Advertisement

Terahertz Time-Domain Spectroscopy of Glasses

  • S. K. SundaramEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Terahertz-time domain spectroscopy () uses the real and imaginary parts of the dielectric and optical constants for glass characterization over a wide frequency range in the electromagnetic spectrum. This chapter provides an overview and analysis of various THz spectrometers and typical data sets over \(0.1{-}10\,{\mathrm{THz}}\). Phonon modes in THz region and Lunkenheimer–Loidl plots for disordered materials along with density-functional based tight-binding () modeling results for \(\mathrm{As_{2}S_{3}}\) are described. THz optical and dielectric properties of selected model glass systems, e. g., silica, alkali borate, and silicates, based on works reported in the literature, are discussed. Mixed-alkali effects and thermal stability in terms of THz properties of simple tellurite glass composition, \(\mathrm{80TeO_{2}}\)-\(\mathrm{10WO_{3}}\)-(\(10{-}x\))\(\mathrm{Li_{2}O}\)-\(\mathrm{\mathit{x}Na_{2}O}\) with \(x=\) 0, 2, 4, and 6, are reported. Chalcogenide (As-S) glasses show that the refractive indices in THz, infrared, and visible frequencies decrease with arsenic composition up to a point of optimal constrained structure with average coordination number, \(\langle r\rangle\), beyond which the refractive index increases. Our results in hydroxyapatite (\(\mathrm{Ca_{10}(PO_{4})_{6}}\)\(\cdot\)\(\mathrm{(OH)_{2}}\); HA)-glass (0.05CaO-\(\mathrm{0.12TiO_{2}}\)-\(\mathrm{0.17Na_{2}O}\)-0.28ZnO-\(\mathrm{0.38SiO_{2}}\)) composites demonstrate that the THz-TDS can be a promising non-destructive tool for evaluating these composites and tracking their degradation in simulated body fluids in biological applications.

Notes

Acknowledgements

The author thanks the support from the Energy Conversion Initiative, Pacific Northwest National Laboratory (PNNL). The author acknowledges THz measurements performed by Mr. Rob Koch (Alfred University), peer review by Dr. John S. McCloy (Washington State University, Pullman, WA), some of the illustrations by Mr. Mike Perkins (PNNL), and suggestions from Professor Robert E. Miles (University of Leeds, UK). The author also acknowledges support from Inamori Foundation and Kazuo Inamori School of Engineering at Alfred University. PNNL is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830.

References

  1. E.R. Mueller: Terahertz radiation: Applications and sources, Ind. Phys. 9(4), 27–30 (2003)Google Scholar
  2. P.H. Siegel: Terahertz technology, IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)CrossRefGoogle Scholar
  3. X.-C. Zhang: Generation and detection of THz EM pulse from dielectrics with femtosecond optics. In: Ultra Fast Phenomena, CCAST-WL Series, Vol. 38, ed. by K. Shum, Y.J. Ding, X.-C. Zhang (Gordon and Breach Scientific, Philadelphia 1994) pp. 89–115Google Scholar
  4. X.-C. Zhang: Generation and detection of terahertz electromagnetic pulsed radiation from semiconductor crystals with femtosecond optics. In: Proc. Compd. Optoelectron. Mater. Devices (1995) p. 69Google Scholar
  5. M.S. Sherwin, C.A. Schmuttenmaer, P.H. Bucksbaum: Opportunities in THz science. In: Rep.  DOE-NSF-NIH Workshop, Arlington (2004) pp. 12–14Google Scholar
  6. S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C.A. Schmuttenmaer, T.L. Cocker, R. Huber, A.G. Markelz, Z.D. Taylor, V.P. Wallace, J.A. Zeitler, J. Sibik, T.M. Korter, B. Ellison, S. Rea, P. Goldsmith, K.B. Cooper, R. Appleby, D. Pardo, P.G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J.E. Cunningham, M.B. Johnston: The 2017 terahertz science and technology roadmap, J. Phys. D 50, 043001 (2017)CrossRefGoogle Scholar
  7. L. Duvillaret, F. Garet, J.-L. Coustaz: A reliable method for extraction of material parameters in terahertz time-domain spectroscopy, IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996)CrossRefGoogle Scholar
  8. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger: Far infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, J. Opt. Soc. Amer. B 7, 2006–2015 (1990)CrossRefGoogle Scholar
  9. M. van Exter, D. Grischkowsky: Optical and electronic properties of doped silicon from 0.1 to 2 THz, Appl. Phys. Lett. 56, 1694–1696 (1990)CrossRefGoogle Scholar
  10. M.C. Beard, G.M. Turner, C.A. Schmuttenmaer: Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy, J. Appl. Phys. 90, 5915–5923 (2001)CrossRefGoogle Scholar
  11. J.E. Pedersen, S.R. Keiding: THz time-domain spectroscopy of nonpolar liquids, IEEE J. Quantum Electron. 28, 2518–2522 (1992)CrossRefGoogle Scholar
  12. J.F. Whitaker, F. Gao, Y. Liu: Terahertz-bandwidth pulses for coherent time-domain spectroscopy, Proc. SPIE 2145, 168–177 (1994)CrossRefGoogle Scholar
  13. P.H. Bolivar, M. Brucherseifer, J.G. Rivas, R. Gonzalo, I. Ederra, A.L. Reynolds, M. Holker, P. de Maagt: Measurement of the dielectric constant and loss tangent of high dielectric constant materials at terahertz frequencies, IEEE Trans. Microw. Theory Tech. 51, 1062–1066 (2003)CrossRefGoogle Scholar
  14. A. Quema, H. Takahashi, M. Sakai, M. Goto, S. Ono, N. Sarukura, R. Shioda, N. Yamada: Identification of potential estrogenic environmental pollutants by terahertz transmission spectroscopy, Jpn. J. Appl. Phys. 42, L932–934 (2003)CrossRefGoogle Scholar
  15. Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide: Component analysis of chemical mixtures using terahertz spectroscopic imaging, Opt. Commun. 234, 125–129 (2004)CrossRefGoogle Scholar
  16. H. Harde, J. Zhao, M. Wolff, R.A. Cheville, D. Grischkowsky: THz time-domain spectroscopy on ammonia, J. Phys. Chem. A 105, 6038–6047 (2001)CrossRefGoogle Scholar
  17. P.R. Smith, D.H. Auston, M.C. Nuss: Subpicosecond photconducting dipole antennas, IEEE J. Quantum Electron. 24, 255–260 (1988)CrossRefGoogle Scholar
  18. C. Fattinger, D. Grischkowsky: Terahertz beams, Appl. Phys. Lett. 54(6), 490–492 (1989)CrossRefGoogle Scholar
  19. M. Hangyo, T. Nagashima, S. Nagashima: Spectroscopy by pulsed terahertz radiation, Meas. Sci. Technol. 13, 1727–1738 (2002)CrossRefGoogle Scholar
  20. X.-C. Zhang, J. Hu: Generation and detection of THz waves. In: Introduction to THz Wave Photonics (Springer, New York 2010) pp. 27–28CrossRefGoogle Scholar
  21. X. Yin, B.W.-H. Ng, D. Abbott: Terahertz sources and detectors. In: Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction (Springer, New York 2012) pp. 9–26CrossRefGoogle Scholar
  22. N.M. Burford, M.O. El-Shenawee: Review of terahertz photoconductive antenna technology, Opt. Eng. 56(1), 010901 (2017),  https://doi.org/10.1117/1.OE.56.1.010901CrossRefGoogle Scholar
  23. M.C. Beard, G.M. Turner, C.A. Schmuttenmaer: Terahertz spectroscopy, J. Phys. Chem. B 106, 7146–7159 (2002)CrossRefGoogle Scholar
  24. P.Y. Han, X.-C. Zhang: Free-space coherent broadband terahertz time-domain spectroscopy, Meas. Sci. Technol. 12, 1747–1756 (2001)CrossRefGoogle Scholar
  25. B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, A. Loidl: Terahertz BWO-spectroscopy, Int. J. Infrared Millim. Waves 26(9), 1217–1124 (2005)CrossRefGoogle Scholar
  26. M. Born, E. Wolf: Principles of Optics, 6th edn. (Cambridge Univ. Press, Cambridge 1999)CrossRefGoogle Scholar
  27. H. Eisele, M. Naftlay, J.R. Fletcher: A simple interferometer for the characterization of sources at terahertz frequencies, Meas. Sci. Technol. 18, 2623–2628 (2007)CrossRefGoogle Scholar
  28. S.R. Ganti, S.K. Sundaram, J.S. McCloy: Frequency dependent optical and dielectric properties of zinc sulfide in terahertz regime, Infrared Phys. Technol. 65, 67–71 (2014)CrossRefGoogle Scholar
  29. M. Naftaly: Terahertz Metrology (Artech House, London 2015)Google Scholar
  30. B.P. Gorshunov, A.A. Volkov, A.S. Prokhorov, I.E. Spektor: Methods of terahertz-subterahertz BWO spectroscopy of conducting materials, Phys. Solid State 50(11), 2001–2012 (2008)CrossRefGoogle Scholar
  31. A.I. Chumakov, I. Sergueev, U. van Bürck, W. Schirmacher, T. Asthalter, R. Rüffer, O. Leupold, W. Petry: Collective nature of the boson peak and universal transboson dynamics of glasses, Phys. Rev. Lett. 92(24), 245508 (2004)CrossRefGoogle Scholar
  32. U. Strom, P. Taylor: Temperature and frequency dependences of the far infrared and microwave optical absorption in amorphous materials, Phys. Rev. B 16, 5512–5522 (1977)CrossRefGoogle Scholar
  33. A. Pasquarello, R. Car: Dynamical charge tensors and infrared spectrum of amorphous SiO2, Phys. Rev. Lett. 79, 1766–1769 (1997)CrossRefGoogle Scholar
  34. F.L. Galeener, A.J. Leadbetter, M.W. Stringfellow: Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2, Phys. Rev. B 27, 1052–1078 (1983)CrossRefGoogle Scholar
  35. L. Deich: Far-infrared attenuation in glasses, Phys. Rev. B 49, 109–113 (1994)CrossRefGoogle Scholar
  36. E. Schlömann: Dielectric losses in ionic crystals with disordered charge distributions, Phys. Rev. 135, A413–A419 (1964)CrossRefGoogle Scholar
  37. S.N. Taraskin, S.R. Elliott: Propagation of plane-wave vibrational excitations in disordered systems, Phys. Rev. B 61(18), 12017–12030 (2000)CrossRefGoogle Scholar
  38. S.N. Taraskin, Y.L. Loh, G. Natarajan, S.R. Elliott: Origin of the boson peak in systems with lattice disorder, Phys. Rev. Lett. 86(7), 1255–1258 (2001)CrossRefGoogle Scholar
