Advertisement

Thermodynamics and Kinetics of Glass

  • Reinhard ConradtEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

This chapter gives an overview of the thermodynamics of the glassy state and the kinetics of glass formation and relaxation. The emphasis is placed on thermodynamics. First, several characteristic features of glasses are discussed in relation to earlier definitions of the glassy state. Then, the glassy state is contrasted to equilibrium states by discussing glass formation versus crystallization, the glass transition versus equilibrium phase transitions, and relaxation phenomena typical of glasses. A major part is devoted to fundamental aspects of the thermodynamics of glasses, comprising a detailed discussion of enthalpy, entropy, and the kinetics of glass formation as derived by nonequilibrium thermodynamics. Another significant part focuses on the quantitative treatment of multicomponent glasses and glass melts by using the formalism of thermodynamics of mixed phases. Tools and models are presented allowing one to approach the properties of glasses relevant to industry. In terms of examples, the emphasis rests on oxide glasses, in specific, silicate glasses. The chapter closes with an outlook on future developments and on challenges for future research work.

References

  1. G. Tammann: Der Glaszustand (Leopold Voss, Leipzig 1933)Google Scholar
  2. I. Gutzow, J. Schmelzer: The Vitreous State (Springer, Berlin 2013)CrossRefGoogle Scholar
  3. J.W.P. Schmelzer, I.S. Gutzow: Glasses and the Glass Transition (Wiley-VCH, Weinheim 2011)CrossRefGoogle Scholar
  4. S.V. Nemilov: Thermodynamic and Kinetic Aspects of the Vitreous State (CRC Press, Boca Raton 1995)Google Scholar
  5. E. Donth: The Glass Transition (Springer, Berlin 2001)CrossRefGoogle Scholar
  6. L. Leuzzi, T.M. Nieuwenhuizen: Thermodynamics of the Glassy State (Taylor & Francis, New York 2007)CrossRefGoogle Scholar
  7. B.O. Mysen, P. Richet: Silicate Glasses and Melts (Elsevier, Amsterdam 2005)Google Scholar
  8. G.W. Scherer: Glass formation and relaxation. In: Glasses and Amorphous Materials, ed. by J. Zarzycki, Materials Science and Technology, Vol. 9, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (Wiley VCH, Weinheim 1991) pp. 119–173Google Scholar
  9. P.H. Gaskell: Models for the structure of amorphous solids. In: Glasses and Amorphous Materials, ed. by J. Zarzycki, Materials Science and Technology, Vol. 9, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (Wiley VCH, Weinheim 1991) pp. 175–278Google Scholar
  10. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin: Relaxation in glassforming liquids and amorphous solids, Appl. Phys. Rev. B 88, 3113–3157 (2000)CrossRefGoogle Scholar
  11. P.G. Debenedetti, F.H. Stillinger: Supercooled liquids and the glass transition, Nature 410, 259–267 (2001)CrossRefGoogle Scholar
  12. C.A. Angell: Formation of glasses from liquids and biopolymers, Science 267, 1924–1935 (1995)CrossRefGoogle Scholar
  13. ASTM C162-05: Standard Terminology of Glass and Glass Products (ASTM International, Conshohocken 2015)Google Scholar
  14. W.H. Zachariasen: The atomic arrangement in glass, J. Chem. Soc. 54, 3841–3851 (1932)CrossRefGoogle Scholar
  15. G.N. Greaves: EXAFS and the structure of glass, J. Non-Cryst. Solids 7, 203–217 (1985)CrossRefGoogle Scholar
  16. L.D. Landau, E.M. Lifshitz: Statistical Physics (Pergamon, Oxford 1969)Google Scholar
  17. J. Frenkel: Kinetic Theory of Liquids (Oxford Clarendon, Oxford 1946)Google Scholar
  18. V.V. Brazhkin, K. Trachenko: Collective excitations and thermodynamics of disordered states: New insights into an old problem, J. Chem. Phys. B 118, 11417 (2014)CrossRefGoogle Scholar
  19. L. Stoch: Real glass crystallization high resolution electron microscopy (HREM) study and classic nucleation theory, Opt. Appl. 35, 819–827 (2005)Google Scholar
  20. J.-F. Poggemann, G. Heide, G.H. Frischat: Direct view of the structure of different glass fracture surfaces by atomic force microscopy, J. Non-Cryst. Solids 326/327, 15–20 (2003)CrossRefGoogle Scholar
  21. F. Simon: Fünfundzwanzig Jahre Nernst'scher Wärmesatz, Ergeb. Exakt. Naturwiss. 9, 222–274 (1930)CrossRefGoogle Scholar
  22. R. Haase: Thermodynamik der Irreversiblen Prozesse (Steinkopff, Darmstadt 1963)CrossRefGoogle Scholar
  23. H. Scholze: Glass – Nature, Structure, and Properties (Springer, Berlin 1990)Google Scholar
  24. R. Clasen: Preparation and sintering of high-density green bodies to high-purity silica glasses, J. Non-Cryst. Solids 89, 223–244 (1987)CrossRefGoogle Scholar
  25. A. Kolmogorov: A statistical theory for the recrystallization of metals, Akad. Nauk. SSSR, Izv., Ser. Mat. 1, 355 (1937)Google Scholar
  26. M. Avrami: Kinetics of phase change. Pt. I. General theory, J. Chem. Phys. 7, 1103–1112 (1939)CrossRefGoogle Scholar
  27. M. Avrami: Kinetics of phase change. Pt. II. Transformation-time relations for random distributed nuclei, J. Chem. Phys. 8, 212–224 (1940)CrossRefGoogle Scholar
  28. M. Avrami: Kinetics of phase change. Pt. III. Granulation, phase change, and microstructure kinetics of phase change, J. Chem. Phys. 9, 177–184 (1941)CrossRefGoogle Scholar
  29. W.A. Johnson, R.F. Mehl: Reaction kinetics in processes of nucleation and growth, Trans. Metall. Soc. AIME 135, 416–442 (1939)Google Scholar
  30. D.R. Uhlmann: A kinetic treatment of glass formation, J. Non-Cryst. Solids 7, 337–248 (1972)CrossRefGoogle Scholar
  31. D. Turnbull: Under what conditions can a glass be formed?, Contemp. Phys. 10, 473–488 (1969)CrossRefGoogle Scholar
  32. P. Richet, Y. Bottinga: Rheology and configurational entropy in silicate melts. In: Reviews in Mineralogy, Vol. 32, ed. by J.F. Stebbins, P.F. McMillan, D.B. Dingwell (Mineralogical Society of America, Washington D.C. 1994)Google Scholar
  33. C.A. Angell: Glass-formers and viscous liquid slowdown since David Turnbull: Enduring puzzles and new twists, MRS Bulletin 33, 544–555 (2008)CrossRefGoogle Scholar
  34. J.W.P. Schmelzer, I. Gutzow: The Prigogine-Defay ratio revisited, J. Chem. Phys. 125, 184511 (2006)CrossRefGoogle Scholar
  35. J.-L. Garden, H.G. Guillou, J. Richard, L. Wondraczek: Configurational Prigogine–Defay ratio, J. Non-Eq. Thermodyn. 37, 143–177 (2012)Google Scholar
  36. C. Mauro, C. Ribeiro, T. Scopigno, G. Ruocco: Prigogine–Defay ratio for an ionic glass-former: Molecular dynamics simulation, J. Phys. Chem. B 113, 3099–3104 (2009)CrossRefGoogle Scholar
  37. U. Buchenau: Structural interpretation of the Prigogine-Defay ratio at the glass transition, Phys. Rev. B 86, 184105 (2012)CrossRefGoogle Scholar
  38. D. Gundermann, U.R. Pedersen, T. Hecksher, N.P. Bailey, B. Jakobsen, T. Christensen, N.B. Olsen, T.B. Schrøder, D. Fragiadakis, R. Casalini, C.M. Roland, J.C. Dyre, K. Niss: Predicting the density-scaling exponent of a glass-forming liquid from Prigogine-Defay ratio measurements, Nat. Phys. 7, 816–821 (2011)CrossRefGoogle Scholar
  39. H.N. Ritland: Density phenomena in the transformation range of aborosilicate crown glass, J. Am. Ceram. Soc. 37, 370–378 (1954)CrossRefGoogle Scholar
  40. C.T. Moynihan, A.J. Easteal, M.A. De Bolt, J. Tucker: Dependence of the fictive temperature of glass on cooling rate, J. Am. Ceram. Soc. 59, 12–16 (1976)CrossRefGoogle Scholar
  41. G.M. Bartenev, N.N. Scheglova: High-temperature relaxation mechanisms in inorganic glasses, J. Non-Cryst. Solids 37, 285–298 (1980)CrossRefGoogle Scholar
  42. A.Q. Tool: Relation between inelastic deformability and thermal expansion of glass in its annealing range, J. Am. Ceram. Soc. 29, 240–253 (1946)CrossRefGoogle Scholar
  43. I. Prigogine: Thermodynamics of Irreversible Processes (Ch. Thomas, Springfield 1955)Google Scholar
  44. I. Prigogine, D. Kondepudi: Modern Thermodynamics (Wiley, Chichester 1998)Google Scholar
  45. O.S. Narayanaswami: A model of structural relaxation in glass, J. Am. Ceram. Soc. 54, 491–498 (1971)CrossRefGoogle Scholar
  46. W. Scherer: Theories of relaxation, J. Non-Cryst. Solids 123, 73–89 (1990)CrossRefGoogle Scholar
  47. O.V. Mazurin: Relaxation phenomena in glass, J. Non-Cryst. Solids 25, 130–169 (1977)CrossRefGoogle Scholar
  48. H. Vogel: Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten, Phys. Z. 22, 645–646 (1921)Google Scholar
  49. G. Fulcher: Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8, 339–355 (1925)CrossRefGoogle Scholar
  50. G. Tammann, W. Hesse: Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten, Z. Anorg. Chem. 156, 245–257 (1926)CrossRefGoogle Scholar
  51. M.L. Williams, R.F. Landel, J.D. Ferry: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem Soc. 77, 3701–3703 (1955)CrossRefGoogle Scholar
  52. G. Adam, J.H. Gibbs: On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 43, 139–146 (1965)CrossRefGoogle Scholar
  53. I. Avramov, A. Milchev: Effect of disorder on diffusion and viscosity in condensed systems, J. Non-Cryst. Solids 104, 253–260 (1988)CrossRefGoogle Scholar
  54. J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106, 19780–19784 (2009)CrossRefGoogle Scholar
  55. G. Meerlender: Viskositäts-Temperaturverhalten des Standardglases I der DGG (Deutsche Glastechnische Gesellschaft), Glastechn. Ber. 47, 1–3 (1974)Google Scholar
  56. Q. Zheng, J.C. Mauro: Viscosity of glass forming systems, J. Am. Ceram. Soc. 100, 6–25 (2017)CrossRefGoogle Scholar
  57. P. Richet, Y. Bottinga: Anorthite, andesine, wollastonite, diopside, cordierite and pyrope: Thermodynamics of melting, glass transitions, and properties of the amorphous phases, Earth Planet. Sci. Lett. 67, 415–432 (1984)CrossRefGoogle Scholar
  58. R.M. Martens, M. Rosenhauer, H. Büttner, K. von Gehlen: Heat capacity and kinetic parameters in the glass transition interval of diopside, anorthite, and albite glass, Chem. Geol. 62, 49–70 (1987)CrossRefGoogle Scholar
  59. K.M. Krupka, R.A. Robie, B.S. Hemingway, D.M. Kerrick, J. Ito: Low-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, enstatite, bronzite, and wollastonite, Am. Mineralogist 70, 249–260 (1985)Google Scholar
  60. K.M. Krupka, B.S. Hemingway, R.A. Robie, D.M. Kerrick: High-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, and wollastonite, Am. Mineral. 70, 261–271 (1985)Google Scholar
  61. P. Richet, R.A. Robie, B.S. Hemingway: Low-temperature heat capacity of diopside glass (CaMgSi2O6): A calorimetric test of the configurational entropy theory applied to the viscosity of liquid silicates, Geochim. Cosmochim. Acta 96, 1521–1533 (1986)CrossRefGoogle Scholar
  62. R.A. Robie, B.S. Hemingway, J.R. Fisher (Eds.): Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at High Temperatures (Geol. Survey Bull. U.S. Gov. Printing Office, Washington 1978)Google Scholar
  63. O. Knacke, O. Kubaschewski, K. Hesselmann (Eds.): Thermochemical Properties of Inorganic Substances, Vols. I–III (Springer, Berlin 1991)Google Scholar
  64. O. Kubaschweski, C.B. Alcock, P.J. Spencer: Materials Thermochemistry (Pergamon, London 1993)Google Scholar
  65. M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald, A.D. Syverud (Eds.): JANAF Thermochemical Tables (The Am. Ceram. Soc., Westerville 1985)Google Scholar
  66. S.F. Edwards, R.B.S. Oakeshott: Theory of powders, Physica A 159, 1080–1090 (1989)CrossRefGoogle Scholar
  67. L.V. Woodcock: Thermodynamic description of liquid-state limits, J. Phys. Chem. B 116, 3735–3744 (2012)CrossRefGoogle Scholar
  68. A. Takada, R. Conradt, P. Richet: Residual entropy and structural disorder in glass: A review of history and an attempt to resolve two apparently conflicting views, J. Non-Cryst. Solids 429, 33–44 (2015)CrossRefGoogle Scholar
  69. W. Nernst: Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen, Nachr. Kgl. Ges. Wiss. Gött. 1, 1–40 (1906)Google Scholar
  70. W. Nernst: Über die Beziehung zwischen Wärmeentwicklung und maximaler Arbeit bei kondensierten Systemen, Ber. Kgl. Preuss. Akad. Wiss. 52, 933–940 (1906)Google Scholar
  71. M. Planck: Vorlesungen über Thermodynamik (Veit, Leipzig 1911)Google Scholar
  72. G.E. Gibson, W.F. Giauque: The third law of thermodynamics. Evidence from the specific heats of glycerol that the entropy of glass exceeds that of a crystal at the absolute zero, J. Am. Chem. Soc. 45, 93–104 (1923)CrossRefGoogle Scholar
  73. W.F. Giauque, J.O. Clayton: The heat capacity and entropy of nitrogen. Heat of vaporization. Vapor pressure of solid and liquid. The reaction 1/2 N2 + 1/2 O2 = NO from spectroscopic data, J. Am. Chem. Soc. 55, 4875–4889 (1933)CrossRefGoogle Scholar
  74. F. Simon: Zum Prinzip von der Unerreichbarkeit des absoluten Nullpunktes, Z. Phys. 41, 806–809 (1927)CrossRefGoogle Scholar
  75. F. Simon: Über den Zustand der unterkühlten Flüssigkeiten und Gläser, Z. Anorg. Allg. Chem. 203, 219–227 (1931)CrossRefGoogle Scholar
  76. K. Clusius, E. Bartholomé: The heat of rotation of the molecule HD and D2 and the nuclear spin of D atoms, Z. Elektrochem. Angew. Phys. Chem. 40, 524–529 (1934)Google Scholar
  77. J. Wilks: The Third Law of Thermodynamics (Oxford Univ. Press, Oxford 1961)Google Scholar
  78. F. Simon: The third law of thermodynamics – A historical survey. 40th Guthrie Lecture (The Physical Society, Oxford 1956)Google Scholar
  79. J. Jäckle: On the glass transition and the residual entropy of glasses, Philos. Mag. B 44, 533–545 (1981)CrossRefGoogle Scholar
  80. J.C. Mauro, M.M. Smedskjaer: Statistical mechanics of glass, J. Non-Cryst. Solids 396/397, 41–53 (2014)CrossRefGoogle Scholar
  81. R.G. Palmer: Broken ergodicity, Adv. Phys. 31, 669–735 (1982)CrossRefGoogle Scholar
  82. F. Simon, F. Lange: Zur Frage der Entropie amorpher Substanzen, Z. Phys. 38, 227–236 (1926)CrossRefGoogle Scholar
  83. B. Champagnon, C. Chemarin, P. Richet: Fictive temperature and medium range order in silicate glasses: Comparison between heat capacity measurements and the Boson peak, Philos. Mag. B 77, 663–669 (1998)CrossRefGoogle Scholar
  84. E. Duval, A. Boukenter, T. Archibat: Vibrational dynamics and the structure of glasses, Phys. Condens. Matter 2, 10227–10234 (1990)CrossRefGoogle Scholar
  85. A.B. Bestul, S.S. Chang: Excess entropy at glass transformation, J. Chem. Phys. 40, 3731–3733 (1964)CrossRefGoogle Scholar
  86. A.B. Bestul, S.S. Chang: Limits on calorimetric residual entropies of glasses, J. Chem. Phys. 43, 4532–4533 (1965)CrossRefGoogle Scholar
  87. J.P. Sethna: Statistical mechanics: Entropy, Order Parameters, and Complexity (Oxford Univ. Press, Oxford 2006)Google Scholar
  88. I. Gutzow, J.W.P. Schmelzer: The third principle of thermodynamics and the zero-point entropy of glasses. History and new developments, J. Non-Cryst. Solids 355, 581–594 (2009)CrossRefGoogle Scholar
  89. P.D. Guijrati: Hierarchy of relaxation times and residual entropy: A non-equilibrium approach, Entropy 20, 149 (2018)CrossRefGoogle Scholar
  90. R. Conradt: Thermodynamics of glass melting. In: Fiberglass and Glass Technology, ed. by F.T. Wallenberger, P.A. Bingham (Springer, Berlin 2010)Google Scholar
  91. J.C. Mauro, P.K. Gupta, R.J. Loucks: Continuously broken ergodicity, J. Chem. Phys. 126, 184511 (2007)CrossRefGoogle Scholar
  92. J.C. Mauro, P.K. Gupta, R.J. Loucks, A.K. Varshneya: Non-equilibrium entropy of glasses formed by continuous cooling, J. Non-Cryst. Solids 355, 600–606 (2009)CrossRefGoogle Scholar
  93. J.C. Mauro, R.J. Loucks, S. Sen: Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems, J. Chem. Phys. 133, 164503 (2010)CrossRefGoogle Scholar
  94. M. Goldstein: On the reality of residual entropies of glasses and disordered crystals, J. Chem. Phys. 128, 154510 (2008)CrossRefGoogle Scholar
  95. G.P. Johari: Configurational and residual entropies of nonergodic crystals and the entropy's behavior on glass formation, J. Chem. Phys. 132, 124509 (2010)CrossRefGoogle Scholar
  96. W. Kauzmann: The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rev. 43, 219–256 (1948)CrossRefGoogle Scholar
  97. H.-J. Hoffmann: Energy and entropy of crystals, melts and glasses or what is wrong in Kauzmann's paradox?, Materialwiss. Werkstofftech. 43, 528–533 (2012)CrossRefGoogle Scholar
  98. M. Allibert, R. Parra, C. Saint-Jours, M. Tmar: Thermodynamic activity data for slag systems. In: Slag Atlas, ed. by M. Allibert, et al. (Stahleisen, Düsseldorf 1995)Google Scholar
  99. R. Conradt: On volatilization from glass melts, Glastechn. Ber. 59, 34–52 (1986)Google Scholar
  100. Phase Equilibria Diagrams PC Database Ver. 2.1, Ver. 4.2. (The American Ceramic Society, Westerville 1998, 2017)Google Scholar
  101. G. Eriksson, K. Hack: ChemSage – A computer program for the calculation of complex chemical equilibria, Metall. Trans. B 21, 1013–1023 (1990)CrossRefGoogle Scholar
  102. Thermfact Montreal and GTT Technologies Aachen, FACTSAGE Software Ver. 5.2 (2004)Google Scholar
  103. W.E.S. Turner: Studies on volatilization from glass melts, Glastechn. Ber. 12, 409–413 (1934)Google Scholar
  104. A. Navrotsky, R. Hon, D.F. Weill, D.J. Henry: Thermochemistry of glasses and liquids in the systems CaMgSi2O6-CaAl2Si3O8-NaAlSi3O8, SiO2-CaAl2Si2O8-NaAlSi3O8 and SiO2-Al2O3-CaO-Na2O, Geochim. Cosmochim. Acta 44, 1409–1423 (1980)Google Scholar
  105. R. Conradt: Chemical structure, medium range order, and crystalline reference state of multicomponent oxide liquids and glasses, J. Non-Cryst. Solids 345/346, 16–23 (2004)CrossRefGoogle Scholar
  106. R. Conradt: The industrial glass melting process. In: The SGTE Casebook. Thermodynamics at Work, ed. by K. Hack (CRC Press, Boca Raton 2008) pp. 282–303CrossRefGoogle Scholar
  107. K. Philipps, R.P. Stoffel, R. Dronskowski, R. Conradt: Experimental and theoretical investigation of elastic moduli of silicate glasses and crystals, Front. Mater. 4, 1–9 (2017)CrossRefGoogle Scholar
  108. W. Cross, J.P. Iddings, L.V. Pirrson, H.S. Washington: A quantitative chemico-mineralogical classification and nomenclature of igneous rocks, J. Geol. 10, 555–590 (1902)CrossRefGoogle Scholar
  109. B.A. Shakhmatkin, N.M. Vedishcheva, M.M. Shultz, A.C. Wright: The thermodynamic properties of oxide glasses and glass-forming liquids and their chemical structure, J. Non-Cryst. Solids 177, 249–256 (1994)CrossRefGoogle Scholar
  110. N.M. Vedishcheva, B.A. Shakhmatkin, M.M. Shultz, A.C. Wright: The thermodynamic modeling of glass properties: A practical proposition?, J. Non-Cryst. Solids 196, 239–243 (1996)CrossRefGoogle Scholar
  111. B.A. Shakhmatkin, N.M. Vedishcheva, A.C. Wright: Thermodynamic modeling of the structure of glasses and melts: Single-component, binary and ternary systems, J. Non-Cryst. Solids 293–295, 312–317 (2001)Google Scholar
  112. W.G. Dorfeld: Structural thermodynamics of alkali silicates, Phys. Chem. Glasses 29, 179–186 (1988)Google Scholar
  113. D.N. Rego, G.K. Sigworth, W.O. Philbrook: Thermodynamic study of Na2O-SiO2 melts at 1300° and 1400°C, Metall. Trans. B 16, 313–323 (1985)CrossRefGoogle Scholar
  114. P.W. Anderson: Through the glass lightly, Science 267, 1615–1616 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.uniglassAC GmbHAachenGermany

Personalised recommendations