Machine Learning for Glass Modeling

  • Adama TandiaEmail author
  • Mehmet C. Onbasli
  • John C. Mauro
Part of the Springer Handbooks book series (SHB)


With abundant composition-dependent glass properties data of good quality, machine learning-based models can enable the development of glass compositions with desired properties such as liquidus temperature, viscosity, and Young's modulus using much fewer experiments than would otherwise be needed in a purely experimental exploratory research. In particular, research companies with long track records of exploratory research are in the unique position to capitalize on data-driven models by compiling their earlier internal experiments for research and product development. In this chapter, we demonstrate how Corning has used this unique advantage to develop models based on neural networks and genetic algorithms to predict compositions that will yield a desired liquidus temperature as well as viscosity, Young's modulus, compressive stress, and depth of layer.



Section 33.4.4 was reprinted (adapted) with permission from J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, and M.M. Smedskjaer: Accelerating the design of functional glasses through modeling, Chemistry of Materials 28, 4267–4277 (2016). Copyright (2016) The American Chemical Society. Adama Tandia would like to thank Russell Magaziner for valuable discussions regarding the content and flow of the document, Deenamma Varghese and Venkatesh Botu for many discussions about applications of machine learning to glass properties predictions, colleagues at Corning, too many to list, for valuables suggestions and feedback during many years of ML tools development and validation.