  39. S.N. Taraskin, S.I. Simdyankin, S.R. Elliott, J.R. Neilson, T. Lo: Universal features of terahertz absorption in disordered materials, Phys. Rev. Lett. 97, 055504 (2006)CrossRefGoogle Scholar
  40. S.N. Taraskin: Infrared absorption in glasses and their crystalline counterparts, J. Phys. Condens. Matter. 19, 415113 (2007)CrossRefGoogle Scholar
  41. B. Rufflé, G. Guimbretière, E. Courten, R. Vacher, G. Monaco: Glass-specific behavior in the damping of acousticlike vibrations, Phys. Rev. Lett. 96, 045502 (2006)CrossRefGoogle Scholar
  42. S.L. Isakov, S.N. Ishmaev, V.K. Malinovsky, V.N. Novikov, P.P. Parshin, S.N. Popov, A.P. Sokolov, M.G. Zemlyanov: Transformation of the vibrational spectrum and structure of glasses after quenching, Solid State Commun. 86, 123–127 (1993)CrossRefGoogle Scholar
  43. A.P. Sokolov, A. Kisliuk, D. Quitmann, E. Duval: Evaluation of density of vibrational states of glasses from low-frequency Raman spectra, Phys. Rev. B 48, 7692–7695 (1993)CrossRefGoogle Scholar
  44. A.A. Maradudin, R.F. Wallis: Lattice anharmonicity and optical absorption in polar crystals. II. Classical treatment in the linear approximation, Phys. Rev. 123, 777–789 (1961)CrossRefGoogle Scholar
  45. M. Wilson, P.A. Madden, M. Hemmati, C.A. Angell: Polarization effects, network dynamics, and the infrared spectrum of amorphous SiO2, Phys. Rev. Lett. 77, 4023–4026 (1996)CrossRefGoogle Scholar
  46. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner: Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon, Phys. Rev. B 51, 12947–12957 (1995)CrossRefGoogle Scholar
  47. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhal, G. Seifert: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B 58, 7260–7268 (1998)CrossRefGoogle Scholar
  48. S.I. Simdyankin, S.R. Elliott, Z. Hajnal, T.A. Niehaus, T. Fravenheim: Simulation of physical properties of the chalcogenide glass As2S3 using a density-functional-based tight-binding method, Phys. Rev. B 69, 144202 (2004)CrossRefGoogle Scholar
  49. P. Lunkenheimer, A. Loidl: Response of disordered matter to electromagnetic fields, Phys. Rev. Lett. 91(20), 20760 (2003)CrossRefGoogle Scholar
  50. A.K. Jonscher: The ‘universal' dielectric response, Nature 267(5613), 673–679 (1977)CrossRefGoogle Scholar
  51. S.N. Taraskin, S.I. Simdyankin, S.R. Elliott: The atomic charge distribution in glasses obtained by terahertz spectroscopy, J. Phys. Condens. Matter 19, 455216 (2007)CrossRefGoogle Scholar
  52. C. Massobrio, M. Celino, A. Pasquarello: Charge fluctuations and concentration fluctuations at intermediate-range distances in the disordered network-forming materials SiO2, SiSe2, and GeSe2, Phys. Rev. B 70, 174202 (2004)CrossRefGoogle Scholar
  53. S. Blaineau, P. Jund: Electronic structure of amorphous germanium disulfide via density-functional molecular dynamics simulations, Phys. Rev. B 70, 184210 (2004)CrossRefGoogle Scholar
  54. L. Giacomazzi, P. Umari, A. Pasquarello: Vibrational spectra of vitreous germania from first-principles, Phys. Rev. B 74, 155208 (2006)CrossRefGoogle Scholar
  55. L. Giacomazzi, C. Massobrio, A. Pasquarello: First-principles investigation of the structural and vibrational properties of vitreous GeSe2, Phys. Rev. B 75, 174207 (2007)CrossRefGoogle Scholar
  56. J.W. Lamb: Miscellaneous data on materials for millimetre and submillimetre optics, Int. J. lnfrared Millim. Waves 17(19), 1997–2034 (1996)CrossRefGoogle Scholar
  57. G.J. Simonis: Index to the literature dealing with the near-millimeter wave properties of materials, Int. J. lnfrared Millim. Waves 3(4), 439–469 (1996)CrossRefGoogle Scholar
  58. I. Wilke, M. Khazan, C.T. Rieck, P. Kuzel, T. Kaiser, C. Jackel, H. Kurz: Terahertz surface resistance of high temperature superconducting thin films, J. Appl. Phys. 87(6), 2984–2988 (2000)CrossRefGoogle Scholar
  59. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, T. Kurner: Terahertz characterization of building materials, Elect. Lett. 41(18), 1002–1004 (2005)CrossRefGoogle Scholar
  60. T. Ohsaka, S. Oshikawa: Effect of OH content on the far-infrared absorption and low-energy states in silica glass, Phys. Rev. B 57, 4995–4998 (1998)CrossRefGoogle Scholar
  61. B.E. Hubbard, N.I. Agladze, J.J. Tu, A.J. Sievers: Infrared and Raman study of two-level systems in fiber optic quality a-SiO2 and a-SiO2:GeO2, Phys. B 316/317, 531–534 (2002)CrossRefGoogle Scholar
  62. T.S. Grigera, V. Martin-Mayer, G. Parisi, P. Verrocchio: Phonon interpretation of the 'boson peak' in supercooled liquids, Nature 422(6929), 289–292 (2003)CrossRefGoogle Scholar
  63. N.V. Sourouvtsev: Evaluation of terahertz density of vibrational states from specific-heat data: Application to silica glass, Phys. Rev. E 64, 061102 (2001)CrossRefGoogle Scholar
  64. L. Thrane, R.H. Jacobsen, P.U. Jepsen, S.R. Keiding: THz reflection spectroscopy of liquid water, Chem. Phys. Lett. 240, 330–333 (1995)CrossRefGoogle Scholar
  65. J.T. Kindt, C.A. Schmuttenmaer: Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy, J. Phys. Chem. 100, 10373–10376 (1996)CrossRefGoogle Scholar
  66. R. Harel, I. Brener, L.N. Pfeiffer, K.W. West, J.M. Vandenberg, S.G. Chu, J.D. Wynn: Coherent terahertz radiation from cavity polaritons in GaAs/AlGaAs microcavities, Phys. Stat. Sol. (a) 178(1), 365–372 (2000)CrossRefGoogle Scholar
  67. S. Nishizawa, T. Iwamoto, K. Shirawachi, M. Wada Takeda, M. Tani, K. Sakai: An advanced infrared instrumentation of composite THz time-domain spectrometry combined with Michelson interferometer. In: Proc. 1999 IEEE 7th Int. Conf. Terahertz Electron. THz'99 (1999) pp. 308–310Google Scholar
  68. S. Kojima, H. Kitahara, S. Nishizawa, M. Wada Takeda: Dielectric properties of ferroelectric lithium tantalate crystals studied by terahertz time-domain spectroscopy, Jpn. J. Appl. Phys. 42, 6238–6241 (2003)CrossRefGoogle Scholar
  69. S. Kojima, H. Kitahara, S. Nishizawa, Y.S. Yang, M. Wada Takeda: Terahertz time-domain spectroscopy of low-energy excitations in glasses, J. Mol. Struct. 744–747, 243–246 (2005)CrossRefGoogle Scholar
  70. M. Naftaly, A.P. Foulds, R.E. Miles, A.G. Davies: Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties, Int. J. Infrared Millim. Waves 26(1), 55–64 (2005)CrossRefGoogle Scholar
  71. S.O. Kasap: Frequency dependence: Dielectric constant and loss. In: Principles of Electronic Materials and Devices, 2nd edn., (McGraw-Hill, New York 2002) pp. 526–534Google Scholar
  72. P.U. Jepsen, B.M. Fischer: Dynamic range in terahertz time-domain transmission and reflection spectroscopy, Opt. Lett. 30(1), 29–31 (2005)CrossRefGoogle Scholar
  73. M. Naftaly, R.E. Miles: Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties, J. Appl. Phys. 102, 043517 (2007)CrossRefGoogle Scholar
  74. M. Naftaly, R.E. Miles: Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared, J. Non-Cryst. Solids 351, 3341–3346 (2005)CrossRefGoogle Scholar
  75. L. Ghivelder, W.A. Phillips: Far infrared absorption in disordered solids, J. Non-Cryst. Solids 109(2/3), 280–288 (1989)CrossRefGoogle Scholar
  76. K.W. Hutt, W.A. Phillips, R.J. Butcher: Far-infrared properties of dilute hydroxyl groups in amorphous silica matrix, J. Phys. Condens. Matter 1, 4767–4772 (1989)CrossRefGoogle Scholar
  77. T.J. Parker, J.E. Ford, W.G. Chambers: The optical constants of pure fused quartz in the far-infrared, Infrared Phys. 18, 215–219 (1978)CrossRefGoogle Scholar
  78. D.R. Lide: CRC Handbook of Chemistry and Physics, 87th edn. (CRC, Boca Raton 2007)Google Scholar
  79. G. Winterling: Very-low-frequency Raman scattering in vitreous silica, Phys. Rev. B 12, 2432–2440 (1975)CrossRefGoogle Scholar
  80. B. Hehlen, E. Coutens, R. Vacher, A. Yamanaka, M. Kataoka, K. Inoue: Hyper-Raman scattering observation of the boson peak in vitreous silica, Phys. Rev. Lett. 84, 5355–5358 (2000)CrossRefGoogle Scholar
  81. T. Nakayama: Boson peak and terahertz frequency dynamics of vitreous silica, Rep. Prog. Phys. 65, 1195–1242 (2002)CrossRefGoogle Scholar
  82. S. Kojima, M. Kodama: Boson peak in alkali borate glass, Phys. B 263/264, 336 (1999)CrossRefGoogle Scholar
  83. S. Kojima, V.N. Novikov, M. Kodama: Fast relaxation, boson peak, and anharmonicity in Li2O–B2O3 glasses, J. Chem. Phys. 113(15), 6344 (2000)CrossRefGoogle Scholar
  84. V.L. Gurevich, D.A. Parshin, H.R. Schober: Anharmonicity, vibrational instability, and the boson peak in glasses, Phys. Rev. B 67, 094203 (2003)CrossRefGoogle Scholar
  85. M. Naftaly, R.E. Miles: Terahertz interactions with amorphous materials. In: Terahertz Frequency Detection and Identification of Materials and Objects, ed. by R.E. Miles, X.-C. Zhang, H. Eisele, A. Krotkus (Springer, Dordrecht 2007) pp. 107–122CrossRefGoogle Scholar
  86. J.A. Duffy: The refractivity and optical basicity, J. Non-Cryst. Solids 86(1/2), 149–160 (1986)CrossRefGoogle Scholar
  87. J.M. Jewell: Model for the thermo-optic behavior of sodium borate and sodium aluminosilicate glasses, J. Non-Cryst. Solids 146, 145–153 (1992)CrossRefGoogle Scholar
  88. S.A. Brawer: Relaxation in viscous liquids, J. Chem. Phys. 81(2), 954–975 (1984)CrossRefGoogle Scholar
  89. D.R. Uhlmann: Glass formation, J. Non-Cryst. Solids 25(1–3), 42–85 (1977)CrossRefGoogle Scholar
  90. R.A.H. El-Mallawany: Tellurite Glasses Handbook: Physical Properties and Data (CRC, Boca Raton 2002)Google Scholar
  91. G.W. Brady: X-ray study of tellurium oxide glass, J. Chem. Phys. 24, 477–478 (1956)CrossRefGoogle Scholar
  92. G.W. Brady: Structure of tellurium oxide glass, J. Chem. Phys. 27, 300–303 (1957)CrossRefGoogle Scholar
  93. Y. Dimitriev, V. Dimitrov, E. Gatev, E. Kashchieva, H. Petkov: Effect of the mode formation on the structure of tellurite glasses, J. Non-Cryst. Solids 95/96, 937–944 (1987)CrossRefGoogle Scholar
  94. S. Neov, V. Kozhukharov, I. Gerasimova, K. Krezhov, B. Sidzhimov: A model for structural recombination in tellurite glasses, J. Phys. C 12(13), 2475–2485 (1979)CrossRefGoogle Scholar
  95. Y. Shimizugawa, T. Maeseto, S. Suehara, S. Inoue, A. Nukui: EXAFS and RDF studies of TeO2–Li2O glasses, J. Mater. Res. 10, 405–410 (1995)CrossRefGoogle Scholar
  96. H. Yamamoto, H. Nasu, J. Matsuoka, K. Kamiya: X-ray absorption fine structure (XAFS) study on the coordination of Te in PbO-TiO2-TeO2 glasses with high third-order optical non-linearity, J. Non-Cryst. Solids 170, 87–96 (1994)CrossRefGoogle Scholar
  97. J. Heo, D. Lam, G.H. Sigel, E.A. Mendoza, D.A. Hensley: Spectroscopic analysis of the structure and properties of alkali tellurite glasses, J. Am. Ceram. Soc. 75, 277–281 (1992)CrossRefGoogle Scholar
  98. S. Khatir, F. Romain, J. Portier, S. Rossignol, B. Tanguy, J.J. Videau, S. Turrell: Raman studies of recrystallized glasses in the binary TeO2-PbO system, J. Mol. Struct. 298, 13–16 (1993)CrossRefGoogle Scholar
  99. C. Duverger, M. Bouazaoui, S. Turrell: Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses, J. Non-Cryst. Solids 220, 169–177 (1997)CrossRefGoogle Scholar
  100. Y. Dimitriev, E. Kashchieva, I. Ivanova, D. Khristova: Liquation in three-component tellurite systems TeO2-B2O3-MnOm. MnOm = Al2O3, Ga2O3, Cr2O3, CuO, Ag2O, MoO3, Sb2O3, Stroit. Mater. Silik. Prom. 24(9), 24 (1983)Google Scholar
  101. E. Kashchieva: Phase Separation in Tellurite Systems, Ph.D. Thesis (Sofia University, Sofia 1984)Google Scholar
  102. T. Sekiya, N. Mochida, S. Ogawa: Structural Study of WO3-TeO2 glasses, J. Non-Cryst. Solids 176, 105–115 (1994)CrossRefGoogle Scholar
  103. B.V.R. Chowdari, P.P. Kumari: Raman spectroscopic study of ternary silver telluride glasses, Mater. Res. Bull. 34(2), 327–342 (1999)CrossRefGoogle Scholar
  104. G.S. Murugan, T. Suzuki, Y. Ohishi: Raman characteristics and nonlinear optical properties of tellurite and phosphotellurite glasses containing heavy metal oxides with ultrabroad Raman bands, J. Appl. Phys. 100, 023107–023106 (2006)CrossRefGoogle Scholar
  105. T. Sekiya, N. Mochida, A. Ohtsuka: Raman Spectra of MO-TeO2 (M = Mg, Sr, Ba and Zn) glasses, J. Non-Cryst. Solids 168, 106–114 (1994)CrossRefGoogle Scholar
  106. S. Sakida, S. Hayakawa, T.J. Yoko: Part 1. 125Te NMR study of tellurite crystals, J. Non-Cryst. Solids 243, 1–12 (1999)CrossRefGoogle Scholar
  107. S. Sakida, S. Hayakawa, T. Yoko: Part 2.125Te NMR study of of M2O–TeO2 (M = Li, Na, K, Rb and Cs) glasses, J. Non-Cryst. Solids 243, 13–25 (1999)CrossRefGoogle Scholar
