Advertisement

Glass Shaping

  • Romain LanielEmail author
  • Mathieu Hubert
  • Mathieu Miroir
  • Antoine BrientEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

The possibility to shape glass easily and in all kind of forms for applications in our everyday life is one of the key factors to its success. The fabrication of a glass article comprises a succession of steps, often starting from a hot glass melt that is shaped during its cooling. The product can then be worked at lower temperatures, to modify its dimensions or its surface finish.

In this chapter, the shaping processes at both high and low temperatures are presented. In a first part, the different forming processes (shaping at high temperature) developed by the glass industry are illustrated, and a specific emphasis is given to glass viscosity, a key parameter in these processes. In the second part of the chapter, the shaping processes occurring at low temperatures, such as cutting or grinding, are described. In this section, specific attention is given to the mechanical behavior of the glass during the process as well as to machining parameters.

References

  1. W. Trier, K.L. Loewenstein: Glass Furnaces: Design, Construction and Operation (Society of Glass Technology, Sheffield 1987)Google Scholar
  2. E.B. Shand, C.H. Greene, J.A. Grant: Glass Engineering Handbook (McGraw-Hill, New York 1958)Google Scholar
  3. S.R. Scholes, C.H. Greene: Modern Glass Practice, 7th edn. (Cahners, Boston 1975)Google Scholar
  4. E.L. Bourhis: Glass—Mechanics and Technology (Wiley, Weinheim 2008)Google Scholar
  5. I.W. Donald: Glass-To-Metal Seals (Society of Glass Technology, Sheffield 2009)Google Scholar
  6. A. Fluegel: Glass viscosity calculation based on a global statistical modelling approach, Glass Technol. 48(1), 13–30 (2007)Google Scholar
  7. ASTM C338-93: Standard Test Method for Softening Point of Glass (ASTM International, West Conshohocken 2008)Google Scholar
  8. G. Chui: Heat transfer and temperature control in an annealing lehr for float glass, J. Am. Ceram. Soc. 60(11/12), 477–484 (1977)CrossRefGoogle Scholar
  9. M. Cable: Mechanization of glass manufacture, J. Am. Ceram. Soc. 82(5), 1095–1112 (1999)Google Scholar
  10. A. Warude: Analysis of Glass Mold to Enhance Rate of Heat Transfer, M.Sc. Thesis (Univ. South Florida, Tampa 2004)Google Scholar
  11. X.H. Zhang, Y. Guimond, Y. Bellec: Production of complex chalcogenide glass optics by molding for thermal imaging, J. Non-Cryst. Solids 326/327, 519–523 (2003)CrossRefGoogle Scholar
  12. F.T. Wallenberger, J.C. Watson, H. Li: Glass fibers. In: ASM Handbook Composites, Vol. 21, ed. by D.B. Miracle, S.L. Donaldson (ASM International, Materials Park 2001) pp. 27–34Google Scholar
  13. A.K. Varshney: Chemical strengthening of glass: Lessons learned and yet to be learned, Int. J. Appl. Glass. Sci. 1(2), 131–142 (2010)CrossRefGoogle Scholar
  14. H.J. Stevens: Engineered Materials Handbook: Ceramics and Glasses, Vol. 4 (ASM International, Materials Park 1991), ed. by S.J. SchneiderGoogle Scholar
  15. L.A.B. Pilkington, K. Bickerstaff: Improvements in or relating to the manufacture of glass, GB Patent 769692 (1954)Google Scholar
  16. L.A.B. Pilkington, K. Bickerstaff: Manufacture of flat glass, US Patent 2911759 (1959)Google Scholar
  17. M. Cable: The development of flat glass manufacturing process, Transact. Newcomen Soc. 74, 19–43 (2004)CrossRefGoogle Scholar
  18. B. Scholz, F.S. Kirn: Early Nineteenth Century Glass Technology in Austria and Germany (Society of Glass Technology, Sheffield 2004), translated by M. CableGoogle Scholar
  19. M.L.F. Nascimento: Brief history of the flat glass patent—Sixty years of the float process, World Patent Inf. 38, 50–56 (2014)CrossRefGoogle Scholar
  20. N. Ban, T. Kamihori, H. Takamuku: A study of the behavior of volatiles in the float process, J. Non-Cryst. Solids 345/346, 777–781 (2004)CrossRefGoogle Scholar
  21. J. Belis, B. Inghelbrecht, R.V. Impe, D. Callewaert: Cold bending of laminated glass panels, Heron 52(1/2), 123–146 (2007)Google Scholar
  22. S.M. Dockerty: Sheet forming apparatus, US Patent 3338696A (1967)Google Scholar
  23. S.M. Dockerty, G.C. Shay: Downflow sheet drawing method and apparatus, US Patent 3149949A (1964)Google Scholar
  24. H.J. Lin, W.K. Chang: Design of a sheet forming apparatus for overflow fusion process by numerical simulation, J. Non-Cryst. Solids 353, 2817–2825 (2007)CrossRefGoogle Scholar
  25. G. Delaizir, L. Calvez: A novel approach to develop chalcogenide glasses and glass-ceramics by pulsed current electrical sintering (PCES). In: Sintering of Ceramics—New Emerging Techniques, ed. by A. Lakshmanan (InTechOpen, London 2012) pp. 281–306Google Scholar
  26. W.D. Kingery, H.K. Bowen, D.R. Uhlmann: Introduction to Ceramics (Wiley, Chichester 1976)Google Scholar
  27. M. Hubert, G. Delaizir, J. Monnier, C. Godart, H.-L. Ma, X.-H. Zhang, L. Calvez: An innovative approach to develop highly performant chalcogenide glasses and glass-ceramics transparent in the infrared range, Opt. Express 19(23), 23513–23522 (2011)CrossRefGoogle Scholar
  28. J. Jones, A. Clare (Eds.): Bioglasses—An Introduction (Wiley, Chichester 2012)Google Scholar
  29. R. Gmeiner, U. Deisinger, J. Schonherr, B. Lechner, R. Detsch, A. Boccaccini, J. Stampfl: Additive manufacturing of bioactive glasses and silicate bioceramics, J. Ceram. Sci. Technol. 6(2), 75–86 (2015)Google Scholar
  30. J. Klein: Additive Manufacturing of Optically Transparent Glass, M.Sc. Thesis (MIT, Boston 2015)CrossRefGoogle Scholar
  31. J. Klein, G. Franchin, M. Stern, M. Kayser, C. Inamura, S.Dave, N. Oxman, P. Houk: Methods ands apparatus for additive manufacturing of glass, US patent application 20150307385 (2015)Google Scholar
  32. J. Klein, M. Stern, G. Franchin, M. Kayser, C. Inamura, S. Dave, J.C. Weaver, P. Houk, P. Colombo, M. Yang, N. Oxman: Additive manufacturing of optically transparent glass, 3-D Print. Addit. Manuf. 2(3), 92–105 (2015)CrossRefGoogle Scholar
  33. A. Brient, M. Brissot, T. Rouxel, J.C. Sangleboeuf: Influence of grinding parameters on glass workpieces surface finish using response surface methodology, J. Manuf. Sci. Eng. 133(4), 044501–044501 (2011)CrossRefGoogle Scholar
  34. A. Brient, R. Laniel, M. Miroir, G.L. Goic, J.C. Sangleboeuf, S. Samper: Multiscale topography analysis of water-jet pocketing of silica glass surfaces. In: Proc. 15th Int. Conf. Metrol. Prop. Eng. Surf., Charlotte (2015)Google Scholar
  35. R. Laniel, M. Tchikou, J.-C. Sangleboeuf: A discrete elements simulation and analysis of a high energy stirred milling process, Mech. Ind. 13, 415–421 (2012)CrossRefGoogle Scholar
  36. A. Arora, D.B. Marshall, B.R. Lawn, M.V. Swain: Indentation deformation/fracture of normal and anomalous glasses, J. Non-Cryst. Solids 31(3), 415–428 (1979)CrossRefGoogle Scholar
  37. R.F. Cook, G.M. Pharr: Direct observation and analysis of indentation cracking in glasses and ceramics, J. Am. Ceram. Soc. 73(4), 787–817 (1990)CrossRefGoogle Scholar
  38. I. Finnie: Some reflections on the past and future of erosion, Wear 186, 1–10 (1995)CrossRefGoogle Scholar
  39. M. Hashish: A modeling study of metal cutting with abrasive water-jets, J. Eng. Mater. Technol. 106(1), 88–100 (1984)CrossRefGoogle Scholar
  40. J.G.A. Bitter: A study of erosion phenomena part I, Wear 6(1), 5–21 (1963)CrossRefGoogle Scholar
  41. J.G.A. Bitter: A study of erosion phenomena, Wear 6(3), 169–190 (1963)CrossRefGoogle Scholar
  42. J.H. Neilson, A. Gilchrist: Erosion by a stream of solid particles, Wear 11(2), 111–122 (1968)CrossRefGoogle Scholar
