fisher, A.A. Voevodin: Amorphous boron nitride: A universal, ultrathin dielectric for 2-D nanoelectronics, Adv. Funct. Mater. 26, 2640–2647 (2016)CrossRefGoogle Scholar
  96. X.-H. Zheng, F.-E. Yang, L. Chen, Z-l R.-G. Song, X.-H. Zhang: Microstructure and mechanical properties of a-CNx films prepared by bias voltage assisted PLD with carbon nitride target, Surf. Coat. Technol. 258, 716–721 (2014)CrossRefGoogle Scholar
  97. P.P. Dey, A. Khare: Effect of substrate temperature on structural and linear and nonlinear optical properties of nanostructured PLD a-SiC thin films, Mater. Res. Bull. 84, 105–117 (2016)CrossRefGoogle Scholar
  98. R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, P. Němec: Pulsed laser deposited alumina thin films, Ceram. Int. 42, 1177–1182 (2016)CrossRefGoogle Scholar
  99. J. Gottmann, A. Husmann, T. Klotzbucher, E.W. Kreutz: Optical properties of alumina and zirconia thin films grown by pulsed laser deposition, Surf. Coat. Technol. 100, 415–419 (1998)CrossRefGoogle Scholar
  100. D. Dzibrou, A.M. Grishin, H. Kawasaki: Pulsed laser deposited TiO2 films: Tailoring optical properties, Thin Solid Films 516, 8697–8701 (2008)CrossRefGoogle Scholar
  101. J. Bruncko, M. Netrvalova, A. Vincze, P. Sutta, M. Michalka, F. Uherek: Pulsed laser deposition of thin films on actively cooled substrates, Vacuum 98, 56–62 (2013)CrossRefGoogle Scholar
  102. M. Elisa, C.R. Iordanescu, I.C. Vasiliu, I.D. Feraru, G. Epurescu, M. Filipescu, C. Plapcianu, C. Bartha, R. Trusca, S. Peretz: Synthesis and characterization of PLD glass phosphate films doped with CdS, J. Mater. Sci. 52, 2895–2901 (2017)CrossRefGoogle Scholar
  103. C. Deng, H. Ki: Pulsed laser deposition of refractive-index-graded broadband antireflection coatings for silicon solar cells, Solar Energy Mater. Solar Cells 147, 37–45 (2016)CrossRefGoogle Scholar
  104. R. Morea, A. Miguel, T.T. Fernandez, B. Mate, F.J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, J. Gonzalo: Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emission at 1.53 \(\upmu\)m, J. Luminescence 170, 778–784 (2016)CrossRefGoogle Scholar
  105. Z. Zhao, G. Jose, P. Steenson, N. Bamiedakis, R.V. Penty, I.H. White, A. Jha: Tellurite glass thin films on silica and polymer using UV (193 nm) pulsed laser ablation, J. Phys. D 44, 095501 (2011)CrossRefGoogle Scholar
  106. Z. Mo, X. Miao, L. Liang, W. Deng, B. Li, D. Bao: Room-temperature pulsed laser deposition and dielectric properties of amorphous Bi3.95Er0.05Ti3O12 thin films on conductive substrates, Appl. Phys. A 111, 1113–1117 (2013)CrossRefGoogle Scholar
  107. D.E. Proffit, Q. Ma, D.B. Buchholz, R.P.H. Chang, M.J. Bedzyk, T.O. Mason: Structural and physical property studies of amorphous Zn-In-Sn-O thin films, J. Am. Ceram. Soc. 95, 3657–3664 (2012)CrossRefGoogle Scholar
  108. J. Ma, C.Z. Wang, C.L. Ban, C.Z. Chen, H.M. Zhang: Pulsed laser deposition of magnesium-containing bioactive glass film on porous Ti-6Al-4V substrate pretreated by micro-arc oxidation, Vacuum 125, 48–55 (2016)CrossRefGoogle Scholar
  109. L. Floroian, M. Florescu, F. Sima, G. Popescu-Pelin, C. Ristoscu, I.N. Mihailescu: Synthesis of biomaterial thin films by pulsed laser technologies: Electrochemical evaluation of bioactive glass-based nanocomposite coatings for biomedical applications, Mater. Sci. Eng. C 32, 1152–1157 (2012)CrossRefGoogle Scholar
  110. C. He, G. Qin, D. Zhao, X. Chuai, L. Wang, K. Zheng, W. Qin: Upconversion luminescence properties of Yb3+ and Tm3+ codoped amorphous fluoride ZrF4-BaF2-LaF3-AlF3-NaF thin film prepared by pulsed laser deposition, J. Nanosci. Nanotechnol. 14, 3831–3833 (2014)CrossRefGoogle Scholar