  108. S. Sakida, S. Hayakawa, T. Yoko: 125Te NMR study of MO-TeO2 (M = Mg, Zn, Sr, Ba and Pb) glasses, J. Ceram. Soc. Jpn. 107, 395–402 (1999)CrossRefGoogle Scholar
  109. S. Sakida, S. Hayakawa, T. Yoko: 125Te, 27Al, and 71Ga NMR study of M2O3–TeO2 (M = Al and Ga) glasses, J. Am. Ceram. Soc. 84, 836–842 (2001)CrossRefGoogle Scholar
  110. T. Nishida, M. Yamada, H. Ide, Y. Takashima: Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses, J. Mater. Sci. 25, 3546–3550 (1990)CrossRefGoogle Scholar
  111. K.J. Rao, M.H. Bhat: Investigation of lithium chloride–lithium borate–tellurium dioxide glasses: An example of complex anionic speciation, Phys. Chem. Glasses 42, 255–264 (2001)Google Scholar
  112. M.H. Bhat, M. Kandavel, M. Ganguli, K.J. Rao: Li+ ion conductivities in borotellurite glasses, Bull. Mater. Sci. 27, 189–198 (2004)CrossRefGoogle Scholar
  113. M. Arnaudov, V. Dimitrov, Y. Dimitriev, L. Markova: Infrared spectral investigation of tellurites, Mater. Res. Bull. 17, 1121–1129 (1982)CrossRefGoogle Scholar
  114. R. Akagi, K. Handa, N. Ohtori, A.C. Hannon, M. Tatsumisago, N. Umesaki: High-temperature structure of K2O–TeO2 glasses, J. Non-Cryst. Solids 256/257, 111–118 (1999)CrossRefGoogle Scholar
  115. M. Çelikbilek, A.E. Ersundu, S. Aydin: Preparation and characterization of TeO2–WO3–Li2O glasses, J. Non-Cryst. Solids 378, 247–253 (2015)CrossRefGoogle Scholar
  116. T. Komatsu, T. Moguchi, Y. Benino: Heat capacity changes and structural relaxation at glass transition in mixed-alkali tellurite glasses, J. Non-Cryst. Solids 222, 206–211 (1997)CrossRefGoogle Scholar
  117. K. Putz, P.F. Green: Fragility of mixed alkali tellurites, J. Non-Cryst. Solids 337, 254–260 (2004)CrossRefGoogle Scholar
  118. S.B. Kang, M.H. Kwak, B.J. Park, S. Kim, H.-C. Ryu, D.C. Chung, S.Y. Jeong, D.W. Kang, S.K. Choi, M.C. Paek, E.-J. Cha, K.Y. Kang: Optical and dielectric properties of chalcogenide glasses at terahertz frequencies, ETRI Journal 31(6), 667–674 (2009)CrossRefGoogle Scholar
  119. E.P.J. Parrott, J.A. Zeitler, L.F. Gladden, S.N. Taraskin, S.R. Elliott: Extracting accurate optical parameters from glasses using terahertz time-domain spectroscopy, J. Non-Cryst. Solids 355, 1824–1827 (2009)CrossRefGoogle Scholar
  120. S.K. Sundaram, B.J. Riley, J.V. Crum: Terahertz transmission spectroscopy of chalcogenide glasses. In: Proc. IEEE IRMMW-THz, Pasadena (2008)Google Scholar
  121. J.S. McCloy, B.J. Riley, S.K. Sundaram, H.A. Qiao, J.V. Crum, B.R. Johnson: Structure-optical property correlations of arsenic sulfide glasses in visible, infrared, and sub-millimeter regions, J. Non-Cryst. Solids 356, 1288–1293 (2010)CrossRefGoogle Scholar
  122. C. Yatongchai, A.W. Wren, S.K. Sundaram: Characterization of hydroxyapatite-glass composites using terahertz time-domain spectroscopy, J. Infrared Millim. Terahertz Waves 36, 81–93 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Inamori School of EngineeringAlfred UniversityAlfred, NYUSA

Personalised recommendations