Advertisement

Neutron and X-Ray Diffraction of Glass

  • Laurent CormierEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

A basic characterization of amorphous materials is usually obtained using diffraction measurements. Indeed, amorphicity is revealed by the absence of sharp Bragg peaks in the angular diffraction pattern, signaling the lack of long-range order and periodicity. However, diffraction patterns obtained by scattering from x-rays, electrons or neutrons contain much more structural information, often overlooked, about the atomic organization of disordered materials. X-ray and neutron diffraction are pioneering tools to get information on the atomic arrangements of noncrystalline materials, alongside the older x-ray diffraction investigations [30.1, 30.2, 30.3], which are still routinely used as structural experimental techniques.

The success of diffraction methods is partly due to the fact that they give the most direct access to the atomic structure (in particular interatomic distances and coordination numbers), and diffraction data can be easily compared to simulations, which is widely used to validate interatomic potentials in molecular dynamics. Another advantage of this technique is that it probes both the short- and intermediate-range order, being very sensitive to the nature and extent of disorder in glasses and liquids, and is an essential probe to understand the structural differences between glasses and their crystalline counterparts. Finally, various environments have been developed, allowing high temperature and/or high pressure measurements to be carried out.

References

  1. W.H. Zachariasen: The atomic arrangement in glass, J. Am. Ceram. Soc. 54, 3841–3851 (1932)Google Scholar
  2. B.E. Warren: The diffraction of x-rays in glass, Phys. Rev. B 45, 657–661 (1934)CrossRefGoogle Scholar
  3. B.E. Warren, J. Biscoe: Fourier analysis of x-ray patterns of soda-silica glass, J. Am. Ceram. Soc. 21, 259–265 (1938)CrossRefGoogle Scholar
  4. H.E. Fischer, A.C. Barnes, P.S. Salmon: Neutron and x-ray diffraction studies of liquids and glasses, Rep. Prog. Phys. 69, 233–299 (2006)CrossRefGoogle Scholar
  5. P. Chieux: Liquid structure investigation by neutron scattering. In: Neutron Diffraction, Topics in Current Physics, Vol. 6, ed. by H. Dachs (Springer, Berlin 1978)CrossRefGoogle Scholar
  6. G.L. Squires: Introduction to the Theory of Thermal Neutron Scattering (Cambridge Univ. Press, Cambridge 1978)Google Scholar
  7. A.C. Wright: The structure of amorphous solids by x-ray and neutron diffraction. In: Advances in Structure Reserach by Diffraction Methods, ed. by W. Hoppe, R. Mason (Vieweg, Bravnschweig 1974) pp. 1–84Google Scholar
  8. G. Placzek: The scattering of neutrons by systems of heavy nuclei, Phys. Rev. 86, 377–387 (1952)CrossRefGoogle Scholar
  9. J.E. Enderby: Structure by neutrons. In: Physics of Simple Liquids, ed. by H.N.V. Temperley, J.S. Rowlinson, G.S. Rushbrooke (North-Holland, Amsterdam 1968) pp. 612–644Google Scholar
  10. T.E. Faber, J.M. Ziman: A theory of the electrical properties of liquid metals III. The resistivity of binary alloys, Philos. Mag. 11, 153–157 (1965)CrossRefGoogle Scholar
  11. V.F. Sears: Neutron scattering lengths and cross sections, Neutron News 3, 26–37 (1992)CrossRefGoogle Scholar
  12. A.J. Dianoux, G. Lander: Neutron Data Booklet (Old City, Philadelphia 2003)Google Scholar
  13. A. Thompson, D. Attwood, E. Gullikson, M. Howells, K.-J. Kim, J. Kirz, J. Kortright, I. Lindau, Y. Liu, P. Pianetta, A. Robinson, J. Scofield, J. Underwood, G. Willams, H. Winick: X-Ray Data Booklet (Lawrence Berkeley National Laboratory, Berkeley 2009), LBNL/PUB-490 Rev. 3Google Scholar
  14. D. Waasmaier, A. Kirfel: New analytical scattering-factor functions for free atoms and ions, Acta Crystallogr. A 51, 416–431 (1995),  https://doi.org/10.1107/S0108767394013292CrossRefGoogle Scholar
  15. M.C. Wilding, C.J. Benmore: Structure of glasses and melts, Rev. Mineral. Geochem. 63, 275–311 (2006),  https://doi.org/10.2138/rmg.2006.63.12CrossRefGoogle Scholar
  16. A.B. Bhatia, D.E. Thornton: Structural aspects of the electrical resistivity of binary alloys, Phys. Rev. B 2, 3004–3012 (1970),  https://doi.org/10.1103/PhysRevB.2.3004CrossRefGoogle Scholar
  17. P.S. Salmon: The structure of tetrahedral network glass forming systems at intermediate and extended length scales, J. Phys. Condens. Matter 19, 455208 (2007),  https://doi.org/10.1088/0953-8984/19/45/455208CrossRefGoogle Scholar
  18. P.S. Salmon, R.A. Martin, P.E. Mason, G.J. Cuello: Topological versus chemical order in network glasses at intermediate and extended length scales, Nature 435, 75–78 (2005)CrossRefGoogle Scholar
  19. P.S. Salmon, A.C. Barnes, R.A. Martin, G.J. Cuello: Structure of glassy GeO2, J. Phys. Condens. Matter 19, 415110 (2007)CrossRefGoogle Scholar
  20. P. Debye: Zerstreuung von Röntgenstrahlen, Ann. Phys. 351, 809–823 (1915),  https://doi.org/10.1002/andp.19153510606CrossRefGoogle Scholar
  21. P.H. Gaskell, A. Saeed, P. Chieux, D.R. McKenzie: Neutron-scattering studies of the structure of highly tetrahedral amorphous diamond like carbon, Phys. Rev. Lett. 67, 1286–1289 (1991)CrossRefGoogle Scholar
  22. L. Cormier, D.R. Neuville, G. Calas: Structure and properties of low-silica calcium aluminosilicate glasses, J. Non-Cryst. Solids 274, 110–114 (2000)CrossRefGoogle Scholar
  23. D.A. Keen: A comparison of various commonly used correlation functions for desribing total scattering, J. Appl. Crystallogr. 34, 172–175 (2001)CrossRefGoogle Scholar
  24. V. Petkov, S.J.L. Billinge, S.D. Shastri, B. Himmel: Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction, Phys. Rev. Lett. 85, 3436–3439 (2000)CrossRefGoogle Scholar
  25. U. Hoppe, G. Walter, R. Kranold, D. Stachel: Structural specifics of phosphate glasses probed by diffraction methods: A review, J. Non-Cryst. Solids 263/264, 29–47 (2000)CrossRefGoogle Scholar
  26. J. Waser, V. Schomaker: The Fourier inversion of diffraction data, Rev. Mod. Phys. 25, 671–690 (1953),  https://doi.org/10.1103/RevModPhys.25.671CrossRefGoogle Scholar
  27. E. Lorch: Neutron diffraction by germania, silica and radiation-damaged silica glasses, J. Phys. C 2, 229–237 (1969)CrossRefGoogle Scholar
  28. A.K. Soper, E.R. Barney: Extracting the pair distribution function from white-beam x-ray total scattering data, J. Appl. Crystallogr. 44, 714–726 (2011),  https://doi.org/10.1107/S0021889811021455CrossRefGoogle Scholar
  29. L.B. Skinner, A.C. Barnes, P.S. Salmon, L. Hennet, H.E. Fischer, C.J. Benmore, S. Kohara, J.K.R. Weber, A. Bytchkov, M.C. Wilding, J.B. Parise, T.O. Farmer, I. Pozdnyakova, S.K. Tumber, K. Ohara: Joint diffraction and modeling approach to the structure of liquid alumina, Phys. Rev. B 87, 24201 (2013)CrossRefGoogle Scholar
  30. B.H. Toby, T. Egami: Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials, Acta Crystallogr. A 48, 336–346 (1992),  https://doi.org/10.1107/S0108767391011327CrossRefGoogle Scholar
  31. T. Proffen: Analysis of disordered materials using total scattering and the atomic pair distribution function, Rev. Mineral. Geochem. 63, 255–274 (2006),  https://doi.org/10.2138/rmg.2006.63.11CrossRefGoogle Scholar
  32. A.C. Hannon, W.S. Howells, A.K. Soper: ATLAS: A suite of programs for the analysis of time-of-flight neutron diffraction data from liquid and amorphous samples, Inst. Phys. Conf. Ser. 107, 193–211 (1990)Google Scholar
  33. J. Krogh-Moe: A method for converting experimental x-ray intensities to an absolute scale, Acta Crystallogr. 9, 951–953 (1956),  https://doi.org/10.1107/S0365110X56002655CrossRefGoogle Scholar
  34. C.J. Benmore, A.K. Soper: The SANDALS Manual: A Guide to Performing Experiments on the Small Angle Neutron Diffractometer for Amorphous and Liquid Samples at ISIS (CLRC, Chilton 1998) p. RAL-TR-98-006, Version 1.0Google Scholar
  35. M.A. Howe, R.L. McGreevy, P. Zetterström: CORRECT: A Correction Program for Neutron Diffraction Data, NFL Studsvik internal report (NFL Uppsala University, Nyköping 1996)Google Scholar
  36. P. Juhás, T. Davis, C.L. Farrow, S.J.L. Billinge: PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions, J. Appl. Crystallogr. 46, 560–566 (2013),  https://doi.org/10.1107/S0021889813005190CrossRefGoogle Scholar
  37. J. Swenson, A. Matic, C. Karlsson, L. Börjesson, C. Meneghini, W.S. Howells: Random ion distribution model: A structural approach to the mixed-alkali effect in glasses, Phys. Rev. B (2001),  https://doi.org/10.1103/PhysRevB.63.132202CrossRefGoogle Scholar
  38. J. Swenson, A. Matic, C. Gejke, L. Börjesson, W.S. Howells, M.J. Capitan: Conductivity enhancement in PbI2-AgI-AgPO3 glasses by diffraction experiments and reverse Monte Carlo modeling, Phys. Rev. B 60, 12023–12032 (1999)CrossRefGoogle Scholar
  39. J. Swenson, L. Börjesson, W.S. Howells: Structure of borate glasses from neutron-diffraction experiments, Phys. Rev. B 52, 9310–9319 (1995)CrossRefGoogle Scholar
  40. J. Swenson, L. Börjesson, W.S. Howells: Structure of fast-ion conducting lithium and sodium borate glasses by neutron diffraction and reverse Monte Carlo simulations, Phys. Rev. B 57, 13514–13526 (1998)CrossRefGoogle Scholar
  41. L. Cormier, G. Calas, S. Creux, P.H. Gaskell, B. Bouchet-Fabre, A.C. Hannon: Environment around strontium in silicate and aluminosilicate glasses, Phys. Rev. B 59, 13517–13520 (1999),  https://doi.org/10.1103/PhysRevB.59.13517CrossRefGoogle Scholar
  42. A.C. Wright: Neutron scattering from vitreous silica. V. The structure of vitreous silica: What have we learned from 60 years of diffraction studies?, J. Non-Cryst. Solids 179, 84–115 (1994)CrossRefGoogle Scholar
  43. A.C. Wright, A.J. Leadbetter: Diffraction studies of glass structure, Phys. Chem. Glasses 17, 122–145 (1976)Google Scholar
  44. M. Guignard, L. Cormier, V. Montouillout, N. Menguy, D. Massiot, A.C. Hannon: Environment of titanium and aluminum in a magnesium alumino-silicate glass, J. Phys. Condens. Matter 21, 375107 (2009),  https://doi.org/10.1088/0953-8984/21/37/375107CrossRefGoogle Scholar
  45. R.A. Martin, P.S. Salmon, H.E. Fischer, G.J. Cuello: Structure of dysprosium and holmium phosphate glasses by the method of isomorphic substitution in neutron diffraction, J. Phys. Condens. Matter 15, 8235–8252 (2003)CrossRefGoogle Scholar
  46. J.E. Enderby, D.M. North, P.A. Egelstaff: The partial structure factors of liquid Cu-Sn, Philos. Mag. 14, 961–970 (1966),  https://doi.org/10.1080/14786436608244767CrossRefGoogle Scholar
  47. A. Zeidler, P.S. Salmon, H.E. Fischer, J.C. Neuefeind, J.M. Simonson, H. Lemmel, H. Rauch, T.E. Markland: Oxygen as a site specific probe of the structure of water and oxide materials, Phys. Rev. Lett. (2011),  https://doi.org/10.1103/PhysRevLett.107.145501CrossRefGoogle Scholar
  48. A.C. Wright, A.C. Hannon, R.N. Sinclair, W.L. Johnson, M. Atzmon: The neutron diffraction double-null isotopic substitution technique, J. Phys. F 14, L201–L205 (1984)CrossRefGoogle Scholar
  49. J.E. Enderby, A.C. Barnes: Liquid semiconductors, Rep. Prog. Phys. 53, 85–179 (1990)CrossRefGoogle Scholar
  50. P.H. Fuoss, A. Bienenstock: X-ray anomalous scattering factors—Measurements and applications. In: Inner-Shell and X-Ray Physics of Atoms and Solids, ed. by D.J. Fabian, H. Kleinpoppen, L.M. Watson (Springer, Boston 1981) pp. 875–884CrossRefGoogle Scholar
  51. S. Kohara, H. Tajiri, C.H. Song, K. Ohara, L. Temleitner, K. Sugimito, A. Fujiwara, L. Pusztai, T. Usuki, S. Hosokawa, Y. Benino, N. Kitamura, K. Fukumi: Anomalous x-ray scattering studies of functional disordered materials, J. Phys. Conf. Ser. 502, 12014 (2014),  https://doi.org/10.1088/1742-6596/502/1/012014CrossRefGoogle Scholar
  52. H. Schlenz, A. Kirfel, K. Schulmeister, N. Wartner, W. Mader, W. Raberg, K. Wandelt, C. Oligschleger, S. Bender, R. Franke, J. Hormes, W. Hoffbauer, V. Lansmann, M. Jansen, N. Zotov, C. Marian, H. Putz, J. Neuefeind: Structure analyses of Ba-silicate glasses, J. Non-Cryst. Solids 297, 37–54 (2001)CrossRefGoogle Scholar
  53. A.C. Wright, J.M. Cole, R.J. Newport, C.E. Fisher, S.J. Clarke, R.N. Sinclair, H.E. Fischer, G.J. Cuello: The neutron diffraction anomalous dispersion technique and its application to vitreous Sm2O3\(\cdot\)4P2O5, Nucl. Instrum. Methods Phys. Res. A 571, 622–635 (2007),  https://doi.org/10.1016/j.nima.2006.11.045CrossRefGoogle Scholar
  54. S. Hosokawa, I. Oh, M. Sakurai, W.-C. Pilgrim, N. Boudet, J.-F. Bérar, S. Kohara: Anomalous x-ray scattering study of GexSe1-x glassy alloys across the stiffness transition composition, Phys. Rev. B (2011),  https://doi.org/10.1103/PhysRevB.84.014201CrossRefGoogle Scholar
  55. P.H. Poole, P.F. McMillan, G.H. Wolf: Computer simulations of silicate melts, Rev. Mineral. Geochem. 32, 563–616 (1995)Google Scholar
  56. S. Jahn, P.M. Kowalski: Theoretical approaches to structure and spectroscopy of earth materials, Rev. Mineral. Geochem. 78, 691–743 (2014),  https://doi.org/10.2138/rmg.2014.78.17CrossRefGoogle Scholar
  57. K. Vollmayr, W. Kob, K. Binder: Cooling-rate in amorphous silica: A computer-simulation study, Phys. Rev. B 54, 15808–15827 (1996)CrossRefGoogle Scholar
  58. V.K. Schiff: Computation simulation of ionic liquid transition into vitreous state by the Monte Carlo method, J. Non-Cryst. Solids 123, 36–41 (1990)CrossRefGoogle Scholar
  59. A.C. Wright: The comparison of molecular dynamics simulations with diffraction experiments, J. Non-Cryst. Solids 159, 264–268 (1993)CrossRefGoogle Scholar
  60. R.L. McGreevy: RMC—Progress, problems and prospects, Nucl. Instrum Methods Phys. Res. A 354, 1–16 (1995)CrossRefGoogle Scholar
  61. R.L. Mc Greevy, P. Zetterström: Reverse Monte Carlo modelling of network glasses: Useful or useless?, J. Non-Cryst. Solids 293–295, 297–303 (2001)CrossRefGoogle Scholar
  62. M. Guignard, L. Cormier: Environments of Mg and Al in MgO-Al2O3-SiO2 glasses: A study coupling neutron and x-ray diffraction and reverse Monte Carlo modeling, Chem. Geol. 256, 111–118 (2008)CrossRefGoogle Scholar
  63. L. Cormier, G.J. Cuello: Mg coordination in a MgSiO3 glass using neutron diffraction coupled with isotopic substitution, Phys. Rev. B 83, 224204 (2011),  https://doi.org/10.1103/PhysRevB.83.224204CrossRefGoogle Scholar
  64. O. Gereben, P. Jovari, L. Temleitner, L.T. Pustzai: A new version of the RMC++ reverse Monte Carlo programme, aimed at investigating the structure of covalent glasses, J. Optoelectron. Adv. Mater. 9, 3021–3027 (2007)Google Scholar
  65. O. Gereben, L. Pusztai: RMC_POT: A computer code for reverse Monte Carlo modeling the structure of disordered systems containing molecules of arbitrary complexity, J. Comput. Chem. 33, 2285–2291 (2012),  https://doi.org/10.1002/jcc.23058CrossRefGoogle Scholar
  66. M.T. Dove, M.G. Tucker, D.A. Keen: Neutron total scattering method: Simultaneous determination of long-range and short-range order in disordered materials, Eur. J. Mineral. 14, 331–348 (2002),  https://doi.org/10.1127/0935-1221/2002/0014-0331CrossRefGoogle Scholar
  67. J.-M. Delaye, L. Cormier, D. Ghaleb, G. Calas: Investigation of multicomponent silicate glasses by coupling WAXS and molecular dynamics, J. Non-Cryst. Solids 293–295, 290–296 (2001)CrossRefGoogle Scholar
  68. L. Cormier, D. Ghaleb, D.R. Neuville, J.M. Delaye, G. Calas: Chemical dependence of network topology of calcium aluminosilicate glasses: A molecular dynamics and reverse Monte Carlo study, J. Non-Cryst. Solids 332, 255–270 (2003)CrossRefGoogle Scholar
  69. D. Miracle: A structural model for metallic glasses, Nat. Mater. 3, 697–702 (2004)CrossRefGoogle Scholar
  70. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma: Atomic packing and short-to-medium-range order in metallic glasses, Nature 439, 419–425 (2006)CrossRefGoogle Scholar
  71. J. Hwang, Z.H. Melgarejo, Y.E. Kalay, I. Kalay, M.J. Kramer, D.S. Stone, P.M. Voyles: Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass, Phys. Rev. Lett. 108, 195505 (2012)CrossRefGoogle Scholar
  72. A.K. Soper: Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement, Phys. Rev. B 72, 104204 (2005)CrossRefGoogle Scholar
  73. J.L. Finney, A. Hallbrucker, I. Kohl, A.K. Soper, D.T. Bowron: Structures of high and low density amorphous ice by neutron diffraction, Phys. Rev. Lett. (2002),  https://doi.org/10.1103/PhysRevLett.88.225503CrossRefGoogle Scholar
  74. A. Zeidler, P.S. Salmon: Pressure-driven transformation of the ordering in amorphous network-forming materials, Phys. Rev. B (2016),  https://doi.org/10.1103/PhysRevB.93.214204CrossRefGoogle Scholar
  75. M.T.M. Shatnawi: The first sharp diffraction peak in the total structure function of amorphous chalcogenide glasses: Anomalous characteristics and controversial views, New J. Glass Ceram. 6, 37–46 (2016),  https://doi.org/10.4236/njgc.2016.63005CrossRefGoogle Scholar
  76. M. Guthrie, C.A. Tulk, C.J. Benmore, J. Xu, J.L. Yarger, D.D. Klug, J.S. Tse, H. Mao, R.J. Hemley: Formation and structure of a dense octahedral glass, Phys. Rev. Lett. (2004),  https://doi.org/10.1103/PhysRevLett.93.115502CrossRefGoogle Scholar
  77. K. Tanaka: Pressure dependence of the first sharp diffraction peak in chalcogenide and oxide glasses, Philos. Mag. Lett. 57, 183–187 (1988)CrossRefGoogle Scholar
  78. H. Tsutsu, K. Tamura, H. Endo: Photodarkening in glassy As2S3 under pressure, Solid State Commun. 52, 877–879 (1984)CrossRefGoogle Scholar
  79. H.B. Lou, Y.K. Fang, Q.S. Zeng, Y.H. Lu, X.D. Wang, Q.P. Cao, K. Yang, X.H. Yu, L. Zheng, Y.D. Zhao, W.S. Chu, T.D. Hu, Z.Y. Wu, R. Ahuja, J.Z. Jiang: Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses, Sci. Rep. 2, 376 (2012),  https://doi.org/10.1038/srep00376CrossRefGoogle Scholar
  80. S. Susman, K.J. Volin, D.G. Montague, D.L. Price: Temperature dependence of the first sharp diffraction peak in vitreous silica, Phys. Rev. B 43, 11076–11081 (1991)CrossRefGoogle Scholar
  81. L.E. Busse: Temperature dependence of the structure of As2Se3 and AsxS1-x glasses near the glass transition, Phys. Rev. B 29, 3639–3651 (1984)CrossRefGoogle Scholar
  82. L.E. Busse, S.R. Nagel: Temperature dependence of the structure factor of As2Se3 glass up to the glass transition, Phys. Rev. Lett. 47, 1848–1851 (1981)CrossRefGoogle Scholar
  83. O. Majérus, L. Cormier, G. Calas, B. Beuneu: A neutron diffraction study of temperature-induced structural changes in potassium disilicate glass and melt, Chem. Geol. 213, 89–102 (2004)CrossRefGoogle Scholar
  84. M.J. Duarte, P. Bruna, E. Pineda, D. Crespo, G. Garbarino, R. Verbeni, K. Zhao, W.H. Wang, A.H. Romero, J. Serrano: Polyamorphic transitions in Ce-based metallic glasses by synchrotron radiation, Phys. Rev. B 84, 224116 (2011)CrossRefGoogle Scholar
  85. J. Kang, J. Zhu, S.-H. Wei, E. Schwegler, Y.-H. Kim: Persistent medium-range order and anomalous liquid properties of Al1-xCux alloys, Phys. Rev. Lett. 108, 115901 (2012)CrossRefGoogle Scholar
  86. G. Li, Y.Y. Wang, P.K. Liaw, Y.C. Li, R.P. Liu: Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses, Phys. Rev. Lett. 109, 125501 (2012)CrossRefGoogle Scholar
  87. M. Misawa, D.L. Price, K. Suzuki: The short range order structure of alkali disilicate glasses by pulsed neutron total scattering, J. Non-Cryst. Solids 37, 85–97 (1980)CrossRefGoogle Scholar
  88. A.C. Hannon, D. Di Martino, L.F. Santos, R.M. Almeida: Ge-O coordination in cesium germanate glasses, J. Phys. Chem. B 111, 3324–3354 (2007)CrossRefGoogle Scholar
  89. E. Bychkov, C.J. Benmore, D.L. Price: Compositional changes of the first sharp diffraction peak in binary selenide glasses, Phys. Rev. B 72, 172107 (2005)CrossRefGoogle Scholar
  90. E.A. Chechetkina: Is there a relation between glass-forming ability and first sharp diffraction peak, J. Phys. Condens. Matter 7, 3099–3114 (1995)CrossRefGoogle Scholar
  91. J. Du, L.R. Corrales: Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: A molecular dynamics study, J. Non-Cryst. Solids 352, 3255–3269 (2006)CrossRefGoogle Scholar
  92. M.T.M. Shatnawi, C.L. Farrow, P. Chen, P. Boolchand, A. Sartbaeva, M.F. Thorpe, S.J.L. Billinge: Search for a structural response to the intermediate phase in GexSe1-x glasses, Phys. Rev. B (2008),  https://doi.org/10.1103/PhysRevB.77.094134CrossRefGoogle Scholar
  93. M. Wilson, P.S. Salmon: Network topology and the fragility of tetrahedral glass-forming liquids, Phys. Rev. Lett. 103, 157801 (2009)CrossRefGoogle Scholar
  94. I. Petri, P.S. Salmon, H.E. Fischer: Defects in a disordered world: The structure of glassy GeSe2, Phys. Rev. Lett. 84, 2413–2416 (2000),  https://doi.org/10.1103/PhysRevLett.84.2413CrossRefGoogle Scholar
  95. I.T. Penfold, P.S. Salmon: Structure of covalently bonded glass-forming melts: A full partial-structure-factor analysis of liquid GeSe2, Phys. Rev. Lett. 67, 97–101 (1991)CrossRefGoogle Scholar
  96. A.K. Soper: Network structure and concentration fluctuations in a series of elemental, binary, and tertiary liquids and glasses, J. Phys. Condens. Matter 22, 404210 (2010)CrossRefGoogle Scholar
  97. D.L. Price, S.C. Moss, R. Reijers, M.L. Saboungi, S. Susman: Intermediate-range order in glasses and liquids, J. Phys. C 21, L1069–L1072 (1988)CrossRefGoogle Scholar
  98. S.R. Elliott: The origin of the first sharp peak in the structure factor of covalent glasses and liquids, J. Phys. Condens. Matter 4, 7661–7678 (1992)CrossRefGoogle Scholar
  99. E.A. Chechetkina: Medium-range order in amorphous substances: A modified layer model, Solid State Commun. 91, 101–104 (1994)CrossRefGoogle Scholar
  100. P.H. Gaskell, D.J. Wallis: Medium range order in silica, the canonical network glass, Phys. Rev. Lett. 76, 66–69 (1996)CrossRefGoogle Scholar
  101. J.C. Phillips: Topology of caovalent non-crystalline solids II. MRO in chalcogenide alloys and a-Si(Ge), J. Non-Cryst. Solids 43, 37–77 (1981)CrossRefGoogle Scholar
  102. J.C. Phillips, C.A. Beevers, S.E.B. Gould: Molecular structure of As2Se3 glass, Phys. Rev. B 21, 5274–5731 (1980)CrossRefGoogle Scholar
  103. L. Cervinka: Medium range ordering in non-crystalline solids, J. Non-Cryst. Solids 90, 371–382 (1987)CrossRefGoogle Scholar
  104. T. Uchino, J.D. Harrop, S.N. Taraskin, S.R. Elliott: Real and reciprocal space structural correlations contributing to the first sharp diffraction peak in silica glass, Phys. Rev. B 71, 14202-1–14202-5 (2005)CrossRefGoogle Scholar
  105. A. Le Bail: Modelling the silica glass structure by the Rietveld method, J. Non-Cryst. Solids 183, 39–42 (1995),  https://doi.org/10.1016/0022-3093(94)00664-4CrossRefGoogle Scholar
  106. M. Wilson, P.A. Madden: “Prepeaks” and “first sharp diffraction peaks” in computer simulations of strong and fragile ionic liquids, Phys. Rev. Lett. 72, 3033–3036 (1994)CrossRefGoogle Scholar
  107. R. Fayos, F.J. Bermejo, J. Dawidowski, H.E. Fischer, M.A. González: Direct experimental evidence of the relationship between intermediate-range order in topologically disordered matter and discernible features in the static structure factor, Phys. Rev. Lett. 77, 3823–3826 (1996)CrossRefGoogle Scholar
  108. P.H. Gaskell: Relationships between the medium-range structure of glasses and crystals, Mineral. Mag. 64, 425–434 (2000)CrossRefGoogle Scholar
  109. M. Misawa: Structure factor of X4 tetrahedral molecular liquids: Competition between intramolecular and intermolecular atomic spacings, J. Chem. Phys. 93, 6774–6778 (1990)CrossRefGoogle Scholar
  110. J. Dixmier: Hole generation of prepeaks in diffraction patterns of glasses, J. Phys. I 2, 1011–1027 (1992),  https://doi.org/10.1051/jp1:1992188CrossRefGoogle Scholar
  111. J. Blétry: Sphere and distance models for binary disordered systems, Philos. Mag. B 62, 469–508 (1990),  https://doi.org/10.1080/13642819008215248CrossRefGoogle Scholar
  112. S.R. Elliott: Origin of the first sharp diffraction peak in the structure factor of covalent glasses, Phys. Rev. Lett. 67, 711–714 (1991)CrossRefGoogle Scholar
  113. S. Veprek, H.U. Beyeler: On the interpretation of the first, sharp maximum in the x-ray scattering of non-crystalline solids and liquids, Philos. Mag. 44, 557–567 (1981)CrossRefGoogle Scholar
  114. S.R. Elliott: Medium-range structural order in covalent amorphous solids, Nature 354, 445–452 (1991)CrossRefGoogle Scholar
  115. S.R. Elliott: Second sharp diffraction peak in the structure factor of binary covalent network glasses, Phys. Rev. B 51, 8599–8601 (1995)CrossRefGoogle Scholar
  116. A. Guinier: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover, New York 1994)Google Scholar
  117. P. Ehrenfest: On interference phenomena to be expected when Röntgen rays pass through a di-atomic gas, Proc. KNAW 17, 1184–1190 (1915)Google Scholar
  118. A.R. Yavari, A.L. Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M.D. Michiel, Å. Kvick: Excess free volume in metallic glasses measured by x-ray diffraction, Acta Mater. 53, 1611–1619 (2005),  https://doi.org/10.1016/j.actamat.2004.12.011CrossRefGoogle Scholar
  119. D. Ma, A.D. Stoica, X.-L. Wang: (2009) Power-law scaling and fractal nature of medium-range order in metallic glasses, Nat. Mater. 8, 30–34 (2009),  https://doi.org/10.1038/nmat2340CrossRefGoogle Scholar
  120. A.C. Hannon, D.I. Grimley, R.A. Hulme, A.C. Wright, R.N. Sinclair: Boroxol groups in vitreous boron oxide: New evidence from neutron diffraction and inelastic neutron scattering studies, J. Non-Cryst. Solids 177, 299–316 (1994)CrossRefGoogle Scholar
  121. M. Misawa: Structure of vitreous and molten B2O3 measured by pulsed neutron total scattering, J. Non-Cryst. Solids 122, 33–40 (1990)CrossRefGoogle Scholar
  122. J. Swenson, A. Matic, C. Gejke, L. Börjesson, W.S. Howells, M.J. Capitan: Conductivity enhancement in PbI2-AgI-AgPO3 glasses by diffraction experiments and reverse Monte Carlo modeling, Phys. Rev. B 60, 12023–12032 (1999),  https://doi.org/10.1103/PhysRevB.60.12023CrossRefGoogle Scholar
  123. P.S. Salmon, I. Petri: Structure of glassy and liquid GeSe2, J. Phys. Condens. Matter 15, S1509 (2003)CrossRefGoogle Scholar
  124. C.J. Benmore, P.S. Salmon: Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73, 264–267 (1994),  https://doi.org/10.1103/PhysRevLett.73.264CrossRefGoogle Scholar
  125. J. Liu, P.S. Salmon: Structural ordering in Ag-based ternary chalcogenide glasses, Europhys. Lett. 39, 521 (1997)CrossRefGoogle Scholar
  126. P.S. Salmon, S. Xin: Chalcogenide glasses: The effect of covalent versus ionic bonding in (CuI)0.6(Sb2Se3)0.4, Phys. Rev. B 65, 64202-1–64202-4 (2002)CrossRefGoogle Scholar
  127. J.H. Lee, A. Pradel, G. Taillades, M. Ribes, S.R. Elliott: Structural studies of glassy (Li2S)0.5(SiS2)0.5 by isotopic-substitution neutron diffraction, Phys. Rev. B 56, 10934–10941 (1997),  https://doi.org/10.1103/PhysRevB.56.10934CrossRefGoogle Scholar
  128. L. Cormier, S. Creux, L. Galoisy, G. Calas, P.H. Gaskell: Medium range order around cations in silicate glasses, Chem. Geol. 128, 77–91 (1996)CrossRefGoogle Scholar
  129. L. Cormier, P.H. Gaskell, G. Calas, A.K. Soper: Medium range order around titanium in a silicate glass studied by neutron diffraction with isotopic substitution, Phys. Rev. B 58, 11322–11330 (1998)CrossRefGoogle Scholar
  130. F. Farges, G.E. Brown Jr., A. Navrotsky, H. Gan, J.J. Rehr: Coordination chemistry of Ti(IV) in silicate glasses and melts. II. Glasses at ambient temperature and pressure, Geochim. Cosmochim. Acta 60, 3039–3053 (1996)CrossRefGoogle Scholar
  131. L. Cormier, G. Calas, P.H. Gaskell: Cationic environment in silicate glasses studied by neutron diffraction with isotopic substitution, Chem. Geol. 174, 349–363 (2001),  https://doi.org/10.1016/S0009-2541(00)00325-9CrossRefGoogle Scholar
  132. P.H. Gaskell, Z. Zhao, G. Calas, L. Galoisy: The structure of mixed cation oxide glasses. In: The Physics of Non-Crystalline Solids, ed. by L.D. Pye, W.C. LaCourse, H.J. Stevens (Taylor Francis, London 1992) pp. 53–58Google Scholar
  133. L. Cormier, P.H. Gaskell, G. Calas, J. Zhao, A.K. Soper: Environment around Li in the LiAlSiO4 ionic conductor glass: A neutron-scattering and reverse Monte Carlo study, Phys. Rev. B 57, R8067–R8070 (1998),  https://doi.org/10.1103/PhysRevB.57.R8067CrossRefGoogle Scholar
  134. J. Zhao, P.H. Gaskell, M.M. Cluckie, A.K. Soper: A neutron diffraction, isotopic substitution study of the structure of Li2O\(\cdot\)2SiO2 glass, J. Non-Cryst. Solids 234, 721–727 (1998)CrossRefGoogle Scholar
  135. H. Uhlig, M.J. Hoffmann, H.P. Lamparter, F. Aldinger, R. Bellissent, S. Steeb: Short-range order and medium-range order in lithium silicate glasses, Part I: Diffraction experiments and results, J. Am. Ceram. Soc. 79, 2833–2838 (1996)CrossRefGoogle Scholar
  136. M.C. Eckersley, P.H. Gaskell, A.C. Barnes, P. Chieux: Structural ordering in a calcium silicate glass, Nature 335, 525–527 (1988)CrossRefGoogle Scholar
  137. S. Creux, B. Bouchet-Fabre, P.H. Gaskell: Anomalous wide angle x-ray scattering study of strontium silicate and aluminosilicate glasses, J. Non-Cryst. Solids 192/193, 360–363 (1995)CrossRefGoogle Scholar
  138. P.H. Gaskell, M.C. Eckersley, A.C. Barnes, P. Chieux: Medium-range order in the cation distribution of a calcium silicate glass, Nature 350, 675–677 (1991)CrossRefGoogle Scholar
  139. L. Cormier, L. Galoisy, J.M. Delaye, D. Ghaleb, G. Calas: Short- and medium-range structural order around cations in glasses: A multidisciplinary approach, C.R. Phys. 2, 249–262 (2001)Google Scholar
  140. B.E. Warren, A.G. Pincus: Atomic consideration of immiscibility in glass system, J. Am. Ceram. Soc. 23, 301–304 (1940),  https://doi.org/10.1111/j.1151-2916.1940.tb14194.xCrossRefGoogle Scholar
  141. G.N. Greaves, S. Sen: Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys. 56, 1–166 (2007)CrossRefGoogle Scholar
  142. G.N. Greaves: EXAFS, glass structure and diffusion, Philos. Mag. B 60, 793–800 (1989)CrossRefGoogle Scholar
  143. S. Block, G.J. Piermarini: Alkaline earth cation distribution in vitreous borates, Phys. Chem. Glasses 5, 138–144 (1964)Google Scholar
  144. I. Yasui, H. Hasegawa, Y. Suito: Structure of borate glasses containing Tl and Ba oxide, J. Non-Cryst. Solids 106, 30–33 (1988)CrossRefGoogle Scholar
  145. I. Yasui, H. Hasegawa, Y. Saito, Y. Akasaka: Structure of borate glasses containing heavy metal ions, J. Non-Cryst. Solids 123, 71–74 (1990)CrossRefGoogle Scholar
  146. C. Brosset: X-ray investigation of the distribution of heavy atoms in glass, Phys. Chem. Glasses 4, 99–102 (1963)Google Scholar
  147. C.D. Hanson, T. Egami: Distribution of Cs+ ions in single and mixed alkali silicate glasses from energy dispersive x-ray diffraction, J. Non-Cryst. Solids 87, 171–184 (1986)CrossRefGoogle Scholar
  148. J. Krogh-Moe: An x-ray study of barium borate glasses, Phys. Chem. Glasses 3, 208–212 (1962)Google Scholar
  149. M.C. Abramo, C. Caccamo, G. Pizzimenti: Structural properties and medium-range order in calcium-metasilicate (CaSiO3) glass: A molecular dynamics study, J. Chem. Phys. 96, 9083–9091 (1992)CrossRefGoogle Scholar
  150. L. Cormier, G. Calas, P.H. Gaskell: A reverse Monte Carlo study of a titanosilicate glass, J. Phys. Condens. Matter. 9, 10129–10136 (1997)CrossRefGoogle Scholar
  151. L. Cormier, G. Calas, S. Creux, P.H. Gaskell, B. Bouchet-Fabre, A.C. Hannon: Environment around strontium in silicate and aluminosilicate glasses, Phys. Rev. B 59, 13517–13520 (1999)CrossRefGoogle Scholar
  152. Y. Waseda, H. Suito: The structure of molten alkali metal silicates, Trans. Iron Steel Inst. Jpn. 17, 82–91 (1977)Google Scholar
  153. Y. Waseda: The Structure of Non-Crystalline Materials (McGraw-Hill, New York 1980)Google Scholar
  154. L. Hennet, V. Cristiglio, J. Kozaily, I. Pozdnyakova, H.E. Fischer, A. Bytchkov, J.W.E. Drewitt, M. Leydier, D. Thiaudière, S. Gruner, S. Brassamin, D. Zanghi, G.J. Cuello, M. Koza, S. Magazù, G.N. Greaves, D.L. Price: Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources, Eur. Phys. J. Spec. Top. 196, 151–165 (2011),  https://doi.org/10.1140/epjst/e2011-01425-0CrossRefGoogle Scholar
  155. G. Jacobs, I. Egry, K. Maier, D. Platzek, J. Reske, R. Frahm: Extended x-ray-absorption fine structure studies of levitated undercooled metallic melts, Rev. Sci. Instrum. 67, 3683 (1996),  https://doi.org/10.1063/1.1146855CrossRefGoogle Scholar
  156. P.-F. Paradis, T. Ishikawa, J. Yu, S. Yoda: Hybrid electrostatic–aerodynamic levitation furnace for the high-temperature processing of oxide materials on the ground, Rev. Sci. Instrum. 72, 2811 (2001),  https://doi.org/10.1063/1.1368860CrossRefGoogle Scholar
  157. E.H. Trinh: Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity, Rev. Sci. Instrum. 56, 2059 (1985),  https://doi.org/10.1063/1.1138419CrossRefGoogle Scholar
  158. P.H. Haumesser, J.P. Garandet, J. Brancillon, M. Daniel, I. Campbell, P. Jackson: High temperature viscosity measurements by the gas film levitation technique: Application to various types of materials, Int. J. Thermophys. 23, 1217–1228 (2002)CrossRefGoogle Scholar
  159. C. Landron, L. Hennet, J.P. Coutures, M. Gailhanou, M. Gramond, J.F. Berar: Contactless investigation on laser-heated oxides by synchrotron radiation, Europhys. Lett. 44, 429–435 (1998),  https://doi.org/10.1209/epl/i1998-00490-0CrossRefGoogle Scholar
  160. C. Landron, L. Hennet, T.E. Jenkins, G.N. Greaves, J.P. Coutures, A.K. Soper: Liquid alumina: Detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement, Phys. Rev. Lett. 86, 4839–4842 (2001)CrossRefGoogle Scholar
  161. D.L. Price: High-Temperature Levitated Materials (Cambridge Univ. Press, Cambridge 2010)CrossRefGoogle Scholar
  162. L. Cormier, G. Calas, B. Beuneu: Structural changes between soda-lime silicate glass and melt, J. Non-Cryst. Solids 357, 926–931 (2011),  https://doi.org/10.1016/j.jnoncrysol.2010.10.014CrossRefGoogle Scholar
  163. S. Ansell, S. Krishnan, J.K. Weber, J.F. Felten, P.C. Nordine, M.A. Beno, D.L. Price, M.L. Saboungi: Structure of liquid aluminium oxide, Phys. Rev. Lett. 78, 464–466 (1997)CrossRefGoogle Scholar
  164. J.W.E. Drewitt, S. Jahn, V. Cristiglio, A. Bytchkov, M. Leydier, S. Brassamin, H.E. Fischer, L. Hennet: The structure of liquid calcium aluminates as investigated using neutron and high energy x-ray diffraction in combination with molecular dynamics simulation methods, J. Phys. Condens. Matter 23, 155101 (2011)CrossRefGoogle Scholar
  165. V. Cristiglio, G.J. Cuello, L. Hennet, I. Pozdnyakova, M. Leydier, J. Kozaily, H.E. Fischer, M.R. Johnson, D.L. Price: Neutron diffraction study of molten calcium aluminates, J. Non-Cryst. Solids 356, 2492–2496 (2010),  https://doi.org/10.1016/j.jnoncrysol.2010.03.027CrossRefGoogle Scholar
  166. Q. Mei, C.J. Benmore, J.K.R. Weber, M. Wilding, J. Kim, J. Rix: Diffraction study of calcium aluminate glasses and melts: II. High energy x-ray diffraction on melts, J. Phys. Condens. Matter 20, 245107 (2008),  https://doi.org/10.1088/0953-8984/20/24/245107CrossRefGoogle Scholar
  167. A. Bytchkov: Structure et dynamique d'aluminates fondus et de verres Phosphore-Sélénium. Complémentarité de la résonance magnétique nucléaire et de la diffusion des rayons X et des neutrons, Ph.D. Thesis (Univ. Orléans, Orléans 2006)Google Scholar
  168. M.C. Wilding, M. Wilson, C.J. Benmore, J.K.R. Weber, P.F. McMillan: Structural changes in supercooled Al2O3–Y2O3 liquids, Phys. Chem. Chem. Phys. 15, 8589 (2013),  https://doi.org/10.1039/c3cp51209fCrossRefGoogle Scholar
  169. M.C. Wilding, P.F. McMillan: Liquid polymorphism in yttrium-aluminate liquids. In: New Kinds of Phase Transitions: Transformations in Disordered Substances, ed. by V.V. Brazhkin, S.V. Buldyrev, V.N. Rhzhov, H.E. Stanley (Kluwer Academic, Dordrecht 2002) pp. 57–73Google Scholar
  170. M.C. Wilding, M. Wilson, P.F. McMillan: Structural studies and polyamorphism in amorphous solids and liquids at high pressure, Chem. Soc. Rev. 35, 964–986 (2006)CrossRefGoogle Scholar
  171. O. Majérus, L. Cormier, G. Calas, B. Beuneu: Temperature-induced boron coordination change in alkali borate glasses and melts, Phys. Rev. B 67, 24210-1–24210-7 (2003)CrossRefGoogle Scholar
  172. L. Hennet, D. Thiaudière, C. Landron, P. Melin, D.L. Price, J.-P. Coutures, J.-F. Bérar, M.-L. Saboungi: Melting behavior of levitated Y2O3, Appl. Phys. Lett. 83, 3305 (2003),  https://doi.org/10.1063/1.1621090CrossRefGoogle Scholar
  173. J. Sakowski, G. Herms: The structure of vitreous and molten B2O3, J. Non-Cryst. Solids 293–295, 304–311 (2001)CrossRefGoogle Scholar
  174. L. Cormier, O. Majérus, D.R. Neuville, G. Calas: Temperature-induced structural modifications between alkali borate glasses and melts, J. Am. Ceram. Soc. 89, 13–19 (2006)CrossRefGoogle Scholar
  175. O. Majérus, L. Cormier, G. Calas, B. Beuneu: Modification of the structural role of lithium between lithium-diborate glasses and melts: Implications for transport properties and melt fragility, J. Phys. Chem. B 107, 13044–13050 (2003)CrossRefGoogle Scholar
  176. M.G. Tucker, M.T. Dove, D.A. Keen: Direct measurement of the thermal expansion of the SiO2 bond by neutron total scattering, J. Phys. Condens. Matter 12, L425–L430 (2000)CrossRefGoogle Scholar
  177. Q. Mei, C.J. Benmore, J.K.R. Weber: Structure of liquid SiO2: A measurment by high-energy x-ray diffraction, Phys. Rev. Lett. 98, 57802 (2007)CrossRefGoogle Scholar
  178. M.C. Wilding, C.J. Benmore, J.K.R. Weber: Changes in the local environment surrounding magnesium ions in fragile MgO-SiO2 liquids, Europhys. Lett. 89, 26005 (2010)CrossRefGoogle Scholar
  179. J.W.E. Drewitt, C. Sanloup, A. Bytchkov, S. Brassamin, L. Hennet: Structure of (FexCa1-xO)y(SiO2)1-y liquids and glasses from high-energy x-ray diffraction: Implications for the structure of natural basaltic magmas, Phys. Rev. B 87, 224201 (2013),  https://doi.org/10.1103/PhysRevB.87.224201CrossRefGoogle Scholar
  180. C.J. Benmore, J.K.R. Weber, M.C. Wilding, J. Du, J.B. Parise: Temperature-dependent structural heterogeneity in calcium silicate liquids, Phys. Rev. B 82, 224202 (2010),  https://doi.org/10.1103/PhysRevB.82.224202CrossRefGoogle Scholar
  181. L.B. Skinner, C.J. Benmore, J.K.R. Weber, S. Tumber, L. Lazareva, J. Neuefeind, L. Santodonato, J. Du, J.B. Parise: Structure of molten CaSiO3: Neutron diffraction isotope substitution with aerodynamic levitation and molecular dynamics study, J. Phys. Chem. B 116, 13439–13447 (2012),  https://doi.org/10.1021/jp3066019CrossRefGoogle Scholar
  182. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D.M. Herlach: Icosahedral short-range order in deeply undercooled metallic melts, Phys. Rev. Lett. (2002),  https://doi.org/10.1103/PhysRevLett.89.075507CrossRefGoogle Scholar
  183. D. Holland-Moritz, S. Stüber, H. Hartmann, T. Unruh, T. Hansen, A. Meyer: Structure and dynamics of liquid Ni36Zr64 studied by neutron scattering, Phys. Rev. B (2009),  https://doi.org/10.1103/PhysRevB.79.064204CrossRefGoogle Scholar
  184. S. Gruner, J. Marczinke, L. Hennet, W. Hoyer, G.J. Cuello: On the atomic structure of liquid Ni–Si alloys: A neutron diffraction study, J. Phys. Condens. Matter 21, 385403 (2009),  https://doi.org/10.1088/0953-8984/21/38/385403CrossRefGoogle Scholar
  185. K. Georgarakis, L. Hennet, G.A. Evangelakis, J. Antonowicz, G.B. Bokas, V. Honkimaki, A. Bytchkov, M.W. Chen, A.R. Yavari: Probing the structure of a liquid metal during vitrification, Acta Mater. 87, 174–186 (2015),  https://doi.org/10.1016/j.actamat.2015.01.005CrossRefGoogle Scholar
  186. K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson: First x-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier, Phys. Rev. Lett. 90, 195504 (2003)CrossRefGoogle Scholar
  187. J. Akola, R.O. Jones, S. Kohara, T. Usuki, E. Bychkov: Density variations in liquid tellurium: Roles of rings, chains, and cavities, Phys. Rev. B (2010),  https://doi.org/10.1103/PhysRevB.81.094202CrossRefGoogle Scholar
  188. D. Le Coq, A. Bytchkov, V. Honkimäki, B. Beuneu, E. Bychkov: Neutron and x-ray diffraction studies of TeCl4 and TeBr4 liquids, J. Non-Cryst. Solids 354, 259–262 (2008),  https://doi.org/10.1016/j.jnoncrysol.2007.07.099CrossRefGoogle Scholar
  189. D. Le Coq, B. Beuneu, E. Bychkov, M. Tokuyama, I. Oppenheim, H. Nishiyama: Structure of Te1-xClx liquids, AIP Conf. Proc. 982, 712–716 (2008)CrossRefGoogle Scholar
  190. M. Magallanes-Perdomo, P. Pena, P.N. De Aza, R.G. Carrodeguas, M.A. Rodríguez, X. Turrillas, S. De Aza, A.H. De Aza: Devitrification studies of wollastonite–tricalcium phosphate eutectic glass, Acta Biomater. 5, 3057–3066 (2009),  https://doi.org/10.1016/j.actbio.2009.04.026CrossRefGoogle Scholar
  191. A.A. Piarristeguy, G.J. Cuello, P.G. Yot, M. Ribes, A. Pradel: Neutron thermodiffraction study of the crystallization of Ag–Ge–Se glasses: Evidence of a new phase, J. Phys. Condens. Matter 20, 155106 (2008)CrossRefGoogle Scholar
  192. E. Soignard, P.F. McMillan: An introduction to diamond anvil cells and loading techniques. In: High-Pressure Crystallography, ed. by A. Katrusiak, P. McMillan (Springer, Dordrecht 2004) pp. 81–100CrossRefGoogle Scholar
  193. S. Klotz: Techniques in High Pressure Neutron Scattering (CRC, Boca Raton 2013)Google Scholar
  194. N. Rey: Matériaux carbonés sp2/sp3 intercalés sous pression: le cas du graphite et des clathrates, Ph.D. Thesis (Univ. Claude Bernard, Lyon 2006)Google Scholar
  195. S. Klotz: Neutron diffraction studies on “simple” iron oxides under pressure: Fe3O4, \(\upalpha\)-Fe2O3, and FeO, Chin. Sci. Bull. 59, 5241–5250 (2014),  https://doi.org/10.1007/s11434-014-0587-9CrossRefGoogle Scholar
  196. J.M. Besson, G. Hamel, T. Grima, R.J. Nelmes, J.S. Loveday, S. Hull, D. Häusermann: A large volume pressure cell for high temperatures, High Press. Res. 8, 625–630 (1992),  https://doi.org/10.1080/08957959208206312CrossRefGoogle Scholar
  197. M. Mezouar, P. Faure, W. Crichton, N. Rambert, B. Sitaud, S. Bauchau, G. Blattmann: Multichannel collimator for structural investigation of liquids and amorphous materials at high pressures and temperatures, Rev. Sci. Instrum. 73, 3570 (2002),  https://doi.org/10.1063/1.1505104CrossRefGoogle Scholar
  198. J. Binns, K.V. Kamenev, G.J. McIntyre, S.A. Moggach, S. Parsons: Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction, IUCrJ 3, 168–179 (2016)CrossRefGoogle Scholar
  199. P.F. McMillan, M. Wilson, M.C. Wilding, D. Daisenberger, M. Mezouar, G.N. Greaves: Polyamorphism and liquid–liquid phase transitions: Challenges for experiment and theory, J. Phys. Condens. Matter 19, 415101 (2007)CrossRefGoogle Scholar
  200. P.H. Poole, T. Grande, C.A. Angell, P.F. McMillan: Polymorphic phase transitions in liquids and glasses, Science 275, 322–323 (1997),  https://doi.org/10.1126/science.275.5298.322CrossRefGoogle Scholar
  201. Z. Sun, G. Sun, Y. Chen, L. Xu: Liquid–liquid phase transition in water, Sci. China Phys. Mech. Astron. 57, 810–818 (2014),  https://doi.org/10.1007/s11433-014-5451-zCrossRefGoogle Scholar
  202. A.K. Soper, M.A. Ricci: Structures of high-density and low-density water, Phys. Rev. Lett. 84, 2881–2884 (2000),  https://doi.org/10.1103/PhysRevLett.84.2881CrossRefGoogle Scholar
  203. M. Guthrie, C.A. Tulk, C.J. Benmore, D.D. Klug: A structural study of very high-density amorphous ice, Chem. Phys. Lett. 397, 335–339 (2004),  https://doi.org/10.1016/j.cplett.2004.07.116CrossRefGoogle Scholar
  204. J.L. Finney, D.T. Bowron, A.K. Soper, T. Loerting, E. Mayer, A. Hallbrucker: Structure of a new dense amorphous ice, Phys. Rev. Lett. (2002),  https://doi.org/10.1103/PhysRevLett.89.205503CrossRefGoogle Scholar
  205. S. Klotz, G. Hamel, J.S. Loveday, R.J. Nelmes, M. Guthrie, A.K. Soper: Structure of high-density amorphous ice under pressure, Phys. Rev. Lett. (2002),  https://doi.org/10.1103/PhysRevLett.89.285502CrossRefGoogle Scholar
  206. S. Klotz, T. Strässle, A.M. Saitta, G. Rousse, G. Hamel, R.J. Nelmes, J.S. Loveday, M. Guthrie: In situ neutron diffraction studies of high density amorphous ice under pressure, J. Phys. Condens. Matter 17, S967 (2005)CrossRefGoogle Scholar
  207. C.A. Tulk: Structural studies of several distinct metastable forms of amorphous ice, Science 297, 1320–1323 (2002),  https://doi.org/10.1126/science.1074178CrossRefGoogle Scholar
  208. M. Guthrie, J. Urquidi, C.A. Tulk, C.J. Benmore, D.D. Klug, J. Neuefeind: Direct structural measurements of relaxation processes during transformations in amorphous ice, Phys. Rev. B (2003),  https://doi.org/10.1103/PhysRevB.68.184110CrossRefGoogle Scholar
  209. V.V. Brazhkin, Y. Katayama, K. Trachenko, O.B. Tsiok, A.G. Lyapin, E. Artacho, M. Dove, G. Ferlat, Y. Inamura, H. Saitoh: Nature of the structural transformations in B2O3 glass under high pressure, Phys. Rev. Lett. 101, 35702 (2008)CrossRefGoogle Scholar
  210. A. Zeidler, K. Wezka, D.A.J. Whittaker, P.S. Salmon, A. Baroni, S. Klotz, H.E. Fischer, M.C. Wilding, C.L. Bull, M.G. Tucker, M. Salanne, G. Ferlat, M. Micoulaut: Density-driven structural transformations in B2O3 glass, Phys. Rev. B (2014),  https://doi.org/10.1103/PhysRevB.90.024206CrossRefGoogle Scholar
  211. S. Sampath, C.J. Benmore, K.M. Lantzky, J. Neuefeind, K. Leinenweber, D.L. Price, J.L. Yarger: Intermediate-range order in permanently densified GeO2 glass, Phys. Rev. Lett. (2003),  https://doi.org/10.1103/PhysRevLett.90.115502CrossRefGoogle Scholar
  212. S. Sugai, A. Onodera: Medium-range order in permanently densified SiO2 and GeO2 glass, Phys. Rev. Lett. 77, 4210–4213 (1996),  https://doi.org/10.1103/PhysRevLett.77.4210CrossRefGoogle Scholar
  213. Y. Inamura, M. Arai, M. Nakamura, T. Otomo, N. Kitamura, S.M. Bennington, A.C. Hannon, U. Buchenau: Intermediate range structure and low-energy dynamics of densified vitreous silica, J. Non-Cryst. Solids 293–295, 389–393 (2001)CrossRefGoogle Scholar
  214. J.P.P. Itié, G. Calas, J. Petiau, A. Fontaine, H. Tolentino: Pressure-induced coordination changes in crystalline and vitreous GeO2, Phys. Rev. Lett. 63, 398–401 (1989)CrossRefGoogle Scholar
  215. C. Meade, R.J. Hemley, H.K. Mao: High-pressure x-ray diffraction of SiO2 glass, Phys. Rev. Lett. 69, 1387–1390 (1992)CrossRefGoogle Scholar
  216. T. Sato, N. Funamori: Sixfold-coordinated amorphous polymorph of SiO2 under high pressure, Phys. Rev. Lett. (2008),  https://doi.org/10.1103/PhysRevLett.101.255502CrossRefGoogle Scholar
  217. V.V. Brazhkin: Comments on “Sixfold-coordinated amorphous polymorph of SiO2 under high pressure”, Phys. Rev. Lett. 102, 209603 (2009)CrossRefGoogle Scholar
  218. C.J. Benmore, E. Soignard, S.A. Amin, M.S.D. Guthrie: Shastri, P.L. Lee, J.L. Yarger: Structural and topological changes in silica glass at pressure, Phys. Rev. B 81, 054–105 (2010)CrossRefGoogle Scholar
  219. Y. Inamura, Y. Katayama, W. Utsumi, K. Funakoshi: Transformations in the intermediate-range structure of SiO2 glass under high pressure and temperature, Phys. Rev. Lett. 93, 15501 (2004)CrossRefGoogle Scholar
  220. T. Sato, N. Funamori: High-pressure structural transformation of SiO2 glass up to 100 GPa, Phys. Rev. B 82, 184102 (2010)CrossRefGoogle Scholar
  221. A. Zeidler, K. Wezka, R.F. Rowlands, D.A.J. Whittaker, P.S. Salmon, A. Polidori, J.W.E. Drewitt, S. Klotz, H.E. Fischer, M.C. Wilding, C.L. Bull, M.G. Tucker, M. Wilson: High-pressure transformation of SiO2 glass from a tetrahedral to an octahedral network: A joint approach using neutron diffraction and molecular dynamics, Phys. Rev. Lett. 113, 135501 (2014)CrossRefGoogle Scholar
  222. X. Hong, G. Shen, V.B. Prakapenka, M. Newville, M.L. Rivers, S.R. Sutton: Intermediate states of GeO2 glass under pressures up to 35 GPa, Phys. Rev. B 75, 104201 (2007)CrossRefGoogle Scholar
  223. Q. Mei, S. Sinogeikin, G. Shen, S. Amin, C.J. Benmore, K. Ding: High-pressure x-ray diffraction measurements on vitreous GeO2 under hydrostatic conditions, Phys. Rev. B 81, 174113 (2010)CrossRefGoogle Scholar
  224. X. Hong, L. Ehm, T.S. Duffy: Polyhedral units and network connectivity in GeO2 glass at high pressure: An x-ray total scattering investigation, Appl. Phys. Lett. 105, 81904 (2014),  https://doi.org/10.1063/1.4894103CrossRefGoogle Scholar
  225. J.W.E. Drewitt, P.S. Salmon, A.C. Barnes, S. Klotz, H.E. Fischer, W.A. Crichton: Structure of GeO2 glass at pressures up to 8.6 GPa, Phys. Rev. B 81, 14202 (2010)CrossRefGoogle Scholar
  226. P.S. Salmon, J.W.E. Drewitt, D.A.J. Whittaker, A. Zeidler, K. Wezka, C.L. Bull, M.G. Tucker, M.C. Wilding, M. Guthrie, D. Marrocchelli: Density-driven structural transformations in network forming glasses: A high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa, J. Phys. Condens. Matter 24, 415102 (2012),  https://doi.org/10.1088/0953-8984/24/41/415102CrossRefGoogle Scholar
  227. K. Wezka, P.S. Salmon, A. Zeidler, D.A.J. Whittaker, J.W.E. Drewitt, S. Klotz, H.E. Fischer, D. Marrocchelli: Mechanisms of network collapse in GeO2 glass: High-pressure neutron diffraction with isotope substitution as arbitrator of competing models, J. Phys. Condens. Matter 24, 502101 (2012)CrossRefGoogle Scholar
  228. M. Micoulaut, L. Cormier, G.S. Henderson: The structure of amorphous, crystalline and liquid GeO2, J. Phys. Condens. Matter 18, R1–R32 (2006)CrossRefGoogle Scholar
  229. P.S. Salmon, A. Zeidler: Networks under pressure: The development of in situ high-pressure neutron diffraction for glassy and liquid materials, J. Phys. Condens. Matter 27, 133201 (2015),  https://doi.org/10.1088/0953-8984/27/13/133201CrossRefGoogle Scholar
  230. A. Zeidler, P.S. Salmon, L.B. Skinner: Packing and the structural transformations in liquid and amorphous oxides from ambient to extreme conditions, Proc. Natl. Acad. Sci. U.S.A. 111, 10045–10048 (2014),  https://doi.org/10.1073/pnas.1405660111CrossRefGoogle Scholar
  231. Y. Wang, T. Sakamaki, L.B. Skinner, Z. Jing, T. Yu, Y. Kono, C. Park, G. Shen, M.L. Rivers, S.R. Sutton: Atomistic insight into viscosity and density of silicate melts under pressure, Nat. Commun. 5, 3241 (2014),  https://doi.org/10.1038/ncomms4241CrossRefGoogle Scholar
  232. Q. Mei, C.J. Benmore, R.T. Hart, E. Bychkov, P.S. Salmon, C.D. Martin, F.M. Michel, S.M. Antao, P.J. Chupas, P. Lee, S.D. Shastri, S.D. Parise, K. Leinenweber, S. Amin, J.L. Yarger: Topological changes in glassy GeSe2 at pressures up to 9.3 GPa dtermined by high-energy x-ray and neutron diffraction measurements, Phys. Rev. B 74, 14203 (2006)CrossRefGoogle Scholar
  233. K. Wezka, A. Bouzid, K.J. Pizzey, P.S. Salmon, A. Zeidler, S. Klotz, H.E. Fischer, C.L. Bull, M.G. Tucker, M. Boero, S. Le Roux, C. Tugène, C. Massobrio: Density-driven defect-mediated network collapse of GeSe2 glass, Phys. Rev. B 90, 054206 (2014)CrossRefGoogle Scholar
  234. A. Zeidler, J.W.E. Drewitt, P.S. Salmon, A.C. Barnes, W.A. Crichton, S. Klotz, H.E. Fischer, C.J. Benmore, S. Ramos, A.C. Hannon: Establishing the structure of GeS2 at high pressures and temperatures: A combined approach using x-ray and neutron diffraction, J. Phys. Condens. Matter 21, 474217 (2009)CrossRefGoogle Scholar
  235. H.W. Sheng, E. Ma, H.Z. Liu, J. Wen: Pressure tunes atomic packing in metallic glass, Appl. Phys. Lett. 88, 171906–171903 (2006)CrossRefGoogle Scholar
  236. W.A. Crichton, M. Mezouar, T. Grande, S. Stølen, A. Grzechnik: Breakdown of intermediate-range order in liquid GeSe2 at high pressure, Nature 414, 622–625 (2001),  https://doi.org/10.1038/414622aCrossRefGoogle Scholar
  237. Q.S. Zeng, Y.C. Li, C.M. Feng, P. Liermann, M. Somayazulu, G.Y. Shen, H.-K. Mao, R. Yang, J. Liu, T.D. Hu, J.Z. Jiang: Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure, Proc. Natl. Acad. Sci. U.S.A. 104, 13565–13568 (2007),  https://doi.org/10.1073/pnas.0705999104CrossRefGoogle Scholar
  238. H.W. Sheng, H.Z. Liu, Y.Q. Cheng, J. Wen, P.L. Lee, W.K. Luo, S.D. Shastri, E. Ma: Polyamorphism in a metallic glass, Nat. Mater. 6, 192–197 (2007),  https://doi.org/10.1038/nmat1839CrossRefGoogle Scholar
  239. Q.S. Zeng, Y.Z. Fang, H.B. Lou, Y. Gong, X.D. Wang, K. Yang, A.G. Li, S. Yan, C. Lathe, F.M. Wu, X.H. Yu, J.Z. Jiang: Low-density to high-density transition in Ce75Al23Si2 metallic glass, J. Phys. Condens. Matter 22, 375404 (2010),  https://doi.org/10.1088/0953-8984/22/37/375404CrossRefGoogle Scholar
  240. Q. Zeng, Y. Ding, W.L. Mao, W. Yang, S.V. Sinogeikin, J. Shu, H. Mao, J.Z. Jiang: Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass, Phys. Rev. Lett. (2010),  https://doi.org/10.1103/PhysRevLett.104.105702CrossRefGoogle Scholar
  241. A. Cadien, Q.Y. Hu, Y. Meng, Y.Q. Cheng, M.W. Chen, J.F. Shu, H.K. Mao, H.W. Sheng: First-order liquid–liquid phase transition in cerium, Phys. Rev. Lett. 110, 125503 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IMPMCSorbonne University – CNRSParisFrance

Personalised recommendations