  111. D. Ganser, J. Gottmann, U. Mackens, U. Weichmann: Pulsed laser deposition of fluoride glass thin films, Appl. Surf. Sci. 257, 954–959 (2010)CrossRefGoogle Scholar
  112. M. Popescu, A. Lorinczi, F. Sava, A. Velea, I.D. Simandan, P. Badica, M. Burdusel, A.C. Galca, G. Socol, F. Jipa, M. Zamfirescu: Thin films of amorphous Ga2S3 and rare-earth sulphides, Mater. Lett. 142, 229–231 (2015)CrossRefGoogle Scholar
  113. P. Němec, J. Jedelský, M. Frumar, Z. Černošek, M. Vlček: Structure of pulsed-laser deposited arsenic-rich As–S amorphous thin films, and effect of light and temperature, J. Non-Cryst. Solids 351, 3497–3502 (2005)CrossRefGoogle Scholar
  114. J.D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L.C. Kimerling, K.A. Richardson: Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques, Acta Mater 59, 5032–5039 (2011)CrossRefGoogle Scholar
  115. M. Olivier, R. Boidin, P. Hawloá, P. Němec, V. Nazabal: Kinetics of photosensitivity in Ge-Sb-Se thin films. In: Proc. Int. Conf. Photonics, Opt. Laser Technol. (PHOTOPTICS), Vol. 1 (2015) pp. 67–72Google Scholar
  116. P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, X.H. Zhang: Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films, Opt. Express 18, 22944–22957 (2010)CrossRefGoogle Scholar
  117. M. Bouška, S. Pechev, Q. Simon, R. Boidin, V. Nazabal, J. Gutwirth, E. Baudet, P. Němec: Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films, Sci. Rep. 6, 26552 (2016)CrossRefGoogle Scholar
  118. P. Němec, V. Nazabal, M. Dussauze, H.-L. Ma, Y. Bouyrie, X.-H. Zhang: Ga–Ge–Te amorphous thin films fabricated by pulsed laser deposition, Thin Solid Films 531, 454–459 (2013)CrossRefGoogle Scholar
  119. V. Nazabal, M. Cathelinaud, W. Shen, P. Nemec, F. Charpentier, H. Lhermite, M.-L. Anne, J. Capoulade, F. Grasset, A. Moreac, S. Inoue, M. Frumar, J.-L. Adam, M. Lequime, C. Amra: Chalcogenide coatings of Ge15Sb20S65 and Te20As30Se50, Appl. Opt. 47, C114–C123 (2008)CrossRefGoogle Scholar
  120. A. Dahshan, K.A. Aly: Optical constants of new amorphous As-Ge-Se-Sb thin films, Acta Mater. 56, 4869–4875 (2008)CrossRefGoogle Scholar
  121. K. Palanjyan, Y. Ledemi, Y. Messaddeq, R. Vallée, T. Galstian: High efficiency and stability gratings recorded in GeAsS thin films, Opt. Mater. Express 6, 1604–1612 (2016)CrossRefGoogle Scholar
  122. K. Yan, K. Vu, R. Wang, S. Madden: Greater than 50% inversion in erbium doped chalcogenide waveguides, Opt. Express 24, 23304–23313 (2016)CrossRefGoogle Scholar
  123. D.Z. Dobkin, M.K. Zuraw (Eds.): Principles of Chemical Vapor Deposition (Springer, Dordrecht 2003)Google Scholar
  124. H.O. Pierson (Ed.): Handbook of Chemical Vapor Deposition (William Andrew, Norwich 1999)Google Scholar
  125. P.M. Martin (Ed.): Handbook of Deposition Technologies for Films and Coatings (William Andrew, Norwich 2009)Google Scholar
  126. T. Muneshwar, M. Miao, E.R. Borujeny, K. Cadien: Atomic layer deposition: Fundamentals, practice, and challenges. In: Handbook of Thin Film Deposition, 4th edn., ed. by K. Seshan, D. Schepis (William Andrew, Norwich 2018) pp. 359–377CrossRefGoogle Scholar
  127. V. Miikkulainen, M. Leskelä, M. Ritala, R.L. Puurunen: Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends, J. Appl. Phys. 113, 021301 (2013)CrossRefGoogle Scholar
  128. S.M. George: Atomic layer deposition: An overview, Chem. Rev. 110, 111–131 (2010)CrossRefGoogle Scholar
  129. K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W.M.M. Kessels, U.T. Sanli, C. Grévent, G. Schütz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tünnermann, A. Szeghalmi: Comparative study of ALD SiO2 thin films for optical applications, Opt. Mater. Express 6, 660–670 (2016)CrossRefGoogle Scholar
  130. Y. Zou, H.T. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J.D. Musgraves, K. Richardson, J.J. Hu: Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films, Opt. Mater. Express 2, 1723–1732 (2012)CrossRefGoogle Scholar
  131. J. Cook, S. Slang, R. Golovchak, H. Jain, M. Vlcek, A. Kovalskiy: Structural features of spin-coated thin films of binary AsxS100-x chalcogenide glass system, Thin Solid Films 589, 642–648 (2015)CrossRefGoogle Scholar
  132. S. Song, J. Dua, C.B. Arnold: Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films, Opt. Express 18, 5472–5480 (2010)CrossRefGoogle Scholar
  133. S.S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, C.B. Arnold: Spin-coating of Ge23Sb7S70 chalcogenide glass thin films, J. Non-Cryst. Solids 355, 2272–2278 (2009)CrossRefGoogle Scholar
  134. B. Hu, M. Yao, R. Xiao, J. Chen, X. Yao: Optical properties of amorphous Al2O3 thin films prepared by a sol-gel process, Ceram. Int. 40, 14133–14139 (2014)CrossRefGoogle Scholar
  135. J. Cho, P. Choi, N. Lee, S. Kim, B. Choi: Dielectric properties of solution-processed ZrO2 for thin-film transistors, J. Nanosci. Nanotechnol. 16, 10380–10384 (2016)CrossRefGoogle Scholar
  136. B.A. Bhat, G.R. Khan, K. Asokan: Role of substrate effects on the morphological, structural, electrical and thermoelectrical properties of V2O5 thin films, RSC Advances 5, 52602–52611 (2015)CrossRefGoogle Scholar
  137. H.S. Kim, M.-G. Kim, Y.-Q. Ha, M.G. Kanatzidis, T.J. Marks, A. Facchetti: Low-temperature solution-processed amorphous indium tin oxide field-effect transistors, J. Am. Chem. Soc. 131, 10826 (2009)CrossRefGoogle Scholar
  138. L. Li, P. Zhang, W.-M. Wang, H. Lin, A.B. Zerdoum, S.J. Geiger, Y. Liu, N. Xiao, Y. Zou, O. Ogbuu, Q. Du, X. Jia, J. Li, J. Hu: Foldable and cytocompatible sol-gel TiO2 photonics, Sci. Rep. 5, 13832 (2015)CrossRefGoogle Scholar
  139. H.E. Jan, H. Hoang, T. Nakamura, T. Koga, T. Ina, T. Uruga, T. Kizu, K. Tsukagoshi, T. Nabatame, A. Fujiwara: Amorphous In-Si-O films fabricated via solution processing, J. Electron. Mater. 46, 3610–3614 (2017)CrossRefGoogle Scholar
  140. M. Yao, F. Li, Y. Peng, J. Chen, Z. Su, X. Yao: Enhanced electrical characteristics of sol-gel-derived amorphous SrTiO3 films, J. Mater. Sci. Mater. Electron. 28, 4044–4050 (2017)CrossRefGoogle Scholar
  141. Y.N. Gao, Y.L. Xu, J.G. Lu, J.H. Zhang, X.F. Li: Solution processable amorphous hafnium silicate dielectrics and their application in oxide thin film transistors, J. Mater. Chem. C(3), 11497–11504 (2015)Google Scholar
  142. J. Zhuang, Q.-J. Sun, Y. Zhou, S.-T. Han, L. Zhou, Y. Yan, H. Peng, S. Venkatesh, W. Wu, R.K.Y. Li, V.A.L. Roy: Solution-processed rare-earth oxide thin films for alternative gate dielectric application, ACS Appl. Mater. Interfaces 8, 31128–31135 (2016)CrossRefGoogle Scholar
  143. D.W. Harwood, E.R. Taylor, R. Moore, D. Payne: Fabrication of fluoride glass planar waveguides by hot dip spin coating, J. Non-Cryst. Solids 332, 190–198 (2003)CrossRefGoogle Scholar
  144. Y. Hishinuma, T. Ogihara: Preparation of silica glass films on the surface of polypropylene microporous membrane separators by dip coating with polysilazane and their application in lithium-ion batteries, J. Ceram. Soc. Japan. 124, 480–483 (2016)CrossRefGoogle Scholar
  145. V. Matějec, J. Pedliková, I. Barton, J. Zavadil, P. Kostka: Optical properties of As2S3 layers deposited from solutions, J. Non-Cryst. Solids 431, 47–51 (2016)CrossRefGoogle Scholar
  146. Y.-H. Kim, K.-H. Kim, M.S. Oh, H.J. Kim, J.I. Han, M.-K. Han, S.K. Park: Ink-jet-printed zinc-tin-oxide thin-film transistors and circuits with rapid thermal annealing process, IEEE Electron. Device Lett. 31, 836–838 (2010)CrossRefGoogle Scholar
  147. E.A. Sanchez, M. Waldmann, C.B. Arnold: Chalcogenide glass microlenses by inkjet printing, Appl. Opt. 50, 1974–1978 (2011)CrossRefGoogle Scholar
  148. S. Novak, P.T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P.G. Kik, W. Deng, K. Richardson: Direct electrospray printing of gradient refractive index chalcogenide glass films, ACS Appl. Mater. Interfaces 9, 26990–26995 (2017)CrossRefGoogle Scholar
  149. J. Ruchmann: Les vitrages: Laisbez entrer la lumière. In: La chimie et l'habitat, ed. by M.-T. Dinh-Audouin, D. Olivier, P. Rigny (EDP Sciences, Les Ulis 2011) pp. 193–206Google Scholar
  150. D. Lincot: The new paradigm of photovoltaics: From powering satellites to powering humanity, C. R. Phys. 18, 381–390 (2017)CrossRefGoogle Scholar
  151. D. Lincot: Les filières photovoltaïques eu couches minces et leurs perspectives d'application à l'habitat. In: La chimie et l'habitat, ed. by M.-T. Dinh-Audouin, D. Olivier, P. Rigny (EDP Sciences, Les Ulis 2011)Google Scholar
  152. D. Abou-Ras, S. Wagner, B.J. Stanbery, H.-W. Schock, R. Scheer, L. Stolt, S. Siebentritt, D. Lincot, C. Eberspacher, K. Kushiya, A.N. Tiwari: Innovation highway: Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint, Thin Solid Films 633, 2–12 (2017)CrossRefGoogle Scholar
  153. A. Uhart, J.B. Ledeuil, B. Pecquenard, F. Le Cras, M. Proust, H. Martinez: Nanoscale chemical characterization of solid-state microbattery stacks by means of auger spectroscopy and ion-milling cross section preparation, ACS Appl. Mater. Interfaces 9, 33238–33249 (2017)CrossRefGoogle Scholar
  154. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson: Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries, J. Power Sources 43, 103–110 (1993)CrossRefGoogle Scholar
  155. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson: Electrical-properties of amorphous lithium electrolyte thin-films, Solid State Ion 53, 647–654 (1992)CrossRefGoogle Scholar
  156. K.H. Joo, H.J. Sohn, P. Vinatier, B. Pecquenard, A. Levasseur: Lithium ion conducting lithium sulfur oxynitride thin film, Electrochem. Solid State Lett. 7, A256–A258 (2004)CrossRefGoogle Scholar
  157. K.H. Joo, P. Vinatier, B. Pecquenard, A. Levasseur, H.J. Sohn: Thin film lithium ion conducting LiBSO solid electrolyte, Solid State Ion 160, 51–59 (2003)CrossRefGoogle Scholar
  158. E.I. Kamitsos, M. Dussauze, C.P.E. Varsamis, P. Vinatier, Y. Hamon: Thin film amorphous electrolytes: Structure and composition by experimental and simulated infrared spectra, J. Phys. Chem. C(111), 8111–8119 (2007)Google Scholar
  159. S.J. Lee, J.H. Bae, H.W. Lee, H.K. Baik, S.M. Lee: Electrical conductivity in Li-Si-P-O-N oxynitride thin-films, J. Power Sources 123, 61–64 (2003)CrossRefGoogle Scholar
  160. K. Richardson, D. Krol, K. Hirao: Glasses for photonic applications, Int. J. Appl. Glass Sci. 1, 74–86 (2010)CrossRefGoogle Scholar
  161. B.J. Eggleton, B. Luther-Davies, K. Richardson: Chalcogenide photonics, Nat. Photonics 5, 141–148 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Chemical Sciences ISCR, UMR CNRS 6226University of Rennes 1RennesFrance
  2. 2.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations