Advertisement

Silicate Glasses

  • Charles Le LosqEmail author
  • Maria Rita Cicconi
  • G. Neville Greaves
  • Daniel R. Neuville
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Silicate glasses are important cultural, societal, and geological materials. Geologic glasses testify to the igneous activity of the Earth, and represent an important source of tools and ornamental objects during the Paleolithic. Nowadays, silicate glasses are used to make technical materials, such as smartphone screens or glass matrix for stabilizing hazardous radioactive wastes. Therefore, silicate glasses are central to the history of the Earth and humanity. The compositional landscape of natural and industrial silicate glasses is vast, with various elements that all affect the glass properties and structure differently. The \(\mathrm{SiO_{4}}\) tetrahedral framework, the backbone of silicate glasses, is variously modified by the introduction of network modifier metal cations or network former aluminum cations. Industrial and geologic silicate glasses further contain multivalent elements (e. g., \(\mathrm{Fe^{2+/3+}}\)), rare-earth elements, and volatile elements (H, C, S, Cl, F, I) that play different roles in the glass structure and properties. This chapter proposes to review the links between the structure, the properties, and the chemical composition of silicate glasses.

silicate glass structure properties aluminium multivalent elements volatile elements 

Notes

Acknowledgements

Constructive comments by L. Calvez, J. D. Musgraves and an anonymous reviewer were very much appreciated and allowed improving the manuscript. C.L.L. acknowledges fundings from ARC Laureate Fellowship FL130100066 to Hugh St. C. O'Neill during the redaction of this manuscript. M.R.C. thanks her colleagues from WW3 for useful discussions.

References

  1. 13.1
    M.J. Henrivaux: Le verre et le cristal (P. Vicq-Dunod et Cie, Flammarion, Paris 1897)Google Scholar
  2. 13.2
    Pliny the Elder: The origin of glass. In: The Natural History, Vol. 65 (Taylor and Francis, London 1855), translated by J. Bostock and H.T. RileyGoogle Scholar
  3. 13.3
    S.C. Rasmussen: Origins of glass: Myth and known history. In: How Glass Changed the World (Springer, Berlin, Heidelberg 2012) pp. 11–19CrossRefGoogle Scholar
  4. 13.4
    S.C. Rasmussen: How Glass Changed the World (Springer, Heidelberg 2012)CrossRefGoogle Scholar
  5. 13.5
    W. Gandy: The Romance of Glass-making: A Sketch of the History of Ornamental Glass (S.W. Partridge, London 1898)Google Scholar
  6. 13.6
    A. Neri, C. Merret, J. Kunckel: L’Art de la Verrerie (Druant et Pissot, Paris 1752)Google Scholar
  7. 13.7
    A.L. Oppenheim, R.H. Brill, D. Barag, A. Von Saldern: Glass and Glassmaking in Ancient Mesopotamia. An Edition of the Cuneiform Texts which Contain Instructions for Glassmakers, with a Catalogue of Surviving Objects (The Corning Museum of Glass Press, Corning 1970)Google Scholar
  8. 13.8
    C.R. Kurkjian, W.R. Prindle: Perspectives on the history of glass composition, J. Am. Ceram. Soc. 81, 795–813 (1998)CrossRefGoogle Scholar
  9. 13.9
    R.H. Brill, B.A. Rising: Chemical Analyses of Early Glasses (The Corning Museum of Glass Press, Corning 1999)Google Scholar
  10. 13.10
    S.D. Fontaine, D. Foy: L’épave Ouest-Embiez 1, Var: le commerce maritime du verre brut et manufacturé en Méditerranée occidentale dans l’Antiquité, Rev. Archéo. Narbonn. 40, 235–265 (2007)CrossRefGoogle Scholar
  11. 13.11
    S.C. Rasmussen: Reinventing an old material: Venice and the new glass. In: How Glass Changed the World, ed. by S.C. Rasmussen (Springer, Berlin, Heidelberg 2012) pp. 37–50CrossRefGoogle Scholar
  12. 13.12
    J. Vernioles: Les sites vitrifiés de France: inventaire et mode de réalisation, Ph.D. Thesis (Univ. Paris, Paris 2013)Google Scholar
  13. 13.13
    L. Brodsley, F.C. Frank, J.W. Steeds: Prince Rupert’s drops, Notes Rec. R Soc. J. Hist. Sci. 41, 1–26 (1986)CrossRefGoogle Scholar
  14. 13.14
    D.R. Neuville, L. Cormier, D. Caurant, L. Montagne: From Glass to Crystal. Nucleation, Growth and Phase Separation: From Research to Applications (EDP Sciences, Les Ulis 2017)Google Scholar
  15. 13.15
    C. Le Losq, D.R. Neuville: Molecular structure, configurational entropy and viscosity of silicate melts: Link through the Adam and Gibbs theory of viscous flow, J. Non-Cryst. Solids 463, 175–188 (2017)CrossRefGoogle Scholar
  16. 13.16
    C. Le Losq: Rôle des éléments alcalins et de l’eau sur les propriétés et la structure des aluminosilicates fondus et vitreux: Implications volcanologiques, Ph.D. Thesis (Univ. Paris VII – Denis Diderot, Paris 2012)Google Scholar
  17. 13.17
    D.R. Neuville, P. Richet: Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets, Geochim. Cosmochim. Acta 55, 1011–1019 (1991)CrossRefGoogle Scholar
  18. 13.18
    D.R. Neuville: Viscosity, structure and mixing in (Ca, Na) silicate melts, Chem. Geol. 229, 28–41 (2006)CrossRefGoogle Scholar
  19. 13.19
    H. Doweidar: The density of alkali silicate glasses in relation to the microstructure, J. Non-Cryst. Solids 194, 155–162 (1996)CrossRefGoogle Scholar
  20. 13.20
    C. Le Losq, D.R. Neuville, P. Florian, G.S. Henderson, D. Massiot: The role of Al3+ on rheology and structural changes of sodium silicate and aluminosilicate glasses and melts, Geochim. Cosmochim. Acta 126, 495–517 (2014)CrossRefGoogle Scholar
  21. 13.21
    R.L. Mozzi, B.E. Warren: The structure of vitreous silica, J. Appl. Crystallogr. 2, 164–172 (1969)CrossRefGoogle Scholar
  22. 13.22
    J. Neuefeind, K.-D. Liss: Bond angle distribution in amorphous germania and silica, Ber. Bunsenges. Phys. Chem. 100, 1341–1349 (1996)CrossRefGoogle Scholar
  23. 13.23
    T.M. Clark, P.J. Grandinetti, P. Florian, J.F. Stebbins: Correlated structural distributions in silica glass, Phys. Rev. B (2004),  https://doi.org/10.1103/PhysRevB.70.064202CrossRefGoogle Scholar
  24. 13.24
    M.G. Tucker, D.A. Keen, M.T. Dove, K. Trachenko: Refinement of the Si–O–Si bond angle distribution in vitreous silica, J. Phys. Condens. Matter 17, S67 (2005)CrossRefGoogle Scholar
  25. 13.25
    W.J. Malfait, W.E. Halter, R. Verel: 29Si NMR spectroscopy of silica glass: T1 relaxation and constraints on the Si–O–Si bond angle distribution, Chem. Geol. 256, 269–277 (2008)CrossRefGoogle Scholar