  1. G. Dreyfus: Neural Networks, Methodology and Applications, 2nd edn. (Springer, Berlin 2004)Google Scholar
  2. E.C. Sullivan, W.C. Taylor: US Patent 1304623 (1919)Google Scholar
  3. National Institute of Standards and Technology: MGI 5th Anniversary Accomplishments, (2016)
  4. National Institute of Standards and Technology: NIST Standard Reference Database 84, (2016)
  5. T. Vanderah: NIST Standard Reference Database 31v4.0, (2016)
  6. National Institute of Standards and Technology: NIST Kinetics Database, (2016)
  7. National Institute of Standards and Technology: NIST Standard Reference Database 137, (2016)
  8. National Institute of Standards and Technology: NIST Standard Reference Data Catalog, (2016)
  9. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1(1), 011002 (2013)Google Scholar
  10. C.E. Campbell: ASM Structural Materials Data Demonstration Project, (2016)
  11. M.C. Brady, A. Catel, P. Dessauw, A.A. Dima, B. Long, X. Schmitt, G.S. Amaral, C.E. Campbell, U.R. Kattner, Z. Trautt: Materials Data Curation System, (2016)
  12. R. Plante, C.A. Becker: Materials Resource Registry, (2016)
  13. C.E. Campbell, U.R. Kattner: Materials Informatics, (2016)
  14. B.P. Burton, F. Tavazza: Density Functional Theory (DFT) Informatics and Repositories, (2016)
  15. National Institute of Standards and Technology: Web Force-Field (WebFF), from (2016)
  16. Computational Materials Repository:
  17. D.D. Landis, J.S. Hummelshoj, S. Nestorov, J. Greeley, M. Dulak, T. Bligaard, J.K. Norskov, K.W. Jacobsen: The Computational Materials Repository, IEEE Comput. Sci. Eng. 14, 51 (2012)CrossRefGoogle Scholar
  18. J. Hill, G. Mulholland, K. Persson, R. Seshadri, C. Wolverton, B. Meredig: Materials science with large-scale data and informatics: Unlocking new opportunities, MRS Bull. 41, 399 (2016)CrossRefGoogle Scholar
  19. A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M.J. Kramer, C. Long, I. Takeuchi: On-the-fly machine-learning for high-throughput experiments: Search for rare-earth-free permanent magnets, Sci. Rep. 4, 6367 (2014)CrossRefGoogle Scholar
  20. S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, G. Ceder: Predicting crystal structures with data mining of quantum calculations, Phys. Rev. Lett. 91, 135503 (2003)CrossRefGoogle Scholar
  21. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy: The high-throughput highway to computational materials design, Nat. Mater. 12, 191 (2013)CrossRefGoogle Scholar
  22. I. Takeuchi, O.O. Famodu, J.C. Read, M.A. Aronova, K.-S. Chang, C. Craciunescu, S.E. Lofland, M. Wuttig, F.C. Wellstood, L. Knauss, A. Orozco: Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads, Nat. Mater. 2, 180 (2003)CrossRefGoogle Scholar
  23. G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad: Accelerating materials property predictions using machine learning, Sci. Rep. 3, 2810 (2013)CrossRefGoogle Scholar
  24. R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chrisholm, H. Lam: Combinatorial and high-throughput screening of materials libraries: Review of state of the art, ACS. Comb. Sci. 13, 579 (2011)CrossRefGoogle Scholar
  25. X.-D. Xiang, X. Sun, G. Briceno, Y. Lou, K.-A. Wang, H. Chang, W.G. Wallace-Freedman, S.-W. Chen, P.G. Schultz: A combinatorial approach to materials discovery, Science 268, 1738 (1995)CrossRefGoogle Scholar
  26. H. Chang, C. Gao, I. Takeuchi, Y. Yoo, J. Wang, P.G. Schultz, X.-D. Xiang, R.P. Sharma, M. Downes, T. Venkatesan: Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film libraries for microwave applications, Appl. Phys. Lett. 72, 2185 (1998)CrossRefGoogle Scholar
  27. J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, I. Takeuchi: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater. 5, 286 (2006)CrossRefGoogle Scholar
  28. J.-C. Zhao: A combinatorial approach for structural materials, Adv. Eng. Mater. 3, 143 (2001)CrossRefGoogle Scholar
  29. H. Hänsel, H. Zettl, G. Krausch, C. Schmitz, R. Kisselev, M. Thelakkat, H.-W. Schmidt: Combinatorial study of the long-term stability of organic thin-film solar cells, Appl. Phys. Lett. 81, 2106 (2002)CrossRefGoogle Scholar
  30. E. Danielson, M. Devenney, D.M. Giaquinta, J.H. Golden, R.C. Haushalter, E.W. McFarland, D.M. Poojary, C.M. Reaves, W.H. Weinberg, X.D. Wu: A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods, Science 279, 837 (1998)CrossRefGoogle Scholar
  31. A.C. Cooper, L.H. McAlexander, D.-H. Lee, M.T. Torres, R.H. Crabtree: Reactive dyes as a method for rapid screening of homogeneous catalysts, J. Am. Chem. Soc. 120, 9971 (1998)CrossRefGoogle Scholar
  32. X. Zhang, L. Yu, A. Zakutayev, A. Zunger: Sorting stable versus unstable hypothetical compounds: The case of multi-functional ABX half-Heusler filled tetrahedral structures, Adv. Func. Mater. 22, 1425 (2012)CrossRefGoogle Scholar
  33. E.D. Palik (Ed.): Handbook of Optical Constants of Solids (Academic, Burlington 1998)Google Scholar
  34. P. Villars (Ed.): Pearson's Handbook Desk Edition (ASM International, Materials Park 1997)Google Scholar
  35. O. Kubaschewski, C.B. Alcock (Eds.): Metallurgical Thermochemistry, 5th edn. (Pergamon Press, Oxford 1979)Google Scholar
  36. A.G. Kusne, D. Keller, A. Anderson, A. Zaban, I. Takeuchi: High-throughput determination of structural phase diagram and constituent phases using GRENDEL, Nanotechnology 26(44), 444002 (2015)CrossRefGoogle Scholar
  37. M.C. Onbaşlı, A. Tandia, J.C. Mauro: Mechanical and Compositional Design of High-Strength Corning Gorilla® Glass. In: Handbook of Materials Modeling, 2nd edn., Vol. 2, ed. by W. Andreoni, S. Yip (Springer, Cham 2019)Google Scholar
  38. T. Mueller, A.G. Kusne, R. Ramprasad: Machine Learning in Materials Science: Recent progress and emerging applications. In: Reviews in Computational Chemistry, ed. by A.L. Parrill, K.B. Lipkowitz (2016), Scholar
  39. S.V. Kalinin, B.G. Sumpter, R.K. Archibald: Big–deep–smart data in imaging for guiding materials design, Nat. Mater. 14, 973 (2015)CrossRefGoogle Scholar
  40. S. Ullman, T. Poggio, D. Harari, D. Zysman, D. Seibert: Massachusetts Institute of Technology 9.54: Computational aspects of biological learning. In: fall 2014 course notes,
  41. I.T. Jolliffe: Principal Component Analysis (Springer, New York 2002)Google Scholar
  42. M. Ringner: What is principal component analysis?, Nat. Biotechnol. 26, 303 (2008)CrossRefGoogle Scholar
  43. S. Kullback, R.A. Leibler: On information and sufficiency, Ann. Math. Stat. 22, 79 (1951)CrossRefGoogle Scholar
  44. S. Kullback: Information Theory and Statistics (Wiley, New York 1959)Google Scholar
  45. B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. de Freitas: Taking the human out of the loop: A review of Bayesian optimization, Proc. IEEE 104, 148 (2016)CrossRefGoogle Scholar
  46. J.C. Mauro, Y. Yue, A. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass forming liquids, PNAS 160(47), 19780–19784 (2009)CrossRefGoogle Scholar
  47. H. Vogel: Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten, Phys. Z. 22, 645–646 (1921)Google Scholar
  48. Materials Innovation Case Study: Corning's Gorilla Glass 3 for consumer electronics 2016), Innovation Case Study_Gorilla Glass 3_020816.pdfGoogle Scholar
  49. J.C. Mauro: Grand challenges in glass science, Front. Mater. 1, 20 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adama Tandia
    • 1
    Email author
  • Mehmet C. Onbasli
    • 2
  • John C. Mauro
    • 3
  1. 1.Science and Technology DivisionCorning Inc.Corning, NYUSA
  2. 2.Dept. of Electrical and Electronics EngineeringKoç UniversityIstanbulTurkey
  3. 3.Dept. of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations