Bioactive Glasses

  • Leena HupaEmail author
  • Xiaoju Wang
  • Siamak Eqtesadi
Part of the Springer Handbooks book series (SHB)


This chapter summarizes the development of bioactive glasses as implant materials designed to interfacially bond with bone tissue as components of tissue engineering devices that activate and guide the healing and regeneration of damaged or diseased soft and hard tissue. The main ideas and findings of the almost \({\mathrm{50}}\,{\mathrm{year}}\) history of bioactive glasses are discussed, with the main emphasis on the melt-derived silicate-based glasses in clinical use today. In addition, sol–gel glasses and also phosphate and borate glass compositions are introduced. The goal is to cover some fundamental concepts to be taken into account in the development of products consisting of bioactive glasses:
  1. 1.

    Their characterization in vivo and in vitro

  2. 2.

    Clinical experiences and physical properties to be taken into account in the fabrication of the end products

  3. 3.

    In particular, bioactive glass-based scaffolds for tissue engineering.


The development of bioactive glasses will be discussed from the materials science point of view. However, one important goal is to explain the various requirements of bioactive glasses due to their special application areas—implantation inside or in contact with the human body.


  1. L.L. Hench, D.C. Greenspan: Interactions between bioactive glass and collagen: A review and new perspectives, J. Aust. Ceram. Soc. 2, 1–40 (2013)Google Scholar
  2. L.L. Hench: The story of bioglass, J. Mater. Sci. Mater. Med. 17, 967–978 (2006)CrossRefGoogle Scholar
  3. D.F. Williams: On the nature of biomaterials, Biomaterials 30, 5897–5909 (2009)CrossRefGoogle Scholar
  4. J.R. Jones: Review of bioactive glass: From Hench to hybrids, Acta Biomater. 9, 4457–4486 (2013)CrossRefGoogle Scholar
  5. J.R. Jones, D.S. Brauer, L. Hupa, D.C. Greenspan: Bioglass and bioactive glasses and their impact on healthcare, Int. J. Appl. Glass Sci. 7, 423–434 (2016)CrossRefGoogle Scholar
  6. M. Brink: The influence of alkali and alkaline earths on the working range for bioactive glasses, J. Biomed. Mater. Res. 36, 109–117 (1997)CrossRefGoogle Scholar
  7. Ö.H. Andersson, K.H. Karlsson, K. Kangasniemi: Calcium phosphate formation at the surface of bioactive glass in vivo, J. Non-Cryst. Solids 119, 290–296 (1990)CrossRefGoogle Scholar
  8. A. Hoppe, N.S. Güldal, A.R. Boccaccini: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials 32, 2757–2774 (2011)CrossRefGoogle Scholar
  9. V. Miguez-Pacheco, L.L. Hench, A.R. Boccaccini: Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues, Acta Biomater. 13, 1–15 (2015)CrossRefGoogle Scholar
  10. K. Franks, I. Abrahams, J.C. Knowles: Development of soluble glasses for biomedical use. Part I: In vitro solublity measurments, J. Mater. Sci. Mater. Med. 11, 609–614 (2000)CrossRefGoogle Scholar
  11. E.A. Abou Neel, D.M. Pickup, S.P. Valappil, R.J. Newport, J.C. Knowles: Bioactive functional materials: A perspective on phosphate-based glasses, J. Mater. Chem. 19, 690–701 (2009)CrossRefGoogle Scholar
  12. Q. Fu, M.N. Rahaman, H. Fu, X. Liu: Silicate, borosilicate and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation, J. Biomed. Mater. Res. A 95, 164–171 (2010)CrossRefGoogle Scholar
  13. M.N. Rahaman, D. Day, B.S. Bal, Q. Fu, S.B. Jung, L.F. Bonewald, A.P. Tomsia: Bioactive glass in tissue engineering, Acta Biomater. 7, 2355–2373 (2011)CrossRefGoogle Scholar
  14. H.O. Ylänen (Ed.): Bioactive Glasses: Materials, Properties and Applications (Woodhead, Cambridge 2011)Google Scholar
  15. J.R. Jones, A.G. Clare (Eds.): Bio-Glasses: An Introduction (Wiley, Chichester 2012)Google Scholar
  16. L.L. Hench (Ed.): An Introduction to Bioceramics, 2nd edn. (Imperical College Press, London 2013)Google Scholar
  17. A.R. Boccaccini, D.S. Brauer, L. Hupa (Eds.): Bioactive Glasses: Fundamentals, Technology and Applications (Royal Society of Chemistry, Cambridge 2017)Google Scholar
  18. L.L. Hench, D.E. Clark: Physical chemistry of glass surfaces, J. Non-Cryst. Solids 28, 83–105 (1978)CrossRefGoogle Scholar
  19. L.L. Hench: Genetic design of bioactive glass, J. Eur. Ceram. Soc. 29, 1257–1265 (2009)CrossRefGoogle Scholar
  20. K. Chol, L.J. Kuhn, M.J. Ciarelli, S.A. Goldstein: The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus, J. Biomech. 23, 1103–1113 (1990)CrossRefGoogle Scholar
  21. S. Weiner, H.D. Wagner: The material bone: Structure-mechanical function relations, Ann. Rev. Mater. Sci. 28, 271–298 (1998)CrossRefGoogle Scholar
  22. D.T. Reilly, A.H. Burstein: The mechanical properties of cortical bone, J. Bone Joint. Surg. Am. 56, 1001–1022 (1974)CrossRefGoogle Scholar
  23. T.M. Keaveny, E.F. Morgan, O.C. Yeh: Bone mechanics. In: Standard Handbook of Biomedical Engineering and Design, ed. by M. Kutz (McGraw-Hill, New York 2003)Google Scholar
  24. K. Arvidson, B.M. Abdallah, L.A. Applegate, N. Baldini, E. Cenni, E. Gomez-Barrena, D. Granchi, M. Kassem, Y.T. Konttinen, K. Mustafa, D.P. Pioletti, T. Sillat, A. Finne-Wistrand: Bone regeneration and stem cells, J. Cell. Mol. Med. 15, 718–746 (2011)CrossRefGoogle Scholar
  25. S. Ramakrishna, J. Mayer, E. Wintermantel, K.W. Leong: Biomedical applications of polymer-composite materials: A review, Compos. Sci. Technol. 61, 1189–1224 (2001)CrossRefGoogle Scholar
  26. L.C. Gerhardt, A.R. Boccaccini: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials 3, 3867–3910 (2010)CrossRefGoogle Scholar
  27. L.L. Hench: The skeletal system. In: Biomaterials, Artificial Organs and Tissue Engineering, ed. by L.L. Hench, J.R. Jones (CRC, Boca Raton 2005)Google Scholar
  28. D.R. Carter, G.H. Schwab, D.M. Spengler: Tensile fracture of cancellous bone, Acta Orthop. Scand. 51, 733–741 (1980)CrossRefGoogle Scholar
  29. T.M. Keaveny, W.C. Hayes: Mechanical properties of cortical and trabecular bone. In: Bone, Vol. 7, ed. by B.K. Hall (CRC, Boca Raton 1993) pp. 285–344Google Scholar
  30. L.L. Hench: Bioceramics: From concept to clinic, J. Am. Ceram. Soc. 74, 1487–1510 (1991)CrossRefGoogle Scholar
  31. V. Mouriño, J.P. Cattalini, A.R. Boccaccini: Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments, J. R. Soc. Interface 9, 401–419 (2012)CrossRefGoogle Scholar
  32. L.L. Hench: Sol-gel materials for bioceramic applications, Curr. Opin. Solid State Mater. Sci. 2, 604–610 (1997)CrossRefGoogle Scholar
  33. A.R. Boccaccini, J.J. Blaker: Bioactive composite materials for tissue engineering scaffolds, Expert Rev. Med. Devices 2, 303–317 (2005)CrossRefGoogle Scholar
  34. P. Saravanapavan, J.R. Jones, R.S. Pryce, L.L. Hench: Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O), J. Biomed. Mater. Res. A 66, 110–119 (2003)CrossRefGoogle Scholar
  35. I. Elgayar, A.E. Aliev, A.R. Boccaccini, R.G. Hill: Structural analysis of bioactive glasses, J. Non-Cryst. Solids 351, 173–183 (2005)CrossRefGoogle Scholar
  36. D.S. Brauer: Bioactive glasses-structure and properties, Angew. Chem. Int. Ed. 54, 4160–4181 (2015)CrossRefGoogle Scholar
  37. A. Tilocca: Current challenges in atomistic simulations of glasses for biomedical applictions, Phys. Chem. Chem. Phys. 16, 3874–3880 (2014)CrossRefGoogle Scholar
  38. J.K. Christie, R.I. Ainsworth, N.H. De Leeuw: Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses, Biomaterials 35, 6164–6171 (2014)CrossRefGoogle Scholar
  39. R.G. Hill, D.S. Brauer: Predicting the bioactivity of glasses using the network connectivity or split network models, J. Non-Cryst. Solids 357, 3884–3887 (2011)CrossRefGoogle Scholar
  40. M. Edén: The split network analysis for exploring composition-structure correlations in multi-component glasses: I. Rationalizing bioactivity-composition trends of bioglasses, J. Non-Cryst. Solids 357, 1595–1602 (2011)CrossRefGoogle Scholar
  41. A.L.B. Macon: A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants, J. Mater. Sci. Mater. Med. 26, 1–10 (2015)CrossRefGoogle Scholar
  42. I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution, J. Biomed. Mater. Res. 55, 151–157 (2001)CrossRefGoogle Scholar
  43. I.D. Xynos, M.V.J. Hukkanen, J.J. Batten, L.D. Buttery, L.L. Hench, J.M. Polak: Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering, Calcif. Tissue Int. 67, 321–329 (2000)CrossRefGoogle Scholar
  44. G. Jell, M.M. Stevens: Gene activation by bioactive glasses, J. Mater. Sci. Mater. Med. 17, 997–1002 (2006)CrossRefGoogle Scholar
  45. A. Hoppe, V. Mouriño, A.R. Boccaccini: Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond, Biomater. Sci. 1, 254 (2013)CrossRefGoogle Scholar
  46. R.M. Day: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro, Tissue Eng. 11, 768–777 (2005)CrossRefGoogle Scholar
  47. P. Stoor, E. Söderling, J.I. Salonen: Antibacterial effects of a bioactive glass paste on oral microorganisms, Acta Odontol. Scand. 56, 161–165 (1998)CrossRefGoogle Scholar
  48. I. Allan, H. Newman, M. Wilson: Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria, Biomaterials 22, 1683–1687 (2001)CrossRefGoogle Scholar
  49. E. Munukka, O. Leppäranta, M. Korkeamäki, M. Vaahtio, T. Peltola, D. Zhang, L. Hupa, H. Ylänen, J.I. Salonen, M.K. Viljanen, E. Eerola: Bactericidal effects of bioactive glasses on clinically important aerobic bacteria, J. Mater. Sci. Mater. Med. 19, 27–32 (2008)CrossRefGoogle Scholar
  50. D. Zhang, O. Leppaeranta, E. Munukka, H. Ylaenen, M.K. Viljanen, E. Eerola, M. Hupa, L. Hupa: Antibacterial effects and dissolution behavior of six bioactive glasses, J. Biomed. Mater. Res. A 93, 475–483 (2010)Google Scholar
  51. D.S. Brauer, N. Karpukhina, M.D. O'Donnell, R.V. Law, R.G. Hill: Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid, Acta Biomater. 6, 3275–3282 (2010)CrossRefGoogle Scholar
  52. Ö.H. Andersson, G.Z. Liu, K.H. Karlsson, L. Niemi, J. Miettinen, J. Juhanoja: In vivo behavior of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system, J. Mater. Sci. Mater. Med. 1, 219–227 (1990)CrossRefGoogle Scholar
  53. M. Brink, T. Turunen, R. Happonen, A. Yli-Urpo: Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2, J. Biomed. Mater. Res. 37, 114–121 (1997)CrossRefGoogle Scholar
  54. Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia: Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives, Mater. Sci. Eng. C 31, 1245–1256 (2011)CrossRefGoogle Scholar
  55. R.F. Brown, D.E. Day, T.E. Day, S. Jung, M.N. Rahaman, Q. Fu: Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibres and scaffolds, Acta Biomater. 4, 387–396 (2008)CrossRefGoogle Scholar
  56. Q. Fu, M.N. Rahaman, B.S. Bal, R.F. Brown, D.E. Day: Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique, Acta Biomater. 4, 1854–1864 (2008)CrossRefGoogle Scholar
  57. X. Liu, M.N. Rahaman, G.E. Hilmas, B.S. Bal: Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair, Acta Biomater. 9, 7025–7034 (2013)CrossRefGoogle Scholar
  58. X. Liu, M.N. Rahaman, Q. Fu: Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects, Acta Biomater. 9, 4889–4898 (2013)CrossRefGoogle Scholar
  59. H. Arstila, E. Vedel, L. Hupa, M. Hupa: Predicting physical and chemical properties of bioactive glasses from chemical composition. Part 2: Devitrification characteristics, Glass Technol. Eur. J. Glass Sci. Technol. A 49, 260–265 (2008)Google Scholar
  60. S. Fagerlund, J. Massera, N. Moritz, L. Hupa, M. Hupa: Phase composition and in vitro bioactivity of porous implants made of bioactive glass S53P4, Acta Biomater. 8, 2331–2339 (2012)CrossRefGoogle Scholar
  61. J. Massera, S. Fagerlund, L. Hupa, M. Hupa: Crystallization mechanism of the bioactive glasses 45S5 and S53P4, J. Am. Ceram. Soc. 95, 607–613 (2012)CrossRefGoogle Scholar
  62. S. Fagerlund, J. Massera, L. Hupa, M. Hupa: T–T–T behaviour of bioactive glasses 1–98 and 13–93, J. Eur. Ceram. Soc. 32, 2731–2738 (2012)CrossRefGoogle Scholar
  63. Q.Z. Chen, I.D. Thompson, A.R. Boccaccini: 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials 27, 2414–2425 (2006)CrossRefGoogle Scholar
  64. S. Eqtesadi, A. Motealleh, P. Miranda, A. Pajares, A. Lemos, J.M.F. Ferreira: Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering, J. Eur. Ceram. Soc. 34, 107–118 (2014)CrossRefGoogle Scholar
  65. M. O'Donnnell: Predicting bioactive glass properties from the molecular chemical composition: Glass transition temperature, Acta Biomater. 7, 2264–2269 (2011)CrossRefGoogle Scholar
  66. C. Duée, F. Désanglois, I. Lebecq, C. Follet-Houttemane: Predicting glass transition and crystallization temperatures of silicate bioglasses using mixture designs, J. Non-Cryst. Solids 358, 1083–1090 (2012)CrossRefGoogle Scholar
  67. E. Vedel, H. Arstila, H. Ylänen, L. Hupa, M. Hupa: Predicting physical and chemical properties of bioactive glasses from chemical composition. Part 1. Viscosity characteristics, Glass Technol. Eur. J. Glass Sci. Technol. A 49, 251–259 (2008)Google Scholar
  68. N. Loftibakhshaiesh, D.S. Brauer, R.G. Hill: Bioactive glass engineered coatings for Ti6Al4V alloys: Influence of strontium substitution for calcium on sintering behaviour, J. Non-Cryst. Solids 356, 2583–2590 (2010)CrossRefGoogle Scholar
  69. J. Massera, L. Hupa: Influence of SrO substitution for CaO on the properties of bioactive glass S53P4, J. Mater. Sci. Mater. Med. 25, 657–668 (2014)CrossRefGoogle Scholar
  70. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, Y. Yamamoto: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W, J. Biomed. Mater. Res. 24, 721–734 (1990)CrossRefGoogle Scholar
  71. R.A. Durst, B.R. Staples: Tris/Tris HCl: A standard buffer for use in the physiologic pH range, Clin. Chem. 18, 206–208 (1972)Google Scholar
  72. D. Bellucci, G. Bolelli, V. Cannillo, A. Cattini, A. Sola: In situ Raman spectroscopy investigation of bioactive glass reactivity: Simulated body fluid solution vs TRIS-buffered solution, Mater. Charact. 6, 1021–1028 (2012)Google Scholar
  73. L. Hupa, K. Karlsson, H. Aro, M. Hupa: Comparison of in vitro and in vivo reactions of bioactive glasses, Glass Technol. Eur. J. Glass Sci. Technol. A 51, 89–92 (2010)Google Scholar
  74. L. Varila, S. Fagerlund, L. Hupa, T. Lehtonen, J. Tuominen: Surface reactions of bioactive glasses in buffered solutions, J. Eur. Ceram. Soc. 32, 2757–2763 (2012)CrossRefGoogle Scholar
  75. D. Zhang, M. Hupa, L. Hupa: In situ pH within particle beds of bioactive glasses, Acta Biomater. 4, 1498–14505 (2008)CrossRefGoogle Scholar
  76. A. Rámila, M. Vallet-Regí: Static and dynamic in vitro study of a sol-gel glass bioactivity, Biomaterials 22, 2301–2306 (2001)CrossRefGoogle Scholar
  77. A.H. De Aza, P. Velásquez, M.I. Alemany, P. Pena, P.N. De Aza: In situ bone-like apatite formation from a bioeutectic ceramic in SBF dynamic flow, J. Am. Ceram. Soc. 90, 1200–1207 (2007)CrossRefGoogle Scholar
  78. Y. Duan, Z. Zhang, C. Wang, J. Chen, X. Zhang: Dynamic study of calcium phosphate formation on porous HA/TCP ceramics, J. Mater. Sci. Mater. Med. 16, 795–801 (2005)CrossRefGoogle Scholar
  79. S. Fagerlund, P. Ek, L. Hupa, M. Hupa: Dissolution kinetics of bioactive glass by continuous measurement, J. Am. Ceram. Soc. 95, 3130–3137 (2012)CrossRefGoogle Scholar
  80. S. Fagerlund, L. Hupa, M. Hupa: Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer, Acta Biomater. 9, 5400–5410 (2013)CrossRefGoogle Scholar
  81. A. Itälä, J. Koort, H.O. Ylänen, M. Hupa, H.T. Aro: Biologic significance of surface microroughing in bone incorporation of porous bioactive glass implants, J. Biomed. Mater. Res. A 67, 496–503 (2003)CrossRefGoogle Scholar
  82. L. Hupa, S. Fagerlund, J. Massera, L. Björkvik: Dissolution behaviour of the bioactive glass S53P4 when sodium is replaced by potassium, and calcium with magnesium or strontium, J. Non-Cryst. Solids 432, 41–46 (2016)CrossRefGoogle Scholar
  83. M. Blochberger, L. Hupa, D.S. Brauer: Influence of zinc and magnesium substitution on ion release from Bioglass® 45S5 at physiological and acidic pH, Biomed. Glasses 1, 106–120 (2015)CrossRefGoogle Scholar
  84. R. Brückner, M. Tylkowski, L. Hupa, D.S. Brauer: Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume, J. Mater. Chem. B. 4, 3121–3134 (2016)CrossRefGoogle Scholar
  85. L. Varila, T.J. Lehtonen, J.U. Tuominen, M. Hupa, L. Hupa: In vitro behaviour of three biocompatible glasses in composite implants, J. Mater. Sci. Mater. Med. 23, 2425–2435 (2012)CrossRefGoogle Scholar
  86. T.J. Lehtonen, J.U. Tuominen, E. Hiekkanen: Dissolution behavior of high strength bioresorbable glass fibers manufactured by continuous fiber drawing, J. Mech. Behav. Biomed. Mater. 20, 376–386 (2013)CrossRefGoogle Scholar
  87. T.J. Lehtonen, J.U. Tuominen, E. Hiekkanen: Resorbable composites with bioresorbable glass fibers for load-bearing applications. In vitro degradation and degradation mechanism, Acta Biomater. 9, 4868–4877 (2013)CrossRefGoogle Scholar
  88. A.R. Boccaccini, J.R. Jones, Q.-Z. Chen: Composites containing bioactive glass. In: Bio-glasses: An introduction, ed. by J.R. Jones, A.G. Clare (Wiley, Chichester 2012) pp. 121–138CrossRefGoogle Scholar
  89. T. Niemelä, M. Kellomäki: Bioactive glass and biodegradable polymer composites. In: Bioactive Glasses: Materials, Properties and Applications, ed. by H.O. Ylänen (Woodhead, Cambridge 2011) pp. 227–245CrossRefGoogle Scholar
  90. P. Griss, D.C. Greenspan, G. Heimke, B. Krempien, R. Buchiner, L.L. Hench, G. Jentschura: Evaluation of a bioglass-coated Al2O3 total hip prosthesis in sheep, J. Biomed. Mater. Res. 10, 511–518 (1976)CrossRefGoogle Scholar
  91. S. Lindgren, T. Pänkälainen, J. Lucchesi, F. Ollila: Regulatory aspects of bioactive glass. In: Bioactive Glasses: Materials, Properties and Applications, ed. by H.O. Ylänen (Woodhead, Cambridge 2011) pp. 85–103CrossRefGoogle Scholar
  92. R. Li, A.E. Clark, L.L. Hench: An investigation of bioactive glass powders by sol-gel processing, J. Appl. Biomater. 2, 231–239 (1991)CrossRefGoogle Scholar
  93. M.M. Pereira, A.E. Clark, L.L. Hench: Homogeneity of bioactive sol-gel-derived glasses in the system CaO-P2O5-SiO2, J. Mater. Synth. Proc. 2, 189–196 (1994)Google Scholar
  94. J.P. Zhang, D.C. Greenspan: Porous sol-gel Bioglass from near-equilibrium drying. In: Bioceramics, ed. by L. Sedel, C. Rey (Elsevier, New York 1997) pp. 265–268Google Scholar
  95. J. Faure, R. Drevet, A. Lemelle, N.B. Jaber, A. Tara, H. El Btaouri, H. Benhayoune: A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst, Mater. Sci. Eng. C 47, 407–412 (2015)CrossRefGoogle Scholar
  96. K. Zheug, A.R. Boccaccini: Sol-gel processing of bioactive glass nanoparticles: A review, Adv. Colloid Interface Sci. 249, 363–373 (2017)CrossRefGoogle Scholar
  97. L.L. Hench, J.K. West: The sol-gel process, Chem. Rev. 90, 33–72 (1990)CrossRefGoogle Scholar
  98. D. Arcos, M. Vallet-Regí: Sol-gel silica-based biomaterials and bone tissue engineering, Acta Biomater. 6, 2874–2888 (2010)CrossRefGoogle Scholar
  99. J.P. Zhang, D.C. Greenspan: Processing and properties of sol-gel bioactive glasses, J. Biomed. Mater. Res. 53, 694–701 (2000)CrossRefGoogle Scholar
  100. M. Veiseh, E.A. Turley, M.J. Bissell: Top-down analysis of a dynamic environment: Extracellular matrix structure and function. In: Nanotechnology and Tissue Engineering: The Scaffold, ed. by C.T. Laurencin, L.S. Nair (CRC, Boca Raton 2008) pp. 33–51CrossRefGoogle Scholar
  101. D. Kozon, K. Zheng, E. Boccardi, Y. Liu, L. Lierani, A.R. Boccaccini: Synthesis of monodispersed Ag-doped bioactive glass nanoparticles via surface modification, Materials 9, 225 (2016)CrossRefGoogle Scholar
  102. K. Zheng, X. Dai, M. Lu, N. Hüser, N.A.R. Taccardi: Boccaccini: Synthesis of copper containing bioactive glass nanoparticles using a modified Stöber method for biomedical application, Colloids Surf. B 150, 159–167 (2017)CrossRefGoogle Scholar
  103. A.A.R. de Oliveira, S.M. de Carvalho, M. de Fátima Leite, R.L. Oréfice, M.M. Pereira: Development of biodegradable polyurethane and bioactive glass nanoparticles scaffolds for bone tissue engineering applications, J. Biomed. Mater. Res. Part B 100, 1387–1396 (2012)CrossRefGoogle Scholar
  104. Z. Hong, A. Liu, L. Chen, X. Chen, X. Jing: Preparation of bioactive glass ceramic nanoparticles by combination of sol-gel and coprecipitation method, J. Non-Cryst. Solids 355, 368–372 (2009)CrossRefGoogle Scholar
  105. H.-W. Kim, H.-W. Kim, J.C. Knowles: Production and potential of bioactive glass nanofibers as a next generation biomaterial, Adv. Funct. Mater. 16, 1529–1535 (2006)CrossRefGoogle Scholar
  106. G. Poologasundarampillai, D. Wang, S. Li, J. Nakamura, R. Bradley, P.D. Lee, M.M. Stevens, D.S. McPhail, T. Kasuga, J.R. Jones: Cotton-wool-like bioactive glasses for bone regeneration, Acta Biomater. 10, 3733–3746 (2014)CrossRefGoogle Scholar
  107. X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivity, Angew. Chem. Int. Ed. 43, 5980–5984 (2004)CrossRefGoogle Scholar
  108. D. Acros, M. Valllet-Regí: Sol-gel silica based biomaterials and bone tissue regeneration, Acta Biomater. 6, 2874–2888 (2010)CrossRefGoogle Scholar
  109. C. Wu, J. Chang, Y. Xiao: Mesoporous bioactive glasses for drug delivery and bone tissue regeneration. In: Advanced Bioactive Inorganic Materials for Bone Regeneration and Drug Delivery, ed. by C. Wu, J. Chang, Y. Xiao (CRC, Boca Raton 2013)CrossRefGoogle Scholar
  110. A. Lopez-Noriega, D. Arcos, I. Izquierdo-Barba, Y. Sakamoto, O. Terasaki, M. Vallet-Regi: Ordered mesoporous bioactive glasses for bone tissue regeneration, Chem. Mater. 18, 3137–3144 (2006)CrossRefGoogle Scholar
  111. Y. Zhu, C. Wu, Y. Ramaswamy, E. Kockrick, P. Simon, S. Kaskel, H. Zreiqat: Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering, Microporous Mesoporous Mater. 12, 494–503 (2008)CrossRefGoogle Scholar
  112. S. Shruti, A.J. Salinas, G. Lusvardi, G. Malavasi, L. Menabue: Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses, Acta Biomater. 9, 4836–4844 (2013)CrossRefGoogle Scholar
  113. I. Izquierdo-Barba, D. Arcos, Y. Sakamoto, O. Terasaki, A. Lopez-Noriega, M. Vallet-Regi: High-performance mesoporous bioceramics mimicking bone mineralization, Chem. Mater. 20, 3191–3198 (2008)CrossRefGoogle Scholar
  114. M. Alcaide, P. Portoles, A. Lopez-Noriega, D. Arcos, M. Vallet-Regi, M.T. Portoles: Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material, Acta Biomater. 6, 892–899 (2010)CrossRefGoogle Scholar
  115. C. Wu, J. Chang: Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors, J. Control. Release 193, 282–295 (2014)CrossRefGoogle Scholar
  116. A. El-Fiqi, J.-H. Kim, H.-W. Kim: Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug, ACS Appl. Mater. Interfaces 7, 1140–1152 (2015)CrossRefGoogle Scholar
  117. M. Kang, J.-H. Kim, R. Singh, J.-H. Jang, H.-W. Kim: Therapeutic-designed electrospun bone scaffolds: Mesoporous bioactive nanocarriers in hollow fiber composites to sequentially delivery dual growth factors, Acta Biomater. 16, 103–116 (2015)CrossRefGoogle Scholar
  118. X. Li, X. Wang, D. He, J. Shi: Synthesis and characterization of mesoporous CaO-MO-SiO2-P2O5 (M $$=$$ Mg, Zn, Cu) bioactive glasses/composites, J. Mater. Chem. 18, 4103–4109 (2008)CrossRefGoogle Scholar
  119. A.J. Salina, S. Shruti, G. Malavasi, L. Menabue, M. Vallet-Regí: Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glass, Acta Biomater. 7, 3452–3458 (2011)CrossRefGoogle Scholar
  120. Y. Zhu, Y. Zhang, C. Wu, Y. Fang, J.S. Yang: Wang: The effect of zirconium incorporation on the physiochemical and biological properties of mesoporous bioactive glasses scaffolds, Microporous Mesoporous Mater. 143, 311–319 (2011)CrossRefGoogle Scholar
  121. H. Palza, B. Escobar, J. Bejarano, D. Bravo, M. Diaz-Dosque, J. Perez: Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol-gel methods, Mater. Sci. Eng. C 33, 3795–3801 (2013)CrossRefGoogle Scholar
  122. C. Wu, Y.X.M. Zhou, P. Han, L. Chen, J. Chang, Y. Xiao: Copper containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials 34, 422–433 (2013)CrossRefGoogle Scholar
  123. J. Ye, J. He, C. Wang, K. Yao, Z. Gou: Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity, Biotechnol. Lett. 36, 961–968 (2014)CrossRefGoogle Scholar
  124. X. Wang, F. Cheng, J. Liu, J.-H. Smått, D. Gepperth, M. Lastusaari, C. Xu, L. Hupa: Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing, Acta Biomater. 46, 286–298 (2016)CrossRefGoogle Scholar
  125. S. Pourshahrestani, E. Zeimaran, N.A. Kadri, N. Gargiulo, S. Samuel, S.V. Naveen, T. Kamarul, M.R. Towler: Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy, J. Mater. Chem. B 4, 71–86 (2016)CrossRefGoogle Scholar
  126. L. Wei, J. Ke, I. Prasadam, R.J. Miron, S. Lin, Y. Xiao, J. Chang, C. Xu, Y. Zhang: A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects, Osteoporos Int. 25, 2089–2096 (2014)CrossRefGoogle Scholar
  127. S. Zhao, J. Zhang, M. Zhu, Y. Zhang, Z. Liu, C. Tao, Y. Zhu, C. Zhang: Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds in osteoporotic rat, PLoS ONE 9, e104527 (2014)CrossRefGoogle Scholar
  128. V. Salih, K. Franks, M. James, G.W. Hastings, J.C. Knowles, I. Olsen: Development of soluble glasses for biomedical use. Part II: The biological response of human osteoblast cell lines to phosphate-based soluble glasses, J. Mater. Sci. Mater. Med. 11, 615–620 (2000)CrossRefGoogle Scholar
  129. I. Ahmed, M. Lewis, I. Olsen, J.C. Knowles: Phosphate glasses for tissue engineering: Part 1. Processing and characterization of a ternary-based P2O5-CaO-Na2O glass system, Biomaterials 25, 491–499 (2004)CrossRefGoogle Scholar
  130. I. Ahmed, M. Lewis, I. Olsen, J.C. Knowles: Phosphate glasses for tissue engineering: Part 2. Processing and characterization of a ternary-based P2O5-CaO-Na2O glass fibre system, Biomaterials 3, 501–507 (2004)CrossRefGoogle Scholar
  131. K. Franks, V. Salih, J.C. Knowles, I. Olsen: The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system, J. Mater. Sci. Mater. Med. 13, 549–556 (2002)CrossRefGoogle Scholar
  132. E. Bonnelye, A. Chabadel, F. Saltel, P. Jurdic: Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro, Bone 42, 129–138 (2008)CrossRefGoogle Scholar
  133. J. Massera, L. Petit, T. Cardinal, J.J. Videau, M. Hupa, L. Hupa: Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses, J. Mater. Sci. Mater. Med. 24, 1407–1416 (2013)CrossRefGoogle Scholar
  134. J. Massera, A. Kokkari, T. Närhi, L. Hupa: The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts, J. Mater. Sci. Mater. Med. 26, 196 (2015)CrossRefGoogle Scholar
  135. V. Rajendran, G. Rajkumar, S. Aravindan, B. Saravanakumar: Analysis of physical properties and hydroxyapatite precipitation in vitro of TiO2-containing phosphate-based glass systems, J. Am. Ceram. Soc. 93, 4053–4060 (2010)CrossRefGoogle Scholar
  136. N.J. Lakhkar, I.-H. Lee, H.-W. Kim, V. Salih, I.B. Wall, J.C. Knowles: Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses, Adv. Drug Deliv. Rev. 65, 405–420 (2013)CrossRefGoogle Scholar
  137. E.A. Abou Neel, I. Ahmed, J. Pratten, S.N. Nazhat, J.C. Knowles: Characterisation of antibacterial copper releasing degradable phosphate glass fibers, Biomaterials 26, 2247–2254 (2005)CrossRefGoogle Scholar
  138. J.K. Christie, R.I. Ainsworth, N.H. de Leeuw: Investigating structural features which control the dissolution of bioactive phosphate glasses: Beyond the network connectivity, J. Non-Cryst. Solids 432, 31–34 (2016)CrossRefGoogle Scholar
  139. A. Patel, J.C. Knowles: Investigation of silica-iron-phosphate glasses for tissue engineering, J. Mater. Sci. Mater. Med. 17, 973–944 (2006)CrossRefGoogle Scholar
  140. D. Sriranganathan, N. Kanwal, K.A. Hing, R.G. Hill: Strontium substituted bioactive glasses for tissue engineered scaffolds: The importance of octacalcium phosphate, J. Mater. Sci. Mater. Med. 27, 39 (2016)CrossRefGoogle Scholar
  141. W. Huang, D.E. Day, K. Kittiratanapiboon, M.N. Rahaman: Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions, J. Mater. Sci. Mater. Med. 17, 583–596 (2006)CrossRefGoogle Scholar
  142. A. Yao, D. Wang, W. Huang, Q. Fu, M.N. Rahaman: In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior, J. Am. Ceram. Soc. 90, 303–306 (2007)CrossRefGoogle Scholar
  143. A. Yao, D. Wang, W. Huang, Q. Fu, M.N. Rahaman: Preparation of bioactive glasses with controllable degradation behavior and their bioactive characterization, Chin. Sci. Bull. 52, 272–276 (2007)CrossRefGoogle Scholar
  144. S. Zhao, L. Li, H. Wang, Y. Zhang, X. Cheng, N. Zhou, M.N. Rahaman, Z. Liu, W. Huang, C. Zhang: Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model, Biomaterials 53, 379–391 (2015)CrossRefGoogle Scholar
  145. Q. Fu, M.N. Rahaman, B.S. Bal, L.F. Bonewald, K. Kuroki, R.F. Brown: Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation, J. Biomed. Mater. Res. A. 95, 172–179 (2010)CrossRefGoogle Scholar
  146. X. Liu, M.N. Rahaman, D.E. Day: Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid, J. Mater. Sci. Mater. Med. 24, 583–595 (2013)CrossRefGoogle Scholar
  147. J. Zhou, H. Wang, S. Zhao, N. Zhou, L. Li, W. Huang, D. Wang, C. Zhang: In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing, Mater. Sci. Eng. C 60, 437–445 (2016)CrossRefGoogle Scholar
  148. X. Liu, M.N. Rahaman, D.E. Day: In vitro degradation and conversion of melt-derived microfibrous borate (13-93B) bioactive glass doped with metal ions, J. Am. Ceram. Soc. 97, 3501–3509 (2014)CrossRefGoogle Scholar
  149. A.M. Deliormanli: Synthesis and characterisation of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering, J. Mater. Sci. Mater. Med. 26, 67 (2015)CrossRefGoogle Scholar
  150. M. Pilia, T. Guda, M. Appleford: Development of composite scaffolds for load-bearing segmental bone defects, BioMed Res. Int. 2013, 458253 (2013)CrossRefGoogle Scholar
  151. X. Chatzistavrou, P. Newby, A.R. Boccaccini: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. In: Bioactive Glasses: Materials, Properties and Applications, ed. by H.O. Ylänen (Woodhead, Cambridge 2011) pp. 107–128CrossRefGoogle Scholar
  152. H.P. Wiesmann, B. Lüttenberg, U. Meyer: Tissue engineering of bone. In: Handbook of Biomineralization: Biological Aspects and Structure Formation, ed. by E. Bäuerlein (Wiley, Weinheim 2008) pp. 145–156Google Scholar
  153. S. Pezzatini, R. Solito, L. Morbidelli, S. Lamponi, E. Boanini, A. Bigi, M. Ziche: The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions, J. Biomed. Mater. Res. A 76, 656–663 (2006)CrossRefGoogle Scholar
  154. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 27, 3413–3431 (2006)CrossRefGoogle Scholar
  155. D.W. Hutmacher: Scaffold design and fabrication technologies for engineering tissues—State of the art and future perspectives, J. Biomater. Sci. Polym. Ed. 12, 107–124 (2001)CrossRefGoogle Scholar
  156. A. Itälä, V.V. Välimäki, R. Kiviranta, H.O. Ylänen, M. Hupa, E. Vuorio, H.T. Aro: Molecular biologic comparison of new bone formation and resporption on microrough and smooth bioactive glass microspheres, J. Biomed. Mater. Res. B 65, 163–170 (2003)CrossRefGoogle Scholar
  157. L. Fröberg, L. Hupa, M. Hupa: Porous bioactive glasses with controlled mechanical strength, Key Eng. Mater. 973–976, 254–256 (2004)Google Scholar
  158. R.A. Martin, S. Yue, J.V. Hanna, P.D. Lee, R.J. Newport, M.E. Smith, J.R. Jones: Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration, Philos. Trans. R. Soc. A 370, 1422–1443 (2011)CrossRefGoogle Scholar
  159. P. Sepulveda, L.L. Hench: Bioactive hierarchical structures for genetic control of bone morphogenesis, Mater. Res. 5, 243–246 (2002)CrossRefGoogle Scholar
  160. J.R. Jones, S. Ahir, L.L. Hench: Large-scale production of 3-D bioactive glass macroporous scaffolds for tissue engineering, J. Sol-Gel Sci. Technol. 29, 179–188 (2004)CrossRefGoogle Scholar
  161. J.R. Jones, L.M. Ehrenfried, L.L. Hench: Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials 27, 964–973 (2006)CrossRefGoogle Scholar
  162. J.E. Gough, J.R. Jones, L.L. Hench: Osteoblast nodule formation and mineralisation on foamed 58S bioactive glass, Key Eng. Mater. 254–256, 985–988 (2004)Google Scholar
  163. J.R. Jones, L.L. Hench: Effect of surfactant concentration and composition on the structure and properties of sol-gel-derived bioactive glass foam scaffolds for tissue engineering, J. Mater. Sci. 38, 3783–3790 (2003)CrossRefGoogle Scholar
  164. J.E. Gough, J.R. Jones, L.L. Hench: Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold, Biomaterials 25, 2039–2046 (2004)CrossRefGoogle Scholar
  165. A. Rainer, S.M. Giannitelli, F. Abbruzzese, E. Traversa, S. Licoccia, M. Trombetta: Fabrication of bioactive glass-ceramic foams mimicking human bone portions for regenerative medicine, Acta Biomater. 4, 362–369 (2008)CrossRefGoogle Scholar
  166. S. Deville, E. Saiz, A.P. Tomsia: Freeze casting of hydroxyapatite scaffolds for bone tissue engineering, Biomaterials 27, 5480–5489 (2006)CrossRefGoogle Scholar
  167. Q. Fu, M.N. Rahaman, F. Dogan, B.S. Bal: Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications, Biomed. Mater. 3, 025005 (2008)CrossRefGoogle Scholar
  168. J.H. Song, Y.H. Koh, H.E. Kim, L.H. Li, H.J. Bahn: Fabrication of a porous bioactive glass-ceramic using room-temperature freeze casting, J. Am. Ceram. Soc. 89, 2649–2653 (2006)CrossRefGoogle Scholar
  169. X. Liu, M.N. Rahaman, Q. Fu: Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response, Acta Biomater. 7, 406–416 (2011)CrossRefGoogle Scholar
  170. X. Liu, M.N. Rahaman, Q. Fu, A.P. Tomsia: Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions, Acta Biomater. 8, 415–423 (2012)CrossRefGoogle Scholar
  171. K. Schwartzwalder, A.V. Somers: Porous ceramic bodies, US Patent 3090094 (1963)Google Scholar
  172. H.R. Ramay, M. Zhang: Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods, Biomaterials 24, 3293–3302 (2003)CrossRefGoogle Scholar
  173. Y. Li, M.N. Rahaman, Q. Fu, B.S. Bal, A. Yao, D.E. Day: Conversion of bioactive borosilicate glass to multilayered hydroxyapatite in dilute phosphate solution, J. Am. Ceram. Soc. 90, 3804–3810 (2007)Google Scholar
  174. H. Fu, Q. Fu, N. Zhou, W. Huang, M.N. Rahaman, D. Wang, X. Liu: In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method, Mater. Sci. Eng. C 29, 2275–2281 (2009)CrossRefGoogle Scholar
  175. Q.Z. Chen, A. Efthymiou, V. Salih, A.R. Boccaccini: Bioglass®-derived glass-ceramic scaffolds: Study of cell proliferation and scaffold degradation in vitro, J. Biomed. Mater. Res. A 84, 1049–1060 (2008)CrossRefGoogle Scholar
  176. S. Yang, K.-F. Leong, Z. Du, C.-K. Chua: The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques, Tissue Eng. 8, 1–11 (2002)CrossRefGoogle Scholar
  177. T.S. Huang, M.N. Rahaman, N.D. Doiphode, M.C. Leu, B.S. Bal, D.E. Day, X. Liu: Porous and strong bioactive glass (13-93) scaffolds fabricated by freeze extrusion technique, Mater. Sci. Eng. C 31, 1482–1489 (2011)CrossRefGoogle Scholar
  178. W.-Y. Yeong, C.-K. Chua, K.-F. Leong, M. Chandrasekaran: Rapid prototyping in tissue engineering: Challenges and potential, Trends Biotechnol. 22, 643–652 (2004)CrossRefGoogle Scholar
  179. R. Landers, A. Pfister, U. Hübner, H. John, R. Schmelzeisen, R. Mülhaup: Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques, J. Mater. Sci. 37, 3107–3116 (2002)CrossRefGoogle Scholar
  180. S. Bose, M. Roy, A. Bandyopadhyay: Recent advances in bone tissue engineering scaffolds, Trends Biotechnol. 30, 546–554 (2012)CrossRefGoogle Scholar
  181. P.A. Webb: A review of rapid prototyping (RP) techniques in the medical and biomedical sector, J. Med. Eng. Technol. 24, 149–153 (2000)CrossRefGoogle Scholar
  182. D.W. Hutmacher, M. Sittinger, M.V. Risbud: Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems, Trends Biotechnol. 22, 354–362 (2004)CrossRefGoogle Scholar
  183. M.N. Cooke, J.P. Fisher, D. Dean, C. Rimnac, A.G. Mikos: Use of stereolithography to manufacture critical-sized 3-D biodegradable scaffolds for bone ingrowth, J. Biomed. Mater. Res. B. Appl. Biomater. 64, 65–69 (2003)CrossRefGoogle Scholar
  184. F.P.W. Melchels, J. Feijen, D.W. Grijpma: A review on stereolithography and its applications in biomedical engineering, Biomaterials 31, 6121–6130 (2010)CrossRefGoogle Scholar
  185. P. Tesavibul, R. Felzmann, S. Gruber, R. Liska, I. Thompson, A.R. Boccaccini, J. Stampfl: Processing of 45S5 Bioglass® by lithography-based additive manufacturing, Mater. Lett. 74, 81–84 (2012)CrossRefGoogle Scholar
  186. J.P. Kruth, X. Wang, T. Laoui, L. Froyen: Lasers and materials in selective laser sintering, Assembly Autom. 23, 357–371 (2003)CrossRefGoogle Scholar
  187. S. Kumar: Selective laser sintering: A qualitative and objective approach, J. Miner. Met. Mater. Soc. 55, 43–47 (2003)CrossRefGoogle Scholar
  188. J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs: Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Ann. Manuf. Technol. 56, 730–759 (2007)CrossRefGoogle Scholar
  189. K.C.R. Kolan, M.C. Leu, G.E. Hilmas, M. Velez: Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering, J. Mech. Behav. Biomed. Mater. 13, 14–24 (2012)CrossRefGoogle Scholar
  190. K.C.R. Kolan, M.C. Leu, G.E. Hilmas, R.F. Brown, M. Velez: Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering, Biofabrication 3, 025004 (2011)CrossRefGoogle Scholar
  191. J.A. Lewis, G.M. Gratson: Direct writing in three dimensions, Mater. Today 7, 32–39 (2004)CrossRefGoogle Scholar
  192. C. Chang, E.D. Boland, S.K. Williams, J.B. Hoying: Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies, J. Biomed. Mater. Res. B 98, 160–170 (2011)CrossRefGoogle Scholar
  193. X. Zhao, J.R.G. Evans, M.J. Edirisinghe, J.H. Song: Ink-jet printing of ceramic pillar arrays, J. Mater. Sci. 37, 1987–1992 (2002)CrossRefGoogle Scholar
  194. V. Chovancova, A. Pekarovicova, P.D.I. Fleming: Hot melt inks for 3-D printing. In: Proc. Digit. Fabr. Conf. 2005 (2005) pp. 143–147Google Scholar
  195. D. Therriault, S.R. White, J.A. Lewis: Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly, Nat. Mater. 2, 265–271 (2003)CrossRefGoogle Scholar
  196. G.M. Gratson, M. Xu, J.A. Lewis: Microperiodic structures: Direct writing of three-dimensional webs, Nature 428, 386 (2004)CrossRefGoogle Scholar
  197. M. Allahverdi, S.C. Danforth, M. Jafari, A. Safari: Processing of advanced electroceramic components by fused deposition technique, J. Eur. Ceram. Soc. 21, 485–1490 (2001)CrossRefGoogle Scholar
  198. T.S. Huang, M.N. Rahaman, N.D. Doiphode, M.C. Leu, B.S. Bal, D.E. Day, X. Liu: Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for repair and regeneration of load–bearing bones, Ceram. Trans. 228, 45–55 (2011)CrossRefGoogle Scholar
  199. J. Cesarano III: A review of robocasting technology, Solid Free. Addit. Fabr. Mater. 542, 133–139 (1999)Google Scholar
  200. J. Dellinger, J. Cesarano, R.D. Jamison: Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering, J. Biomed. Mater. Res. A 82, 383–394 (2007)CrossRefGoogle Scholar
  201. J.E. Smay, J. Cesarano, J.A. Lewis: Colloidal inks for directed assembly of 3-D periodic structures, Langmuir 18, 5429–5437 (2002)CrossRefGoogle Scholar
  202. A.M. Deliormanli, M.N. Rahaman: Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair, J. Eur. Ceram. Soc. 32, 3637–3646 (2012)CrossRefGoogle Scholar
  203. J.G. Dellinger, A.M. Wojtowicz, R.D. Jamison: Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds, J. Biomed. Mater. Res. A 77, 563–571 (2006)CrossRefGoogle Scholar
  204. C. Gao, M.N. Rahaman, Q. Gao, A. Teramoto, K. Abe: Robotic deposition and in vitro characterization of 3-D gelatin-bioactive glass hybrid scaffolds for biomedical applications, J. Biomed. Mater. Res. A 101, 2027–2037 (2013)CrossRefGoogle Scholar
  205. S. Eqtesadi, A. Motealleh, P. Miranda, A. Lemos, A. Rebelo, J.M.F. Ferreira: A simple recipe for direct writing complex 45S5 Bioglass® 3-D scaffolds, Mater. Lett. 93, 68–71 (2013)CrossRefGoogle Scholar
  206. Q. Fu, E. Saiz, A.P. Tomsia: Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration, Acta Biomater. 7, 3547–3554 (2011)CrossRefGoogle Scholar
  207. S. Eqtesadi, A. Motealleh, A. Pajares, P. Miranda: Effect of milling media on processing and performance of 13-93 bioactive glass scaffolds fabricated by robocasting, Ceram. Int. 41, 1379–1389 (2015)CrossRefGoogle Scholar
  208. N.D. Doiphode, T.S. Huang, M.C. Leu, M.N. Rahaman, D.E. Day: Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for bone repair, J. Mater. Sci. Mater. Med. 22, 15–523 (2011)CrossRefGoogle Scholar
  209. L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant, A. Govin: Structural transformations of bioactive glass 45S5 with thermal treatments, Acta Mater. 55, 3305–3313 (2007)CrossRefGoogle Scholar
  210. S. Eqtesadi, A. Motealleh, A. Pajares, F. Guiberteau, P. Miranda: Improving mechanical properties of 13-93 bioactive glass robocast scaffold by poly (lactic acid) and poly (\(\varepsilon\)-caprolactone) melt infiltration, J. Non-Cryst. Solids 432, 111–119 (2016)CrossRefGoogle Scholar
  211. N. Lindfors, I. Koski, J.T. Heikkilä, K. Mattila, A.J. Aho: A prospective randomized 14-year follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors, J. Biomed. Mater. Res. B 94B, 157–164 (2010)Google Scholar
  212. K. Pernaa, I. Koski, K. Mattila, E. Gullichsen, J. Heikkilä, A.J. Aho, N.C. Lindfors: Bioactive glass S53P4 and autograft bone in treatment of depressed tibial plateau fractures: A prospective randomized 11-year follow-up, J. Long Term Eff. Med. Implants 21, 139–148 (2011)CrossRefGoogle Scholar
  213. T. Turunen, J. Peltola, A. Yli-Urpo, R.-P. Happonen: Bioactive glass granules as a bone adjunctive material in maxillary sinus floor augmentation, Clin. Oral Implant Res. 15, 135–141 (2004)CrossRefGoogle Scholar
  214. N.C. Lindfors, P. Hyvönen, M. Nyyssönen, M. Kirjavainen, J. Kankare, E. Gullichsen, J. Salo: Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis, Bone 47, 212–218 (2010)CrossRefGoogle Scholar
  215. N.C. Lindfors, J.T. Heikkilä, I. Koski, K. Mattila, A.J. Aho: Bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors, J. Biomed. Mater. Res. B 90, 131–136 (2009)Google Scholar
  216. P. Stoor, J. Pulkkinen, R. Grenman: Bioactive glass S53P4 in the filling of cavities in the mastoid cell area in surgery for chronic otitis media, Ann. Otol. Rhinol. Laryngol. 119, 377–382 (2010)CrossRefGoogle Scholar
  217. S. June: Treatment of chronic wounds with bioactive borate glass fibers. In: An Introduction to Bioceramics, 2nd edn., ed. by L.L. Hench (Imperial College Press, London 2013)Google Scholar
  218. P. Wray: Cotton candy' that heals?, Am. Ceram. Soc. Bull. 90, 25–29 (2011)Google Scholar
  219. P. Wray: Wound healing: An update on Mo-Sci's novel borate glass fibers, Am. Ceram. Soc. Bull. 92, 30–35 (2013)Google Scholar
  220. M. Mneimne, R.G. Hill, A.J. Bushby, D.S. Brauer: High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses, Acta Biomater. 7, 1827–1834 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
  2. 2.Faculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
  3. 3.Abalonyx ASOsloNorway

Personalised recommendations