  26. 13.26
    W.H. Zachariasen: The atomic arrangement in glass, J. Am. Chem. Soc. 54, 3841–3851 (1932)CrossRefGoogle Scholar
  27. 13.27
    B.E. Warren: X-ray determination of the structure of glass, J. Am. Ceram. Soc. 17, 249–254 (1934)CrossRefGoogle Scholar
  28. 13.28
    P.Y. Huang, S. Kurasch, A. Srivastava, V. Skakalova, J. Kotakoski, A.V. Krasheninnikov, R. Hovden, Q. Mao, J.C. Meyer, J. Smet, D.A. Muller, U. Kaiser: Direct imaging of a two-dimensional silica glass on graphene, Nano Lett. 12, 1081–1086 (2012)CrossRefGoogle Scholar
  29. 13.29
    G.S. Henderson, M.E. Fleet, G.M. Bancroft: An x-ray scattering study of vitreous KFeSi3O8 and NaFeSi3O8 and reinvestigation of vitreous SiO2 using quasi-crystalline modelling, J. Non-Cryst. Solids 68, 333–349 (1984)CrossRefGoogle Scholar
  30. 13.30
    F. Seifert, B.O. Mysen, D. Virgo: Three-dimensional network structure of quenched melts (glass) in the systems SiO2–NaAlO2, SiO2–CaAl2O4 and SiO2–MgAl2O4, Am. Mineral. 67, 696–717 (1982)Google Scholar
  31. 13.31
    R.J. Bell, P. Dean: The structure of vitreous silica: Validity of the random network theory, Philos. Mag. 25, 1381–1398 (1972)CrossRefGoogle Scholar
  32. 13.32
    H. Shintani, H. Tanaka: Universal link between the boson peak and transverse phonons in glass, Nat. Mater. 7, 870–877 (2008)CrossRefGoogle Scholar
  33. 13.33
    U. Bucheneau, M. Prager, N. Nücker, A.J. Dianoux, N. Ahmad, W.A. Phillips: Low-frequency modes in vitreous silica, Phys. Rev. B 34, 5665–5673 (1986)CrossRefGoogle Scholar
  34. 13.34
    A.I. Chumakov, A. Monaco, W.A. Crichton, A. Bosak, R. Rüffer, A. Meyer, F. Kargl, L. Comez, D. Fioretto, H. Giefers, S. Roitsch, G. Wortmann, M.H. Manghnami, A. Hushur, Q. Williams, J. Balogh, K. Parlinski, P. Jochym, P. Piekarz: Equivalence of the boson peak in glasses to the transverse acoustic van Hove singularity in crystals, Phys. Rev. Lett. 106, 225501 (2011)CrossRefGoogle Scholar
  35. 13.35
    E. Courtens, M. Foret, B. Hehlen, R. Vacher: The vibrational modes of glasses, Solid State Commun. 117, 187–200 (2001)CrossRefGoogle Scholar
  36. 13.36
    R.J. Bell, N.F. Bird, P. Dean: The vibrational spectra of vitreous silica, germania and beryllium fluoride, J. Phys. C Proc. Phys. Soc. 1, 299–303 (1968)CrossRefGoogle Scholar
  37. 13.37
    R.J. Bell, P. Dean, D.C. Hibbins-Butler: Localization of normal modes in vitreous silica, germania and beryllium fluoride, J. Phys. Chem. Solid State Phys. 3, 2111–2118 (1970)CrossRefGoogle Scholar
  38. 13.38
    R.J. Bell, P. Dean, D.C. Hibbins-Butler: Normal mode assignments in vitreous silica, germania and beryllium fluoride, J. Phys. C Solid State Phys. 4, 1214–1220 (1971)CrossRefGoogle Scholar
  39. 13.39
    S.K. Sharma, J.F. Mammone, M.F. Nicol: Raman investigation of ring configurations in vitreous silica, Nature 292, 140–141 (1981)CrossRefGoogle Scholar
  40. 13.40
    P.F. McMillan, B. Piriou: The structures and vibrational spectra of crystals and glasses in the silica-alumina system, J. Non-Cryst. Solids 53, 279–298 (1982)CrossRefGoogle Scholar
  41. 13.41
    F.L. Galeener: Planar rings in glasses, Solid State Commun. 44, 1037–1040 (1982)CrossRefGoogle Scholar
