Advertisement

Natural Glasses

  • Maria Rita CicconiEmail author
  • Daniel R. Neuville
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Natural glasses have been used since prehistoric times and are strongly linked to human evolution. On Earth, glasses are typically produced by rapid cooling of melts, and as in the case of minerals and rocks, natural glasses can provide key information on the evolution of the Earth. However, we are aware that natural glasses are products that are not solely terrestrial and that the formation mechanisms give rise to a variety of natural amorphous materials. On the Earth's surface, glasses are scarce compared to other terrestrial bodies (i. e., the Moon), since the conditions on the surface give rise to devitrification or weathering. In order to provide an exhaustive overview, we shall classify natural glasses based on the mechanisms by which they were formed: temperature related, temperature–pressure related, temperature–pressure–volatile related, and others.

In this chapter, we will review the most common natural glasses and their technological applications and also the scientific and technological advancements achieved from the study of these natural amorphous materials. Finally, we will provide some insights into the structure and properties of natural glasses and melts.

Notes

Acknowledgements

Some of the data here shown were acquired at the FAME beamline, and we thank the European Synchrotron Radiation Facility (Grenoble, France) for provision of synchrotron radiation facilities. The authors thank D. de Ligny and G. Henderson for the useful discussions, B. Cochain for help during the HT XANES experiments, and J. Stebbins for the Libyan Desert glass sample. MRC thanks E. Guillaud for pictures of natural glasses and S. Wolf for useful discussions on biomimetic materials. DRN thanks J.C. Bouillard, Curator of the Collection de Minéraux University Pierre and Marie Curie, Paris, for providing fulgurite samples.

References

  1. R.A. Weeks, J.R. Underwood, R. Giegengack: Libyan Desert glass: A review, J. Non-Cryst. Solids 67, 593–619 (1984)CrossRefGoogle Scholar
  2. J.W. Delano: Pristine lunar glasses: Criteria, data, and implications, J. Geophys. Res. Solid Earth 91, 201–213 (1986)CrossRefGoogle Scholar
  3. C. Koeberl: Geochemistry and tektites and impact glasses, Annu. Rev. Earth Planet. Sci. 14, 323–350 (1986)CrossRefGoogle Scholar
  4. B.P. Glass: Tektites and microtektites: Key facts and inferences, Tectonophysics 171, 393–404 (1990)CrossRefGoogle Scholar
  5. T. Aboud: Libyan Desert Glass: Has the enigma of its origin been resolved?, Phys. Procedia 2, 1425–1432 (2009)CrossRefGoogle Scholar
  6. K. Heide, G. Heide: Vitreous state in nature—Origin and properties, Chem. Erde 71, 305–335 (2011)CrossRefGoogle Scholar
  7. M.A. Pasek, K. Block, V. Pasek: Fulgurite morphology: A classification scheme and clues to formation, Contrib. Mineral. Petrol. 164, 477–492 (2012)CrossRefGoogle Scholar
  8. R. Gill: Igneous Rocks and Processes—A Practical Guide (Wiley-Blackwell, Chichester 2010)Google Scholar
  9. J. Keller, R. Djerbashian, S.G. Karapetian, E. Pernicka, V. Nasedkin: Armenian and Caucasian obsidian occurrences as sources for the Neolithic trade: Volcanological setting and chemical characteristics. In: Proc. 29th Int. Symp. Archaeom. (1996) pp. 69–86Google Scholar
  10. R.H. Tykot: Chemical fingerprinting and source tracing of obsidian: The central mediterranean trade in black gold, Acc. Chem. Res. 35, 618–627 (2002)CrossRefGoogle Scholar
  11. L. Bellot-Gurlet, F.-X. Le Bourdonnec, G. Poupeau, S. Dubernet: Raman micro-spectroscopy of western Mediterranean obsidian glass: One step towards provenance studies?, J. Raman Spectrosc. 35, 671–677 (2004)CrossRefGoogle Scholar
  12. J. Gottsmann, D.B. Dingwell: The cooling of frontal flow ramps: A calorimetric study on the Rocche Rosse rhyolite flow, Lipari, Aeolian Islands, Italy, Terra Nova 13, 157–164 (2001)CrossRefGoogle Scholar
  13. R. MacDonald, R.L. Smith, J.E. Thomas: Chemistry of the subalkalic silicic obsidians, US Geological Survey Professional Paper 1523 (1992)Google Scholar
  14. G. Deganello, L. Liotta, A. Longo, A. Martorana, Y. Yanev, N. Zotov: Structure of natural water-containing glasses from Lipari (Italy) and Eastern Rhodopes (Bulgaria): SAXS, WAXS and IR studies, J. Non-Cryst. Solids 232, 547–553 (1998)CrossRefGoogle Scholar
  15. N. Bagdassarov, F. Ritter, Y. Yanev: Kinetics of perlite glasses degassing: TG and DSC analysis, Glass Sci. Technol. 72, 277–290 (1999)Google Scholar
  16. D.J.M. Burkhard: Crystallization and oxidation of Kilauea basalt glass: Processes during reheating experiments, J. Petrol. 42, 507–527 (2001)CrossRefGoogle Scholar
  17. M.G. Davis, M.O. Garcia, P. Wallace: Volatiles in glasses from Mauna Loa Volcano, Hawai'i: implications for magma degassing and contamination, and growth of Hawaiian volcanoes, Contrib. Mineral. Petrol. 144, 570–591 (2003)CrossRefGoogle Scholar
  18. T. Katsura: Pele's hair as a liquid of Hawaiian tholeiitic basalts, Geochem. J. 1, 157–168 (1967)CrossRefGoogle Scholar
  19. T.L. Wright: Magma mixing as illustrated by the 1959 eruption, Kilauea Volcano, Hawaii, Bull. Geol. Soc. Am. 84, 849–858 (1973)CrossRefGoogle Scholar
  20. P.J. Kelly, P.R. Kyle, N.W. Dunbar, K.W.W. Sims: Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972-2004 and comparison with older lavas, J. Volcanol. Geotherm. Res. 177, 589–605 (2008)CrossRefGoogle Scholar
  21. G.A. MacDonald: Physical properties of erupting Hawaiian magmas, Bull. Geol. Soc. Am. 74, 1071–1078 (1963)CrossRefGoogle Scholar
  22. D.R. Chapman, L.C. Scheiber: Chemical investigation of Australasian tektites, J. Geophys. Res. 74, 6737–6776 (1969)CrossRefGoogle Scholar
  23. B.P. Glass, B.M. Simonson: Distal Impact Ejecta Layers—A Record of Large Impacts in Sedimentary Deposits (Springer, Berlin, Heidelberg 2013)CrossRefGoogle Scholar
  24. L. Folco, M. D'Orazio, M. Tiepolo, S. Tonarini, L. Ottolini, N. Perchiazzi, P. Rochette, B.P. Glass: Transantarctic Mountain microtektites: Geochemical affinity with Australasian microtektites, Geochim. Cosmochim. Acta 73, 3694–3722 (2009)CrossRefGoogle Scholar
  25. B.P. Glass, C. Koeberl, J.D. Blum, F. Senftle, G.A. Izett, B.J. Evans, A.N. Thorpe, H. Povenmire, R.L. Strange: A Muong Nong-type Georgia tektite, Geochim. Cosmochim. Acta 59, 4071–4082 (1995)CrossRefGoogle Scholar
  26. J.M. Lange: Tektite glasses from Lusatia (Lausitz), Germany, Chem. Erde 56, 498–510 (1996)Google Scholar
  27. K. Žák, R. Skála, Z. Řanda, J. Mizera: A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass, Meteorit. Planet. Sci. 47, 1010–1028 (2012)CrossRefGoogle Scholar
  28. C. Koeberl, H. Sigurdsson: Geochemistry of impact glasses from the K/T boundary in Haiti: Relation to smectites and a new type of glass, Geochim. Cosmochim. Acta 56, 2113–2129 (1992)CrossRefGoogle Scholar
  29. G. Giuli, S.G. Eeckhout, E. Paris, C. Koeberl, G. Pratesi: Iron oxidation state in impact glass from the K/T boundary at Beloc, Haiti, by high-resolution XANES spectroscopy, Meteorit. Planet. Sci. 40, 1575–1580 (2005)CrossRefGoogle Scholar
  30. G. Giuli, E. Paris, G. Pratesi, C. Koeberl, C. Cipriani: Iron oxidation state in the Fe-rich layer and silica matrix of Libyan Desert Glass: A high-resolution XANES study, Meteorit. Planet. Sci. 38, 1181–1186 (2003)CrossRefGoogle Scholar
  31. C. Koeberl: Libyan Desert Glass: geochemical composition and origin. In: Proc. Silica ´96 Meet. (1997) pp. 121–131Google Scholar
  32. J.-A. Barrat, B.M. Jahn, J. Amossé, R. Rocchia, F. Keller, G.R. Poupeau, E. Diemer: Geochemistry and origin of Libyan Desert glasses, Geochim. Cosmochim. Acta 61, 1953–1959 (1997)CrossRefGoogle Scholar
  33. T. Meisel, C. Koeberl, R.J. Ford: Geochemistry of Darwin impact glass and target rocks, Geochim. Cosmochim. Acta 54, 1463–1474 (1990)CrossRefGoogle Scholar
  34. E.A. Carter, M.A. Pasek, T. Smith, T.P. Kee, P. Hines, H.G.M. Edwards: Rapid Raman mapping of a fulgurite, Anal. Bioanal. Chem. 387, 2647–2658 (2010)CrossRefGoogle Scholar
  35. G. Giuli, G. Pratesi, S.G. Eeckhout, C. Koeberl, E. Paris: Iron reduction in silicate glass produced during the 1945 nuclear test at the Trinity site (Alamogordo, New Mexico, USA). In: GSA Special Papers—Large Meteorite Impacts and Planetary Evolution IV, ed. by R.L. Gibson, W.U. Reimold (GSA, Boulder 2010) pp. 653–660Google Scholar
  36. R. Searle: Mid-Ocean Ridges (Cambridge University Press, Cambridge 2013)CrossRefGoogle Scholar
  37. T. Gregg, J. Fink: Quantification of submarine lava-flow morphology through analog experiments, Geology 23, 73–76 (1995)CrossRefGoogle Scholar
  38. C.D. Byers, D.W. Muenow, M.O. Garcia: Volatiles in basalts and andesites from the Galapagos Spreading Center, 85° to 86° W, Geochim. Cosmochim. Acta 47, 1551–1558 (1983)CrossRefGoogle Scholar
  39. D.M. Christie, I.S.E. Carmichael, C.H. Langmuir: Oxidation states of mid-ocean ridge basalt glasses, Earth. Planet. Sci. Lett. 79, 397–411 (1986)CrossRefGoogle Scholar
  40. A. Bézos, E. Humler: The Fe3+/\(\Upsigma\)Fe ratios of MORB glasses and their implications for mantle melting, Geochim. Cosmochim. Acta 69, 711–725 (2005)CrossRefGoogle Scholar
  41. D.J. Frost, C.A. McCammon: The Redox State of Earth's Mantle, Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008)CrossRefGoogle Scholar
  42. V. Bouška, V.I. Feldman: Terrestrial and lunar, volcanic and impact glasses, tektites, and fulgurites. In: Advanced Mineralogy, ed. by A.S. Marfunin (Springer, Berlin, Heidelberg 1994) pp. 258–265CrossRefGoogle Scholar
  43. J.A. O'Keefe: Natural glass, J. Non-Cryst. Solids 67, 1–17 (1984)CrossRefGoogle Scholar
  44. G. Heiken: Morphology and petrography of volcanic ashes, Bull. Geol. Soc. Am. 83, 1961–1988 (1972)CrossRefGoogle Scholar
  45. D. Shimozuru: Physical parameters governing the formation of Pele's hair and tears, Bull. Volcanol. 56, 217–219 (1994)CrossRefGoogle Scholar
  46. S. Moune, F. Faure, P.J. Gauthier, K.W.W. Sims: Pele's hairs and tears: Natural probe of volcanic plume, J. Volcanol. Geotherm. Res. 164, 244–253 (2007)CrossRefGoogle Scholar
  47. V. Fiore, T. Scalici, G. Di Bella, A. Valenza: A review on basalt fibre and its composites, Compos. B Eng. 74, 74–94 (2015)CrossRefGoogle Scholar
  48. V. Dhand, G. Mittal, K.Y. Rhee, S.-J. Park, D. Hui: A short review on basalt fiber reinforced polymer composites, Compos. B Eng. 73, 166–180 (2015)CrossRefGoogle Scholar
  49. K. Singha: A short review on basalt fiber, Int. J. Text. Sci. 1, 19–28 (2012)Google Scholar
  50. B.E. Ramachandran, V. Velpari, N. Balasubramanian: Chemical durability studies on basalt fibres, J. Mater. Sci. 16, 3393–3397 (1981)CrossRefGoogle Scholar
  51. P.R. Kyle, J.A. Moore, M.F. Thirlwall: Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross island, Antarctica, J. Petrol. 33, 849–875 (1992)CrossRefGoogle Scholar
  52. C. Le Losq, D.R. Neuville, R. Moretti, P.R. Kyle, C. Oppenheimer: Rheology of phonolitic magmas—The case of the Erebus lava lake, Earth Planet. Sci. Lett. 411, 53–61 (2015)CrossRefGoogle Scholar
  53. P.R. Kyle: Mineralogy and glass chemistry of recent volcanic ejecta from Mt Erebus, Ross Island, Antarctica, N.Z. J. Geol. Geophys. 20, 1123–1146 (1977)CrossRefGoogle Scholar
  54. I. Friedman, W. Long: Volcanic glasses, their origins and alteration processes, J. Non-Cryst. Solids 67, 127–133 (1984)CrossRefGoogle Scholar
  55. N.A. Stroncik, H.U. Schmincke: Palagonite—A review, Int. J. Earth. Sci. 91, 680–697 (2002)CrossRefGoogle Scholar
  56. B. Parruzot, P. Jollivet, D. Rébiscoul, S. Gin: Long-term alteration of basaltic glass: Mechanisms and rates, Geochim. Cosmochim. 154, 28–48 (2015)CrossRefGoogle Scholar
  57. R. Ewing: Natural glasses: Analogues for radioactive waste forms. In: Scientific Basis for Nuclear Waste Management, ed. by G.J. McCarthy (Springer, Boston 1979) pp. 56–78Google Scholar
  58. N. Chapman, I. McKinley, J. Smellie: The potential of natural analogues in assessing systems for deep disposal of high-level radioactive waste, KBS Technical Report 84-16 (KBS, Stockholm 1984)Google Scholar
  59. R. Ewing, M. Jercinovic: Natural analogues: Their application to the prediction of the long-term behavior of nuclear waste forms, Mater. Res. Soc. Symp. Proc. 84, 67 (1986)CrossRefGoogle Scholar
  60. R. Zielinski: Stability of glass in the geologic environment: Some evidence from studies of natural silicate glasses, Nucl. Technol. 51, 197–200 (1980)CrossRefGoogle Scholar
  61. G. Malow, W. Lutze, R. Ewing: Alteration effects and leach rates of basaltic glasses: Implications for the long-term stability of nuclear waste form borosilicate glasses, J. Non-Cryst. Solids 67, 305–321 (1984)CrossRefGoogle Scholar
  62. C. Byers, M. Jercinovic, R. Ewing, K. Keil: Basalt glass: An analogue for the evaluation of the long-term stability of nuclear waste form borosilicate glasses, MRS Proc. 44, 583 (1984)CrossRefGoogle Scholar
  63. I. Techer, T. Advocat, J. Lancelot, J.-M. Liotard: Basaltic glass: Alteration mechanisms and analogy with nuclear waste glasses, J. Nucl. Mater. 282, 40–46 (2000)CrossRefGoogle Scholar
  64. G. Berger, J. Schott, C. Guy: Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater: Experimental investigations and modelization between 50 and 300 °C, Chem. Geol. 71, 297–312 (1988)CrossRefGoogle Scholar
  65. J.-L. Crovisier, T. Advocat, J.-L. Dussossoy: Nature and role of natural alteration gels formed on the surface of ancient volcanic glasses (Natural analogs of waste containment glasses), J. Nucl. Mater. 321, 91–109 (2003)CrossRefGoogle Scholar
  66. C. Poinssot, S. Gin: Long-term Behavior Science: The cornerstone approach for reliably assessing the long-term performance of nuclear waste, J. Nucl. Mater. 420, 182–192 (2012)CrossRefGoogle Scholar
  67. S.M. Brown, T.L. Grove: Origin of the Apollo 14, 15, and 17 yellow ultramafic glasses by mixing of deep cumulate remelts, Geochim. Cosmochim. Acta 171, 201–215 (2015)CrossRefGoogle Scholar
  68. C.K. Shearer, J.J. Papike: Basaltic magmatism on the Moon: A perspective from volcanic picritic glass beads, Geochim. Cosmochim. Acta 57, 4785–4812 (1993)CrossRefGoogle Scholar
  69. M. Ma, Y. Liu, R. Schmitt: A chemical study of individual green glasses and brown glasses from 15426—Implications for their petrogenesis. In: Proc. Lunar Planet. Sci. 12 B (1981) pp. 915–933Google Scholar
  70. J.W. Delano, D.H. Lindsley: Mare glasses from Apollo 17: Constraints on the moon's bulk composition, J. Geophys. Res. 88, 3 (1983)CrossRefGoogle Scholar
  71. J. Longhi: On the connection between mare basalts and picritic volcanic glasses, J. Geophys. Res. Earth Planets 92, E349–E360 (1987)CrossRefGoogle Scholar
  72. S.S. Hughes, J.W. Delano, R.A. Schmitt: Apollo 15 yellow-brown volcanic glass: Chemistry and petrogenetic relations to green volcanic glass and olivine-normative mare basalts, Geochim. Cosmochim. Acta 52, 2379–2391 (1988)CrossRefGoogle Scholar
  73. C.K. Shearer, J.J. Papike, S.B. Simon, N. Shimizu, H. Yurimoto, S. Sueno: Ion microprobe studies of trace elements in Apollo 14 volcanic glass beads: Comparisons to Apollo 14 mare basalts and petrogenesis of picritic magmas, Geochim. Cosmochim. Acta 54, 851–867 (1990)CrossRefGoogle Scholar
  74. T.P. Wagner, T.L. Grove: Experimental constraints on the origin of lunar high-Ti ultramafic glasses, Geochim. Cosmochim. Acta 61, 1315–1327 (1997)CrossRefGoogle Scholar
  75. L.T. Elkins Tanton, J.A. Van Orman, B.H. Hager, T.L. Grove: Re-examination of the lunar magma ocean cumulate overturn hypothesis: Melting or mixing is required, Earth Planet. Sci. Lett. 196, 239–249 (2002)CrossRefGoogle Scholar
  76. M.J. Krawczynski, T.L. Grove: Experimental investigation of the influence of oxygen fugacity on the source depths for high titanium lunar ultramafic magmas, Geochim. Cosmochim. Acta 79, 1–19 (2012)CrossRefGoogle Scholar
  77. C.K. Shearer, P.C. Hess, M.A. Wieczorek, M.E. Pritchard, E.M. Parmentier, L.E. Borg, J. Longhi, L.T. Elkins-Tanton, C.R. Neal, I. Antonenko, R.M. Canup: Thermal and magmatic evolution of the Moon, Rev. Mineral. Geochem. 60, 365–518 (2006)CrossRefGoogle Scholar
  78. M. Wadhwa: Redox conditions on small bodies, the Moon and Mars, Rev. Mineral. Geochem. 68, 493–510 (2008)CrossRefGoogle Scholar
  79. C.D.K. Herd: Basalts as probes of planetary interior redox state, Rev. Mineral. Geochem. 68, 527–553 (2008)CrossRefGoogle Scholar
  80. J.J. Papike, J.M. Karner, C.K. Shearer: Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts, Am. Mineral. 90, 277–290 (2005)CrossRefGoogle Scholar
  81. M. Sato, N.L. Hickling, J.E. McLane: Oxygen fugacity values of Apollo 12, 14, and 15 lunar samples and reduced state of lunar magmas, Proc. Lunar Sci. Conf. 4, 1061–1079 (1973)Google Scholar
  82. R.A. Fogel, M.J. Rutherford: Magmatic volatiles in primitive lunar glasses: I. FTIR and EPMA analyses of Apollo 15 green and yellow glasses and revision of the volatile-assisted fire-fountain theory, Geochim. Cosmochim. Acta 59, 201–215 (1995)CrossRefGoogle Scholar
  83. S.R. Sutton, J. Karner, J. Papike, J.S. Delaney, C. Shearer, M. Newville, P. Eng, M. Rivers, M.D. Dyar: Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry, Geochim. Cosmochim. Acta 69, 2333–2348 (2005)CrossRefGoogle Scholar
  84. J.M. Karner, S.R. Sutton, J.J. Papike, C.K. Shearer, J.H. Jones, M. Newville: Application of a new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon, and Mars, Am. Mineral. 91, 270–277 (2006)CrossRefGoogle Scholar
  85. B.P. Glass: High-silica (\(> \) 60%) lunar glasses in an Apollo 14 soil sample: Evidence for silicic lunar volcanism?, Earth. Planet. Sci. Lett. 33, 79–85 (1976)CrossRefGoogle Scholar
  86. W.U. Reimold, F. Jourdan: Impact!—Bolides, craters, and catastrophes, Elements 8, 19–24 (2012)CrossRefGoogle Scholar
  87. C. Koeberl: The geochemistry and cosmochemistry of impacts. In: Treatise Geochemistry, 2nd edn., Vol. 2, ed. by H. Holland, K. Turekian (Elsevier, Amsterdam 2013) pp. 73–118Google Scholar
  88. R.F. Fudali, M.D. Dyar, D.L. Griscom, H.D. Schreiber: The oxidation state of iron in tektite glass, Geochim. Cosmochim. Acta 51, 2749–2756 (1987)CrossRefGoogle Scholar
  89. G. Giuli, G. Pratesi, C. Cipriani, E. Paris: Iron local structure in tektites and impact glasses by extended x-ray absorption fine structure and high-resolution x-ray absorption near-edge structure spectroscopy, Geochim. Cosmochim. Acta 66, 4347–4353 (2002)CrossRefGoogle Scholar
  90. G. Giuli, S.G. Eeckhout, M.R. Cicconi, C. Koeberl, G. Pratesi, E. Paris: Iron oxidation state and local structure in North American tektites. In: GSA Special Papers – Large Meteorite Impacts and Planetary Evolution IV, ed. by R.L. Gibson, W.U. Reimold (GSA, Boulder 2010)Google Scholar
  91. G. Giuli, M.R. Cicconi, S.G. Eeckhout, G. Pratesi, E. Paris, L. Folco: Australasian microtektites from Antarctica: XAS determination of the Fe oxidation state, Meteorit. Planet. Sci. 49, 696–705 (2014)CrossRefGoogle Scholar
  92. J. O'Keefe: The origin of tektites, Space Sci. Rev. 6, 174–221 (1966)CrossRefGoogle Scholar
  93. B.P. Glass: Chemical composition of Ivory Coast microtektites, Geochim. Cosmochim. Acta 33, 1135–1147 (1969)CrossRefGoogle Scholar
  94. B.P. Glass, B.M. Simonson: Distal impact ejecta layers: Spherules and more, Elements 8, 43–48 (2012)CrossRefGoogle Scholar
  95. W. Engelhardt, E. Luft, J. Arndt, H. Schock, W. Weiskirchner: Origin of moldavites, Geochim. Cosmochim. Acta 51, 1425–1443 (1987)CrossRefGoogle Scholar
  96. C. Koeberl: The geochemistry of tektites: An overview, Tectonophysics 171, 405–422 (1990)CrossRefGoogle Scholar
  97. A. Deutsch, C. Koeberl: Establishing the link between the Chesapeake Bay impact structure and the North American tektite strewn field: The Sr-Nd isotopic evidence, Meteorit. Planet. Sci. 41, 689–703 (2006)CrossRefGoogle Scholar
  98. C.W. Poag, C. Koeberl, W.U. Reimold: The Chesapeake Bay Crater (Springer, Berlin, Heidelberg 2004)CrossRefGoogle Scholar
  99. D. Stöffler, N.A. Artemieva, E. Pierazzo: Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field, Meteorit. Planet. Sci. 37, 1893–1907 (2002)CrossRefGoogle Scholar
  100. L. Folco, P. Rochette, N. Perchiazzi, M. D'Orazio, M.A.A. Laurenzi, M. Tiepolo: Microtektites from Victoria Land Transantarctic Mountains, Geology 36, 291–294 (2008)CrossRefGoogle Scholar
  101. L. Folco, B.P. Glass, M. D'Orazio, P. Rochette: A common volatilization trend in Transantarctic Mountain and Australasian microtektites: Implications for their formation model and parent crater location, Earth Planet. Sci. Lett. 293, 135–139 (2010)CrossRefGoogle Scholar
  102. B.P. Glass, J.E. Pizzuto: Geographic variation in Australasian microtektite concentrations: Implications concerning the location and size of the source crater, J. Geophys. Res. 99, 19075 (1994)CrossRefGoogle Scholar
  103. M.-Y. Lee, K.-Y. Wei: Australasian microtektites in the South China Sea and the West Philippine Sea: Implications for age, size, and location of the impact crater, Meteorit. Planet. Sci. 35, 1151–1155 (2000)CrossRefGoogle Scholar
  104. B.P. Glass, C. Koeberl: Australasian microtektites and associated impact ejecta in the South China Sea and the Middle Pleistocene supereruption of Toba, Meteorit. Planet. Sci. 41, 305–326 (2006)CrossRefGoogle Scholar
  105. P. Ma, K. Aggrey, C. Tonzola, C. Schnabel, P. de Nicola, G.F. Herzog, J.T. Wasson, B.P. Glass, L. Brown, F. Tera, R. Middleton, J. Klein: Beryllium-10 in Australasian tektites: Constraints on the location of the source crater, Geochim. Cosmochim. Acta 68, 3883–3896 (2004)CrossRefGoogle Scholar
  106. B. Glass: Microtektites in deep-sea sediments, Nature 214, 372–374 (1967)Google Scholar
  107. B.P. Glass: Australasian microtektites and the stratigraphic age of the australites, Bull. Geol. Soc. Am. 89, 1455–1458 (1978)CrossRefGoogle Scholar
  108. B.P. Glass: Bottle Green Microtektites, J. Geophys. Res. 77, 7057–7064 (1972)CrossRefGoogle Scholar
  109. B.P. Glass, M.J. Zwart: North American microtektites in Deep Sea Drilling Project cores from the Caribbean Sea and Gulf of Mexico, Geol. Soc. Am. Bull. 90, 595 (1979)CrossRefGoogle Scholar
  110. F.A. Frey: Microtektites: A chemical comparison of bottle-green microtektites, normal microtektites and tektites, Earth Planet. Sci. Lett. 35, 43–48 (1977)CrossRefGoogle Scholar
  111. G. Giuli, M.R. Cicconi, S.G. Eeckhout, C. Koeberl, B.P. Glass, G. Pratesi, M. Cestelli-Guidi, E. Paris: Amorphous Materials: Properties, structure, and durability: North American microtektites are more oxidized than tektites, Am. Mineral. 98, 1930–1937 (2013)CrossRefGoogle Scholar
  112. C. Koeberl: Geochemistry and origin of Muong Nong-type tektites, Geochim. Cosmochim. Acta 56, 1033–1064 (1992)CrossRefGoogle Scholar
  113. N. Artemieva: Numerical modeling of tektite origin in oblique impacts: Implication to Ries-Moldavites strewn field, Bull. Czech. Geol. Surv. 77, 303–311 (2002)Google Scholar
  114. N. Artemieva, E. Pierazzo: The Canyon Diablo impact event: 2. Projectile fate and target melting upon impact, Meteorit. Planet. Sci. 46, 805–829 (2011)CrossRefGoogle Scholar
  115. E. Pierazzo, N. Artemieva, E. Asphaug, E.C. Baldwin, J. Cazamias, R. Coker, G.S. Collins, D.A. Crawford, T. Davison, D. Elbeshausen, K.A. Holsapple, K.R. Housen, D.G. Korycansky, K. Wünnemann: Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets, Meteorit. Planet. Sci. 43, 1917–1938 (2008)CrossRefGoogle Scholar
  116. A. Montanari, C. Koeberl: Impact Stratigraphy (Berlin, Heidelberg 2000)Google Scholar
  117. B.C. Johnson, H.J. Melosh: Formation of spherules in impact produced vapor plumes, Icarus 217, 416–430 (2012)CrossRefGoogle Scholar
  118. L.W. Alvarez, W. Alvarez, F. Asaro, H.V. Michel: Extraterrestrial cause for the cretaceous-tertiary extinction, Science 208, 1095–1108 (1980)CrossRefGoogle Scholar
  119. P. Schulte, L. Alegret, I. Arenillas, J.A. Arz, P.J. Barton, P.R. Bown, T.J. Bralower, G.L. Christeson, P. Claeys, C.S. Cockell, G.S. Collins, A. Deutsch, T.J. Goldin, K. Goto, J.M. Grajales-Nishimura, R.A.F. Grieve, S.P.S. Gulick, K.R. Johnson, W. Kiessling, C. Koeberl, D.A. Kring, K.G. MacLeod, T. Matsui, J. Melosh, A. Montanari, J.V. Morgan, C.R. Neal, D.J. Nichols, R.D. Norris, E. Pierazzo, G. Ravizza, M. Rebolledo-Vieyra, W.U. Reimold, E. Robin, T. Salge, R.P. Speijer, A.R. Sweet, J. Urrutia-Fucugauchi, V. Vajda, M.T. Whalen, P.S. Willumsen: The chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary, Science 327, 1214–1218 (2010)CrossRefGoogle Scholar
  120. J. Smit, G. Klaver: Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event, Nature 292, 47–49 (1981)CrossRefGoogle Scholar
  121. G.A. Izett: Authigenic “spherules” in K-T boundary sediments at Caravaca, Spain, and Raton Basin, Colorado and New Mexico, may not be impact derived, Geol. Soc. Am. Bull. 99, 78–86 (1987)CrossRefGoogle Scholar
  122. H. Sigurdsson, S. D'Hondt, M.A. Arthur, T.J. Bralower, J.C. Zachos, M. van Fossen, J.E.T. Channel: Glass from the Cretaceous/Tertiary boundary in Haiti, Nature 349, 482–487 (1991)CrossRefGoogle Scholar
  123. C. Koeberl: Water content of glasses from the K/T boundary, Haiti: An indication of impact origin, Geochim. Cosmochim. Acta 56, 4329–4332 (1992)CrossRefGoogle Scholar
  124. B.F. Bohor: Shock-induced microdeformations in quartz and other mineralogical indications of an impact event at the Cretaceous-Tertiary boundary, Tectonophysics 171, 359–372 (1990)CrossRefGoogle Scholar
  125. T.E. Bunch, R.E. Hermes, A.M.T. Moore, D.J. Kennett, J.C. Weaver, J.H. Wittke, P.S. DeCarli, J.L. Bischoff, G.C. Hillman, G.A. Howard, D.R. Kimbel, G. Kletetschka, C.P. Lipo, S. Sakai, Z. Revay, A. West, R.B. Firestone, J.P. Kennett: Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago, Proc. Natl. Acad. Sci. 109, E1903–E1912 (2012)CrossRefGoogle Scholar
  126. R.B. Firestone, A. West, J.P. Kennett, L. Becker, T.E. Bunch, Z.S. Revay, P.H. Schultz, T. Belgya, D.J. Kennett, J.M. Erlandson, O.J. Dickenson, A.C. Goodyear, R.S. Harris, G.A. Howard, J.B. Kloosterman, P. Lechler, P.A. Mayewski, J. Montgomery, R. Poreda, T. Darrah, S.S.Q. Hee, A.R. Smith, A. Stich, W. Topping, J.H. Wittke, W.S. Wolbach: Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling, Proc. Natl. Acad. Sci. USA 104, 16016–16021 (2007)CrossRefGoogle Scholar
  127. J.H. Wittke, J.C. Weaver, T.E. Bunch, J.P. Kennett, D.J. Kennett, A.M.T. Moore, G.C. Hillman, K.B. Tankersley, A.C. Goodyear, C.R. Moore, I.R. Daniel, J.H. Ray, N.H. Lopinot, D. Ferraro, I. Israde-Alcántara, J.L. Bischoff, P.S. DeCarli, R.E. Hermes, J.B. Kloosterman, Z. Revay, G.A. Howard, D.R. Kimbel, G. Kletetschka, L. Nabelek, C.P. Lipo, S. Sakai, A. West, R.B. Firestone: Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago, Proc. Natl. Acad. Sci. 110, E2088–E2097 (2013)CrossRefGoogle Scholar
  128. T.A. Surovell, V.T. Holliday, J.A.M. Gingerich, C. Ketron, C.V. Haynes, I. Hilman, D.P. Wagner, E. Johnson, P. Claeys: An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis, Proc. Natl. Acad. Sci. 106, 18155–18158 (2009)CrossRefGoogle Scholar
  129. N. Pinter, A.C. Scott, T.L. Daulton, A. Podoll, C. Koeberl, R.S. Anderson, S.E. Ishman: The Younger Dryas impact hypothesis: A requiem, Earth Sci. Rev. 106, 247–264 (2011)CrossRefGoogle Scholar
  130. M. Boslough, K. Nicoll, V. Holliday, T.L. Daulton, D. Meltzer, N. Pinter, A.C. Scott, T. Surovell, P. Claeys, J. Gill, F. Paquay, J. Marlon, P. Bartlein, C. Whitlock, D. Grayson, A.J.T. Jull: Arguments and evidence against a Younger Dryas impact event, Geophys. Monogr. Ser. 198, 13–26 (2012)Google Scholar
  131. A. Van Hoesel, W.Z. Hoek, G.M. Pennock, M.R. Drury: The younger dryas impact hypothesis: A critical review, Quat. Sci. Rev. 83, 95–114 (2014)CrossRefGoogle Scholar
  132. W.U. Reimold, L. Ferrière, A. Deutsch, C. Koeberl: Impact controversies: Impact recognition criteria and related issues, Meteorit. Planet. Sci. 49, 723–731 (2014)CrossRefGoogle Scholar
  133. G. Bigazzi, V. Michele: New fission-track age determinations on impact glasses, Meteorit. Planet. Sci. 31, 234–236 (1996)CrossRefGoogle Scholar
  134. R. Rocchia, E. Robin, F. Fröhlich, H. Meon, L. Froget, E. Diemer: L'origine des verres du désert libyque: Un impact météoritique, C. R. Acad. Sci. 2 322(10), 839–845 (1996)Google Scholar
  135. P.A. Clayton: Silica-Glass from the Libyan Desert, Mineral. Mag. 23, 501–508 (1934)Google Scholar
  136. W.R. Seebaugh, A.M. Strauss: A cometary impact model for the source of Libyan Desert glass, J. Non-Cryst. Solids 67, 511–519 (1984)CrossRefGoogle Scholar
  137. L. Gomez-Nubla, J. Aramendia: S. Fdez-Ortiz de Vallejuelo, A. Alonso-Olazabal, K. Castro, M.C. Zuluaga, L.Á. Ortega, X. Murelaga, J.M. Madariaga: Multispectroscopic methodology to study Libyan desert glass and its formation conditions, Anal. Bioanal. Chem. 409, 3597–3610 (2017)CrossRefGoogle Scholar
  138. D. Storzer, G.A. Wagner: Fission track dating of meteorite impacts, Meteoritics 12, 368–369 (1977)Google Scholar
  139. D. Storzer, C. Koeberl: Uranium and Zirconium Enrichments in Libyan Desert Glass: Zircon Baddeleyite, and High Temperature History of the Glass, Lunar Planet. Sci. 22, 1345 (1991)Google Scholar
  140. M. Swaenen, E.A. Stefaniak, R. Frost, A. Worobiec, R. Van Grieken: Investigation of inclusions trapped inside Libyan desert glass by Raman microscopy, Anal. Bioanal. Chem. 397, 2659–2665 (2010)CrossRefGoogle Scholar
  141. G. Pratesi, C. Viti, C. Cipriani, M. Mellini: Silicate-silicate liquid immiscibility and graphite ribbons in Libyan desert glass, Geochim. Cosmochim. Acta 66, 903–911 (2002)CrossRefGoogle Scholar
  142. C.-H. Lo, K.T. Howard, S.-L. Chung, S. Meffre: Laser fusion argon-40/argon-39 ages of Darwin impact glass, Meteorit. Planet. Sci. 37, 1555–1562 (2002)CrossRefGoogle Scholar
  143. K.T. Howard: Physical distribution trends in Darwin glass, Meteorit. Planet. Sci. 44, 115–129 (2009)CrossRefGoogle Scholar
  144. L. Gomez-Nubla, J. Aramendia, A. Alonso-Olazabal: S. Fdez-Ortiz de Vallejuelo, K. Castro, L.A. Ortega, M.C. Zuluaga, X. Murelaga, J.M. Madariaga: Darwin impact glass study by Raman spectroscopy in combination with other spectroscopic techniques, J. Raman Spectrosc. 46, 913–919 (2015)CrossRefGoogle Scholar
  145. R.F. Fudali, R.J. Ford: Darwin Glass and Darwin Crater: A Progress Report, Meteoritics 14, 283–296 (1979)CrossRefGoogle Scholar
  146. K.T. Howard, P.W. Haines: The geology of Darwin Crater, western Tasmania, Australia, Earth Planet. Sci. Lett. 260, 328–339 (2007)CrossRefGoogle Scholar
  147. K.T. Howard: Geochemistry of Darwin glass and target rocks from Darwin Crater, Tasmania, Australia, Meteorit. Planet. Sci. 43, 1–21 (2008)CrossRefGoogle Scholar
  148. E.J. Essene, D.C. Fisher: Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility, Science 234, 189–193 (1986)CrossRefGoogle Scholar
  149. M.A. Uman: The peak temperature of lightning, J. Atmos. Terr. Phys. 26, 123–128 (1964)CrossRefGoogle Scholar
  150. E.P. Krider, G.A. Dawson, M.A. Uman: Peak power and energy dissipation in a single-stroke lightning flash, J. Geophys. Res. 73, 3335–3339 (1968)CrossRefGoogle Scholar
  151. B.E. Jones, K.S. Jones, K.J. Rambo, V.A. Rakov, J. Jerald, M.A. Uman: Oxide reduction during triggered-lightning fulgurite formation, J. Atmos. Sol.-Terr. Phys. 67, 423–428 (2005)CrossRefGoogle Scholar
  152. M. Pasek, K. Block: Lightning-induced reduction of phosphorus oxidation state, Nat. Geosci. 2, 553–556 (2009)CrossRefGoogle Scholar
  153. A.E. Anderson: Sand fulgurites from Nebraska their structure and formative factors, Neb. State Mus. Bull. 7(1), 49–86 (1925)Google Scholar
  154. A. Wasserman, H. Melosh: Chemical reduction of impact processed materials. In: Proc. 32nd Ann. Lunar Planet. Sci. Conf. (2001) p. 2037Google Scholar
  155. L.R. Rowan, T.J. Ahrens: Observations of impact-induced molten metal-silicate partitioning, Earth Planet. Sci. Lett. 122, 71–88 (1994)CrossRefGoogle Scholar
  156. I.S.E. Carmichael: Glass and the glassy rocks. In: Evolution Igneous Rocks, ed. by H.S. Yoder (Princeton University Press, Princeton 1979) pp. 233–244Google Scholar
  157. J. Castro, M. Manga, K. Cashman: Dynamics of obsidian flows inferred from microstructures: Insights from microlite preferred orientations, Earth Planet. Sci. Lett. 199, 211–226 (2002)CrossRefGoogle Scholar
  158. J.H. Fink: Structural geologic constraints on the rheology of rhyolitic obsidian, J. Non-Cryst. Solids 67, 135–146 (1984)CrossRefGoogle Scholar
  159. J.E. Ericson, A. Makishima, J.D. Mackenzie, R. Berger: Chemical and physical properties of obsidian: A naturally occurring glass, J. Non-Cryst. Solids 17, 129–142 (1975)CrossRefGoogle Scholar
  160. V. Mameli, A. Musinu, D. Niznansky, D. Peddis, G. Ennas, A. Ardu, C. Lugliè, C. Cannas: Much more than a glass: The complex magnetic and microstructural properties of obsidian, J. Phys. Chem. C 120, 27635–27645 (2016)CrossRefGoogle Scholar
  161. L. Bellot-Gurlet, T. Calligaro, O. Dorighel, J.C. Dran, G. Poupeau, J. Salomon: PIXE analysis and fission track dating of obsidian from South American prehispanic cultures (Colombia, Ecuador), Nucl. Instrum. Methods Phys. B 150, 616–621 (1999)CrossRefGoogle Scholar
  162. G. Longworth, S.E. Warren: The application of Mössbauer spectroscopy to the characterisation of western mediterranean obsidian, J. Archaeol. Sci. 6, 179–193 (1979)CrossRefGoogle Scholar
  163. M. Duttine, G. Villeneuve, G. Poupeau, A.M. Rossi, R.B. Scorzelli: Electron spin resonance of Fe3+ ion in obsidians from Mediterranean islands. Application to provenance studies, J. Non-Cryst. Solids 323, 193–199 (2003)CrossRefGoogle Scholar
  164. A. Milleville, L. Bellot-Gourlet, B. Champagnon, D. Santallier: La Micro-spectroscopie Raman pour l'étude des Obsidiennes: Structure, Micro-inclusions et études de provenance?, Rev. Archéométrie 27, 123–130 (2003)CrossRefGoogle Scholar
  165. C. Ma, J. Gresh, G.R. Rossman, G.C. Ulmer, E.P. Vicenzi: Micro-analytical study of the optical properties of rainbow and sheen obsidians, Can. Mineral. 39, 57–71 (2001)CrossRefGoogle Scholar
  166. C. Ma, G.R. Rossman, J.A. Miller: The origin of color in “fire” obsidian, Can. Mineral. 45, 551–557 (2007)CrossRefGoogle Scholar
  167. H.M.N. Wright, R.F. Weinberg: Strain localization in vesicular magma: Implications for rheology and fragmentation, Geology 37, 1023–1026 (2009)CrossRefGoogle Scholar
  168. A. Cabrera, R.F. Weinberg, H.M.N. Wright, S. Zlotnik, R.A.F. Cas: Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian, Geology 39, 67–70 (2011)CrossRefGoogle Scholar
  169. J.M. Castro, B. Cordonnier, H. Tuffen, M.J. Tobin, L. Puskar, M.C. Martin, H.A. Bechtel: The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén, Earth Planet. Sci. Lett. 333/334, 63–69 (2012)CrossRefGoogle Scholar
  170. C.I. Schipper, J.M. Castro, H. Tuffen, M.R. James, P. How: Shallow vent architecture during hybrid explosive–effusive activity at Cordón Caulle (Chile, 2011–12): Evidence from direct observations and pyroclast textures, J. Volcanol. Geotherm. Res. 262, 25–37 (2013)CrossRefGoogle Scholar
  171. J.S. Denton, H. Tuffen, J.S. Gilbert, N. Odling: The hydration and alteration of perlite and rhyolite, J. Geol. Soc. Lond. 166, 895–904 (2009)CrossRefGoogle Scholar
  172. W. Vogel: Glass Chemistry (Springer, Berlin, Heidelberg 1994)CrossRefGoogle Scholar
  173. F. Arzilli, L. Mancini, M. Voltolini, M.R. Cicconi, S. Mohammadi, G. Giuli, D. Mainprice, E. Paris, F. Barou, M.R. Carroll: Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms, Lithos 216/217, 93–105 (2015)CrossRefGoogle Scholar
  174. J.M. Castro, P. Beck, H. Tuffen, A.R.L. Nichols, D.B. Dingwell, M.C. Martin: Timescales of spherulite crystallization in obsidian inferred from water concentration profiles, Am. Mineral. 93, 1816–1822 (2008)CrossRefGoogle Scholar
  175. J. Watkins, M. Manga, C. Huber, M. Martin: Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles, Contrib. Mineral. Petrol. 157, 163–172 (2009)CrossRefGoogle Scholar
  176. Y. Erdogan, E. Yasar, P. Gamage Ranjith: Obtaining lightweight concrete using colemanite waste and acidic pumice, Physicochem. Probl. Miner. Process. (2016),  https://doi.org/10.5277/PPMP160103CrossRefGoogle Scholar
  177. E. Le Bourhis: Glass: Mechanics and Technology (Wiley-VCH, Weinheim 2008)Google Scholar
  178. A. Ayadi, N. Stiti, K. Boumchedda, H. Rennai, Y. Lerari: Elaboration and characterization of porous granules based on waste glass, Powder Technol. 208, 423–426 (2011)CrossRefGoogle Scholar
  179. C.S. Ross: Optical properties of glass from Alamogordo, New Mexico, Am. Mineral. 33, 360–362 (1948)Google Scholar
  180. N. Eby, R. Hermes, N. Charnley, J.A. Smoliga: Trinitite—The atomic rock, Geol. Today 26, 180–185 (2010)CrossRefGoogle Scholar
  181. B.P. Glass, F.E. Senftle, D.W. Muenow, K.E. Aggrey, A.N. Thorpe: Atomic bomb glass beads: Tektite and microtektite analogs. In: Proc. 2nd Int. Conf. Nat. Glasses, ed. by J. Konta (1987) pp. 361–369Google Scholar
  182. D. Atkatz, C. Bragg: Determining the yield of the Trinity nuclear device via gamma-ray spectroscopy, Am. J. Phys. 63, 411–413 (1995)CrossRefGoogle Scholar
  183. P. Parekh, T. Semkow, M. Torres, D. Haines: Radioactivity in trinitite six decades later, J. Environ. Radioact. 85, 103–120 (2006)CrossRefGoogle Scholar
  184. C. Wallace, J.J. Bellucci, A. Simonetti, T. Hainley, E.C. Koeman, P.C. Burns: A multi-method approach for determination of radionuclide distribution in trinitite, J. Radioanal. Nucl. Chem. 298, 993–1003 (2013)CrossRefGoogle Scholar
  185. A.F.B. Tompson, C.J. Bruton, G.A. Pawloski, D.K. Smith, W.L. Bourcier, D.E. Shumaker, A.B. Kersting, S.F. Carle, R.M. Maxwell: On the evaluation of groundwater contamination from underground nuclear tests, Environ. Geol. 42, 235–247 (2002)CrossRefGoogle Scholar
  186. A.F.B. Tompson, G.B. Hudson, D.K. Smith, J.R. Hunt: Analysis of radionuclide migration through a 200-m Vadose zone following a 16-year infiltration event, Adv. Water Resour. 29, 281–292 (2006)CrossRefGoogle Scholar
  187. Q.H. Hu, T.P. Rose, M. Zavarin, D.K. Smith, J.E. Moran, P.H. Zhao: Assessing field-scale migration of radionuclides at the Nevada Test Site: “mobile” species, J. Environ. Radioact. 99, 1617–1630 (2008)CrossRefGoogle Scholar
  188. J.I. Pacold, W.W. Lukens, C.H. Booth, D.K. Shuh, K.B. Knight, G.R. Eppich, K.S. Holliday: Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing, J. Appl. Phys. (2016),  https://doi.org/10.1063/1.4948942CrossRefGoogle Scholar
  189. G.N. Eby, N. Charnley, D. Pirrie, R. Hermes, J. Smoliga, G. Rollinson: Trinitite redux: Mineralogy and petrology, Am. Mineral. 100, 427–441 (2015)CrossRefGoogle Scholar
  190. R.E. Hermes, W.B. Strickfaden: A new look at trinitite, Nucl. Weapons J. 2, 2–7 (2005)Google Scholar
  191. J.J. Molgaard, J.D. Auxier, A.V. Giminaro, C.J. Oldham, M.T. Cook, S.A. Young, H.L. Hall: Development of synthetic nuclear melt glass for forensic analysis, J. Radioanal. Nucl. Chem. 304, 1293–1301 (2015)CrossRefGoogle Scholar
  192. W.U. Reimold, R.L. Gibson: “Pseudotachylites” in large impact structures. In: Impact Tectonics, ed. by C. Koeberl, H. Henkel (Springer, Berlin, Heidelberg 2005) pp. 1–53Google Scholar
  193. J.G. Spray: Frictional Melting Processes in Planetary Materials: From Hypervelocity Impact to Earthquakes, Annu. Rev. Earth Planet. Sci. 38, 221–254 (2010)CrossRefGoogle Scholar
  194. T. Kenkmann, U. Hornemann, D. Stöffler: Experimental generation of shock-induced pseudotachylites along lithological interfaces, Meteorit. Planet Sci. 35, 1275–1290 (2000)CrossRefGoogle Scholar
  195. T. Erismann, H. Heuberger, E. Preuss: Der Bimsstein von Köfels (Tirol), ein Bergsturz-‘Friktionit', Tschermaks Mineral. Petrol. Mitt. 24, 67–119 (1977)CrossRefGoogle Scholar
  196. F.V. De Blasio, L. Medici: Microscopic model of rock melting beneath landslides calibrated on the mineralogical analysis of the Köfels frictionite, Landslides 14, 337–350 (2017)CrossRefGoogle Scholar
  197. A.-M. Boullier, T. Ohtani, K. Fujimoto, H. Ito, M. Dubois: Fluid inclusions in pseudotachylytes from the Nojima fault, Japan, J. Geophys. Res. 106, 21965 (2001)CrossRefGoogle Scholar
  198. L. Masch, E. Preuss: Das Vorkommen des Hyalomylonits von Langtang, Himalaya (Nepal), N. Jahrb. Min. 129, 292–311 (1977)Google Scholar
  199. J.T. Weidinger, O. Korup, H. Munack, U. Altenberger, S.A. Dunning, G. Tippelt, W. Lottermoser: Giant rockslides from the inside, Earth Planet. Sci. Lett. 389, 62–73 (2014)CrossRefGoogle Scholar
  200. A. Lin, T. Shimamoto: Selective melting processes as inferred from experimentally generated pseudotachylytes, J. Asian Earth Sci. 16, 533–545 (1998)CrossRefGoogle Scholar
  201. J.G. Spray: Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane, J. Struct. Geol. 9, 49–60 (1987)CrossRefGoogle Scholar
  202. T. Coradin, R. Brayner, C. Gautier, M. Hemadi, P.J. Lopez, J. Livage: From diatoms to bio-inspired materials… and back. In: Proc. 9th Int. Symp. Biominer., ed. by J.L. Arias, M.S. Fernández (2007) pp. 419–430Google Scholar
  203. H.C.W. Skinner, A.H. Jahren: Biomineralization. In: Treatise on Geochemistry, Vol. 8, ed. by H.D. Holland, K.K. Turekian (2003) pp. 1–69Google Scholar
  204. F. Fröhlich: Deep-sea biogenic silica: New structural and analytical data from infrared analysis- geological implications, Terra Nova 1, 267–273 (1989)CrossRefGoogle Scholar
  205. A. Gendron-Badou, T. Coradin, J. Maquet, F. Fröhlich, J. Livage: Spectroscopic characterization of biogenic silica, J. Non-Cryst. Solids 316, 331–337 (2003)CrossRefGoogle Scholar
  206. H.C. Schröder, X. Wang, W. Tremel, H. Ushijima, W.E.G. Müller: Biofabrication of biosilica-glass by living organisms, Nat. Prod. Rep. 25, 455–474 (2008)CrossRefGoogle Scholar
  207. W.E.G. Müller, K. Wendt, C. Geppert, M. Wiens, A. Reiber, H.C. Schröder: Novel photoreception system in sponges?, Biosens. Bioelectron. 21, 1149–1155 (2006)CrossRefGoogle Scholar
  208. V.C. Sundar, A.D. Yablon, J.L. Grazul, M. Ilan, J. Aizenberg: Fibre-optical features of a glass sponge, Nature 424, 899–900 (2003)CrossRefGoogle Scholar
  209. J. Aizenberg, V.C. Sundar, A.D. Yablon, J.C. Weaver, G. Chen: Biological glass fibers: Correlation between optical and structural properties, Proc. Natl. Acad. Sci. USA 101, 3358–3363 (2004)CrossRefGoogle Scholar
  210. R.L. Brutchey, E.S. Yoo, D.E. Morse: Biocatalytic synthesis of a nanostructured and crystalline bimetallic perovskite-like barium oxofluorotitanate at low temperature, J. Am. Chem. Soc. 128, 10288–10294 (2006)CrossRefGoogle Scholar
  211. D. Kisailus, J.H. Choi, J.C. Weaver, W. Yang, D.E. Morse: Enzymatic synthesis and nanostructural control of gallium oxide at low temperature, Adv. Mater. 17, 314–318 (2005)CrossRefGoogle Scholar
  212. D.R. Neuville, P. Courtial, D.B. Dingwell, P. Richet: Thermodynamic and rheological properties of rhyolite and andesite melts, Contrib. Mineral. Petrol. 113, 572–581 (1993)CrossRefGoogle Scholar
  213. D.R. Neuville: Viscosity, structure and mixing in (Ca, Na) silicate melts, Chem. Geol. 229, 28–41 (2006)CrossRefGoogle Scholar
  214. P.G. Debenedetti, F.H. Stillinger: Supercooled liquids and the glass transition, Nature 410, 259–267 (2001)CrossRefGoogle Scholar
  215. C.A. Angell: Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems, J. Non-Cryst. Solids 131–133, 13–31 (1991)CrossRefGoogle Scholar
  216. G.S. Henderson, M.E. Fleet, G.M. Bancroft: An x-ray scattering study of vitreous KFeSi3O8 and NaFeSi3O8 and reinvestigation of vitreous SiO2 using quasi-crystalline modelling, J. Non-Cryst. Solids 68, 333–349 (1984)CrossRefGoogle Scholar
  217. N. Zotov: Structure of natural volcanic glasses: Diffraction versus spectroscopic perspective, J. Non-Cryst. Solids. 323, 1–6 (2003)CrossRefGoogle Scholar
  218. M. Taylor, G.E. Brown: Structure of mineral glasses—I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8, Geochim. Cosmochim. Acta 43, 61–75 (1979)CrossRefGoogle Scholar
  219. J.H. Konnert, J. Karle, G.A. Ferguson: Crystalline ordering in silica and germania glasses, Science 179, 177–179 (1973)CrossRefGoogle Scholar
  220. A.C. Wright, J.A.E. Desa, R.A. Weeks, R.N. Sinclair, D.K. Bailey: Neutron diffraction studies of natural glasses, J. Non-Cryst. Solids 67, 35–44 (1984)CrossRefGoogle Scholar
  221. M. Okuno, H. Iwatsuki, T. Matsumoto: Structural analysis of an obsidian by x-ray diffraction method, Eur. J. Mineral. 8, 1257–1264 (1997)CrossRefGoogle Scholar
  222. G. Heide, B. Müller, G. Kloess, D. Moseler, G.H. Frischat: Structural classification of natural non-crystalline silicates, J. Non-Cryst. Solids 323, 68–71 (2003)CrossRefGoogle Scholar
  223. A.C. Wright, A.J. Leadbetter: Diffraction studies of glass structure, Phys. Chem. Glasses 17, 122–145 (1976)Google Scholar
  224. D.R. Neuville, D. de Ligny, G.S. Henderson: Advances in Raman Spectroscopy Applied to Earth and Material Sciences, Rev. Mineral. Geochem. 78, 509–541 (2014)CrossRefGoogle Scholar
  225. P. McMillan, B. Piriou: The structures and vibrational spectra of crystals and glasses in the silica-alumina system, J. Non-Cryst. Solids 53, 279–298 (1982)CrossRefGoogle Scholar
  226. P.F. McMillan: Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy, Am. Mineral. 69, 622–644 (1984)Google Scholar
  227. B. Champagnon, G. Panczer, C. Chemarin: Differentiation of natural silica glasses using Raman microspectrometry, Geochem 57, 290–296 (1997)Google Scholar
  228. D. Di Genova, D. Morgavi, K.-U. Hess, D.R. Neuville, N. Borovkov, D. Perugini, D.B. Dingwell: Approximate chemical analysis of volcanic glasses using Raman spectroscopy, J. Raman Spectrosc. 46, 1235–1244 (2015)CrossRefGoogle Scholar
  229. A. Ilieva, B. Mihailova, Z. Tsintsov, O. Petrov: Structural state of microcrystalline opals: A Raman spectroscopic study, Am. Mineral. 92, 1325–1333 (2007)CrossRefGoogle Scholar
  230. F.L. Galeener, A.E. Geissberger, R.A. Weeks: On the thermal history of Libyan Desert glass, J. Non-Cryst. Solids 67, 629–636 (1984)CrossRefGoogle Scholar
  231. V.C. Kress, I.S.E. Carmichael: The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states, Contrib. Mineral. Petrol. 108, 82–92 (1991)CrossRefGoogle Scholar
  232. G. Ottonello, R. Moretti, L. Marini, M. Vetuschi Zuccolini: Oxidation state of iron in silicate glasses and melts: A thermochemical model, Chem. Geol. 174, 157–179 (2001)CrossRefGoogle Scholar
  233. C.A. McCammon: Mantle oxidation state and oxygen fugacity: Constraints on mantle chemistry, structure, and dynamics. In: Earth's Deep Mantle: Structure, Composition, and Evolution, ed. by R.D. Van Der Hilst, J.D. Bass, J. Matas, J. Trampert (American Geophysical Union, Washington 2005) pp. 219–240CrossRefGoogle Scholar
  234. C.A. McCammon: Microscopic properties to macroscopic behaviour: The influence of iron electronic state, J. Mineral. Petrol. Sci. 101, 130–144 (2006)CrossRefGoogle Scholar
  235. M. Wilding, S. Webb, D.B. Dingwell: Tektite cooling rates: Calorimetric relaxation geospeedometry applied to a natural glass, Geochim. Cosmochim. Acta 60, 1099–1103 (1996)CrossRefGoogle Scholar
  236. C. Schnetzler, W. Pinson: The chemical composition of tektites. In: Tektites, ed. by J.A. O'Keefe (Univ. of Chicago Press, Chicago 1963) pp. 95–129Google Scholar
  237. J. Philpotts, W. Pinson: New data on the chemical composition and origin of moldavites, Geochim. Cosmochim. Acta 30, 253–266 (1966)CrossRefGoogle Scholar
  238. H.D. Schreiber, L.M. Minnix, G.B. Balazs: The redox state of iron in tektites, J Non.-Cryst. Solids 67, 349–359 (1984)CrossRefGoogle Scholar
  239. B.J. Evans, L.K. Leung: Mössbauer Spectroscopy of Tektites and Other Natural Glasses, J. Phys. Colloq. 40, C2-489–C2-490 (1979)CrossRefGoogle Scholar
  240. R.A. Dunlap: An investigation of Fe oxidation states and site distributions in a Tibetan tektite, Hyperfine Interact. 110, 217–225 (1997)CrossRefGoogle Scholar
  241. S. Rossano, E. Balan, G. Morin, J.P. Bauer, G. Calas, C. Brouder: 57Fe Mössbauer spectroscopy of tektites, Phys. Chem. Miner. 26, 530–538 (1999)CrossRefGoogle Scholar
  242. G. Giuli, S.G. Eeckhout, M.R. Cicconi, C. Koeberl, B.P. Glass, G. Pratesi, E. Paris: North-American microtektites are more oxidized compared to tektites. In: Proc. Large Meteor. Impacts Planet. Evol. IV (2008), Paper id 3044Google Scholar
  243. G. Giuli, M.R. Cicconi, A. Trapananti, S.G. Eeckhout, G. Pratesi, E. Paris, C. Koeberl: Iron redox variations in Australasian Muong Nong-type tektites. In: Proc. 76th Annu. Meteorit. Soc. Meet (2013) p. 5246Google Scholar
  244. D.R. Neuville, L. Hennet, P. Florian, D. de Ligny: In situ high-temperature experiments, Rev. Mineral. Geochem. 78, 779–800 (2014)CrossRefGoogle Scholar
  245. M.R. Cicconi, D.R. Neuville, I. Tannou, F. Baudelet, P. Floury, E. Paris, G. Giuli: Competition between two redox states in silicate melts: An in-situ experiment at the Fe K-edge and Eu L3-edge, Am. Mineral. 100, 1013–1016 (2015)CrossRefGoogle Scholar
  246. M.R. Cicconi, G. Giuli, W. Ertel-Ingrisch, E. Paris, D.B. Dingwell: The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses, Am. Mineral. 100, 1610–1619 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Materials Science and EngineeringFriedrich-Alexander University Erlangen-NürnbergErlangenGermany
  2. 2.Institut de Physique du Globe de Paris CNRS-IPGP-USPCParisFrance

Personalised recommendations