  43. V. Le Houérou: Scratchability of Soda-Lime Silica Glasses, Ph.D. Thesis (Universite de Rennes, Rennes 2005)Google Scholar
  44. V. Le Houérou, J.C. Sangleboeuf, S. Deriano, T. Rouxel, G. Duisit: Surface damage of soda–lime–silica glasses: indentation scratch behavior, J. Non-Cryst. Solids 316(1), 54–63 (2003)CrossRefGoogle Scholar
  45. T. Yu, H. Li, W. Wang: Experimental investigation on grinding characteristics of optical glass BK7: With special emphasis on the effects of machining parameters, Int. J. Adv. Manuf. Technol. 82(5), 1405–1419 (2016)CrossRefGoogle Scholar
  46. R.L. Hecker, I.M. Ramoneda, S.Y. Liang: Analysis of wheel topography and grit force for grinding process modeling, J. Manuf. Process. 5(1), 13–23 (2003)CrossRefGoogle Scholar
  47. M. Barge, J. Rech, H. Hamdi, J.-M. Bergheau: Experimental study of abrasive process, Wear 264(5/6), 382–388 (2008)CrossRefGoogle Scholar
  48. P. Stępień: A probabilistic model of the grinding process, Appl. Math. Model. 33(10), 3863–3884 (2009)CrossRefGoogle Scholar
  49. H.-C. Chang, J.J.J. Wang: A stochastic grinding force model considering random grit distribution, Int. J. Mach. Tools Manuf. 48(12/13), 1335–1344 (2008)CrossRefGoogle Scholar
  50. M. Bigerelle, D. Najjar, A. Iost: Multiscale functional analysis of wear: A fractal model of the grinding process, Wear 258(1–4), 232–239 (2005)CrossRefGoogle Scholar
  51. G.T. Smith: Industrial Metrology: Surfaces and Roundness (Springer, London 2002)CrossRefGoogle Scholar
  52. D.J. Whitehouse: Handbook of Surface Metrology (CRC, Boca Raton 1994)Google Scholar
  53. T. Suratwala, L. Wong, P. Miller, M.D. Feit, J. Menapace, R. Steele, P. Davis, D. Walmer: Sub-surface mechanical damage distributions during grinding of fused silica, J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006)CrossRefGoogle Scholar
  54. R. Laheurte, P. Darnis, N. Darbois, O. Cahuc, J. Neauport: Subsurface damage distribution characterization of ground surfaces using Abbott–Firestone curves, Opt. Express 20(12), 13551–13559 (2012)CrossRefGoogle Scholar
  55. D.A. Stephenson, J.S. Agapiou: Metal Cutting Theory and Practice, 3rd edn. (CRC, Boca Raton 1994)Google Scholar
  56. H. Demir, A. Gullu, I. Ciftci, U. Seker: An investigation into the influences of grain size and grinding parameters on surface roughness and grinding forces when grinding, Strojniski Vestnik/J. Mech. Eng. 56(7/8), 447–454 (2010)Google Scholar
  57. S. Tong, S.M. Gracewski, P.D. Funkenbusch: Measurement of the preston coefficient of resin and bronze bond tools for deterministic microgrinding of glass, Precis. Eng. 30(2), 115–122 (2006)CrossRefGoogle Scholar
  58. R.L. Hecker, S.Y. Liang: Predictive modeling of surface roughness in grinding, Int. J. Mach. Tools Manuf. 43(8), 755–761 (2003)CrossRefGoogle Scholar
  59. Y. Zhang, Y. Luo, J.F. Wang, Z. Li: Research on the fractal of surface topography of grinding, Int. J. Mach. Tools Manuf. 41(13/14), 2045–2049 (2001)CrossRefGoogle Scholar
  60. G. Savio, R. Meneghello, G. Concheri: A surface roughness predictive model in deterministic polishing of ground glass moulds, Int. J. Mach. Tools Manuf. 49(1), 1–7 (2009)CrossRefGoogle Scholar
  61. A. Venu Gopal, P. Venkateswara Rao: Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding, Int. J. Mach. Tools Manuf. 43(13), 1327–1336 (2003)CrossRefGoogle Scholar
  62. J.-S. Kwak: Application of Taguchi and response surface methodologies for geometric error in surface grinding process, Int. J. Mach. Tools Manuf. 45(3), 327–334 (2005)CrossRefGoogle Scholar
  63. W. Gu, Z. Yao, H. Li: Investigation of grinding modes in horizontal surface grinding of optical glass BK7, J. Mater. Process. Technol. 211(10), 1629–1636 (2001)CrossRefGoogle Scholar
  64. M.C. Shaw: Principles of Abrasive Processing (Clarendon, Oxford 1996)Google Scholar
  65. T.G. Bifano, T.A. Dow, R.O. Scattergood: Ductile-regime grinding: A new technology for machining brittle materials, J. Eng. Ind. 113(2), 184–189 (1991)CrossRefGoogle Scholar
  66. S. Ferrendier: Influence de l'Evolution Granulométrique des Abrasifs sur l'Enlèvement de Matière lors de la Découpe par Jet d'Eau Abrasif, Ph.D. Thesis (École Nationale Supérieure d'Arts et Métiers, Paris 2001)Google Scholar
  67. L. Vignaret: Découpage au jet de fluide, Oxycoupage, jet de plasma, laser et jet d'eau sous pression. In: Techniques de l'ingénieur (1989) B7340 v1Google Scholar
  68. A. Comier: Développement d'un modèle d'enlèvement de matière par granulation utilisant le jet d'eau haute pression: Application au démantèlement de pneumatiques, Ph.D. Thesis (École Nationale Supérieure d'Arts et Métiers, Paris 2004)Google Scholar
  69. G. Fowler: Abrasive Water-Jet Controlled Depth Milling of Titanium Alloys, Ph.D. Thesis (University of Nottingham, Nottingham 2003)Google Scholar
  70. A.A. El-Domiaty, M.A. Shabara, A.A. Abdel-Rahman, A.K. Al-Sabeeh: On the modelling of abrasive water-jet cutting, Int. J. Adv. Manuf. Technol. 12(4), 255–265 (1996)CrossRefGoogle Scholar
  71. S. Hloch, J. Valíček: Topographical anomaly on surfaces created by abrasive water-jet, Int. J. Adv. Manuf. Technol. 59(5), 593–604 (2012)CrossRefGoogle Scholar
  72. S. Hloch, J. Valíček: Abrasive water-jet cutting mechanism, Strojarstvo 10, 12–13 (2006)Google Scholar
  73. M. Chithirai Pon Selvan, N. Mohana Sundara Raju: Assessment of process parameters in abrasive water-jet cutting of stainless steel, Int. J. Adv. Eng. Technol. 1(3), 34–40 (2011)Google Scholar
  74. M. Hashish: Optimization factors in abrasive-water-jet machining, J. Eng. Ind. 113(1), 29–37 (1991)Google Scholar
  75. M. Chithirai Pon Selvan, N. Mohana Sundara Raju: Abrasive water-jet cutting surfaces of ceramics—An experimental investigation, Int. J. Adv. Sci. Eng. Technol. Res. 1(3), 52–59 (2012)Google Scholar
  76. A. Laurinat, H. Louis, G. Meier-Wiechert: A model for milling with abrasive water-jet. In: Proc. 7th Am. Water-Jet Conf., Water Jet Tech. Assoc., Saint Louis (1993)Google Scholar
  77. G. Fowler, I.R. Pashby, P.H. Shipway: The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V, Wear 266(7/8), 613–620 (2009)CrossRefGoogle Scholar
  78. G. Fowler, P.H. Shipway, I.R. Pashby: Abrasive water-jet controlled depth milling of Ti6Al4V alloy—An investigation of the role of jet–work piece traverse speed and abrasive grit size on the characteristics of the milled material, J. Mater. Process. Technol. 161(3), 407–414 (2005)CrossRefGoogle Scholar
  79. Y. Petit: Découpe du verre plat de silicate sodocalcique. In: Techniques de l'ingénieur Sciences et technologies du verre (2012) n4401Google Scholar
  80. A.A. Khan, M.M. Haque: Performance of different abrasive materials during abrasive water jet machining of glass, J. Mater. Proc. Technol. 191(1–3), 404–407 (2007)CrossRefGoogle Scholar
  81. L.M. Hlaváč, I.M. Hlaváčová, L. Gembalová, J. Kaličinský, S. Fabian, J. Měšt'ánek, J. Kmec, V. Mádr: Experimental method for the investigation of the abrasive water jet cutting quality, J. Mater. Process. Technol. 209(20), 6190–6195 (2009)CrossRefGoogle Scholar
  82. M.C. Kong, D. Axinte, W. Voice: An innovative method to perform maskless plain water-jet milling for pocket generation: A case study in Ti-based superalloys, Int. J. Mach. Tools Manuf. 51(7/8), 642–648 (2011)CrossRefGoogle Scholar
  83. J. Wang: Abrasive water-jet machining of polymer matrix composites–cutting performance, erosive process and predictive models, Int. J. Adv. Manuf. Technol. 15(10), 757–768 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Physics – Rennes (IPR), UMR CNRS 6251University of Rennes 1RennesFrance
  2. 2.Dept. of Corning Glass TechnologiesCorning Research & Development CorporationPainted PostUSA

Personalised recommendations