  42. 13.42
    F.L. Galeener: Planar rings in vitreous silica, J. Non-Cryst. Solids 49, 53–62 (1982)CrossRefGoogle Scholar
  43. 13.43
    P.F. McMillan: Structural studies of silicate glasses and melts – Applications and limitations of Raman spectroscopy, Am. Mineral. 69, 622–644 (1984)Google Scholar
  44. 13.44
    P.F. McMillan, G.H. Wolf, B.T. Poe: Vibrational spectroscopy of silicate liquids and glasses, Chem. Geol. 96, 351–366 (1992)CrossRefGoogle Scholar
  45. 13.45
    P.F. McMillan, B.T. Poe, P. Gillet, B. Reynard: A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy, Geochim. Cosmochim. Acta 58, 3653–3664 (1994)CrossRefGoogle Scholar
  46. 13.46
    A. Pasquarello, R. Car: Identification of Raman defect lines as signatures of ring structures in vitreous silica, Phys. Rev. Lett. 80(23), 5145–5147 (1998)CrossRefGoogle Scholar
  47. 13.47
    P. Umari, X. Gonze, A. Pasquarello: Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman spectrum, Phys. Rev. Lett. 90, 1–4 (2003)CrossRefGoogle Scholar
  48. 13.48
    A. Rahmani, M. Benoit, C. Benoit: Signature of small rings in the Raman spectra of normal and compressed amorphous silica: A combined classical and ab initio study, Phys. Rev. B 68, 184202 (2003)CrossRefGoogle Scholar
  49. 13.49
    F.L. Galeener, R.A. Barrio, E. Martinez, R.J. Elliott: Vibrational decoupling of rings in amourphous solids, Phys. Rev. Lett. 53, 2429–2432 (1984)CrossRefGoogle Scholar
  50. 13.50
    S.K. Sharma, J.A. Philpotts, D.W. Matson: Ring distributions in alkali- and alkaline-earth aluminosilicate framework glasses – A Raman spectroscopic study, J. Non-Cryst. Solids 71, 403–410 (1985)CrossRefGoogle Scholar
  51. 13.51
    P. Umari, A. Pasquarello: Modeling of the Raman spectrum of vitreous silica: Concentration of small ring structures, Physics B 316/317, 572–574 (2002)CrossRefGoogle Scholar
  52. 13.52
    A.G. Kalampounias: A low-frequency Raman study of glassy, supercooled and molten silica and the preservation of the boson peak in the equilibrium liquid state, J. Non-Cryst. Solids 352, 4619–4624 (2006)CrossRefGoogle Scholar
  53. 13.53
    F.L. Galeener: Band limits and the vibrational spectra of tetrahedral glasses, Phys. Rev. B 19, 4292–4397 (1979)CrossRefGoogle Scholar
  54. 13.54
    P.N. Sen, M.F. Thorpe: Phonons in AX2 glasses: From molecular to band-like modes, Phys. Rev. B 15, 4030–4038 (1977)CrossRefGoogle Scholar
  55. 13.55
    B.O. Mysen, L.W. Finger, D. Virgo, F.A. Seifert: Curve-fitting of Raman spectra of silicate glasses, Am. Mineral. 67, 686–695 (1982)Google Scholar
  56. 13.56
    J. Sarnthein, A. Pasquarello, R. Car: Origin of the high-frequency doublet in the vibrational spectrum of vitreous SiO2, Science 275, 1925–1927 (1997)CrossRefGoogle Scholar
  57. 13.57
    G. Spiekermann, M. Steele-MacInnis, C. Schmidt, S. Jahn: Vibrational mode frequencies of silica species in SiO2–H2O liquids and glasses from ab initio molecular dynamics, J. Chem. Phys. 136, 154501 (2012)CrossRefGoogle Scholar
  58. 13.58
    C. Le Losq, D.R. Neuville: Effect of the Na/K mixing on the structure and the rheology of tectosilicate silica-rich melts, Chem. Geol. 346, 57–71 (2013)CrossRefGoogle Scholar
  59. 13.59
    J.P. Rino, I. Ebbsjö, R.K. Kalia, A. Nakano, P. Vashishta: Structure of rings in vitreous SiO2, Phys. Rev. B 47, 3053–3062 (1993)CrossRefGoogle Scholar
  60. 13.60
    M. Benoit, S. Ispas, P. Jund, R. Jullien: Model of silica glass from combined classical and ab initio molecular-dynamics simulations, Eur. Phys. J. B 13, 631–636 (2000)CrossRefGoogle Scholar
  61. 13.61
    X. Yuan, A.N. Cormack: Si–O–Si bond angle and torsion angle distribution in vitreous silica and sodium silicate glasses, J. Non-Cryst. Solids 319, 31–43 (2003)CrossRefGoogle Scholar
  62. 13.62
    H.F. Poulsen, J. Neuefeind, H.-B. Neumann, J.R. Schneider, M.D. Zeidler: Amorphous silica studied by high energy x-ray diffraction, J. Non-Cryst. Solids 188, 63–74 (1995)CrossRefGoogle Scholar
  63. 13.63
    F. Mauri, A. Pasquarello, B.G. Pfrommer, Y.-G. Yoon, S.G. Louie: Si–O–Si bond-angle distribution in vitreous silica from first-principles 29Si NMR analysis, Phys. Rev. B 62, R4786–R4789 (2000)CrossRefGoogle Scholar
  64. 13.64
    A.C. Wright: Neutron scattering from vitreous silica. V. The structure of vitreous silica: What have we learned from 60 years of diffraction studies?, J. Non-Cryst. Solids 179, 84–115 (1994)CrossRefGoogle Scholar
  65. 13.65
    L. Huang, F. Yuan, M. Guerette, Q. Zhao, S. Sundararaman: Tailoring structure and properties of silica glass aided by computer simulation, J. Mater. Res. 32, 174–182 (2017)CrossRefGoogle Scholar
  66. 13.66
    R.M. Van Ginhoven, H. Jónsson, L.R. Corrales: Silica glass structure generation for ab initio calculations using small samples of amorphous silica, Phys. Rev. B (2005),  https://doi.org/10.1103/PhysRevB.71.024208CrossRefGoogle Scholar
  67. 13.67
    A. Navrotsky, K.L. Geisinger, P. McMillan, G.V. Gibbs: The tetrahedral framework in glasses and melts – Inferences from molecular orbital calculations and implications for structure, thermodynamics, and physical properties, Phys. Chem. Miner. 11, 284–298 (1985)CrossRefGoogle Scholar
  68. 13.68
    A. Pasquarello: First-principles simulation of vitreous systems, Curr. Opin. Solid State Mater. Sci. 5, 503–508 (2001)CrossRefGoogle Scholar
  69. 13.69
    P. Richet, Y. Bottinga: Glass transitions and thermodynamic properties of amorphous SiO2, NaAlSinO2n+2 and KAlSi3O8, Geochim. Cosmochim. Acta 48, 453–470 (1984)CrossRefGoogle Scholar
  70. 13.70
    V.K. Leko, N.J. Gusakova, E.V. Meshcheryakova, T.I. Prokhorova: The effect of impurity alkali oxides, hydroxyl groups, Al2O3, and Ga2O3 on the viscosity of vitreous silica, Sov. J. Glass Phys. Chem. 3, 204–210 (1977)Google Scholar
  71. 13.71
    C.A. Angell: Spectroscopy simulation and scattering, and the medium range order problem in glass, J. Non-Cryst. Solids 73, 1–17 (1985)CrossRefGoogle Scholar
  72. 13.72
    C.A. Angell: Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems, J. Non-Cryst. Solids 131, 13–31 (1991)CrossRefGoogle Scholar
  73. 13.73
    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin: Relaxation in glassforming liquids and amorphous solids, J. Appl. Phys. 88, 3113–3157 (2000)CrossRefGoogle Scholar
  74. 13.74
    A.M. Hofmeister, A.G. Whittington: Effects of hydration, annealing, and melting on heat transport properties of fused quartz and fused silica from laser-flash analysis, J. Non-Cryst. Solids 358, 1072–1082 (2012)CrossRefGoogle Scholar
  75. 13.75
    R. Brückner: Properties and structure of vitreous silica. I, J. Non-Cryst. Solids 5, 123–175 (1970)CrossRefGoogle Scholar
  76. 13.76
    M. Heili, B. Poumellec, E. Burov, C. Gonnet, C. Le Losq, D.R. Neuville, M. Lancry: The dependence of Raman defect bands in silica glasses on densification revisited, J. Mater. Sci. 51, 1659–1666 (2016)CrossRefGoogle Scholar
  77. 13.77
    R.J. Hemley, H.K. Mao, P.M. Bell, B.O. Mysen: Raman spectroscopy of SiO2 glass at high pressure, Phys. Rev. Lett. 57, 747–750 (1986)CrossRefGoogle Scholar
  78. 13.78
    C. Weigel, M. Foret, B. Hehlen, M. Kint, S. Clément, A. Polian, R. Vacher, B. Rufflé: Polarized Raman spectroscopy of SiO2 under rare-gas compression, Phys. Rev. B 93, 224303 (2016)CrossRefGoogle Scholar
  79. 13.79
    J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, M. Foret: Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study, Phys. Rev. B 78, 184203 (2008)CrossRefGoogle Scholar
  80. 13.80
    B. Hehlen: Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra, J. Phys. Condens. Matter 22, 025401 (2010)CrossRefGoogle Scholar
  81. 13.81
    A. Dietzel: Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten, Z. Elektrochem. 48, 9–23 (1942)Google Scholar
  82. 13.82
    S. Ispas, T. Charpentier, F. Mauri, D.R. Neuville: Structural properties of lithium and sodium tetrasilicate glasses: Molecular dynamics simulations versus NMR experimental and first-principles data, Solid State Sci. 12, 183–192 (2010)CrossRefGoogle Scholar
  83. 13.83
    D. Virgo, B.O. Mysen, I. Kushiro: Anionic constitution of 1-atmosphere silicate melts: Implications for the structure of igneous melts, Science 208, 1371–1373 (1980)CrossRefGoogle Scholar
  84. 13.84
    G. Engelhardt, M. Nofz, K. Forkel, F.G. Wihsmann, M. Mägi, A. Samoson, E. Lippmaa: Structural studies of calcium aluminosilicate glasses by high resolution solid state 29Si and 27Al magic angle spinning nuclear magnetic resonance, Phys. Chem. Glasses 26, 157–165 (1985)Google Scholar
  85. 13.85
    H. Maekawa, T. Maekawa, K. Kawamura, T. Yokokawa: The structural groups of alkali silicate glasses determined from 29Si MAS-NMR, J. Non-Cryst. Solids 127, 53–64 (1991)CrossRefGoogle Scholar
  86. 13.86
    C.M. Schramm, B.H.W.S. de Jong, V.E. Parziale: 29Si magic angle spinning NMR study on local silicon environments in amorphous and crystalline lithium silicates, J. Am. Chem. Soc. 106, 4396–4402 (1984)CrossRefGoogle Scholar
  87. 13.87
    R. Dupree, D. Holland, D.S. Williams: The structure of binary alkali silicate glasses, J. Non-Cryst. Solids 81, 185–200 (1986)CrossRefGoogle Scholar
  88. 13.88
    J.F. Emerson, P.E. Stallworth, P.J. Bray: High-Field 29Si NMR studies of alkali silicate glasses, J. Non-Cryst. Solids 113, 253–259 (1989)CrossRefGoogle Scholar
  89. 13.89
    S. Sen, R.E. Youngman: NMR study of Q-speciation and connectivity in K2O–SiO2 glasses with high silica content, J. Non-Cryst. Solids 331, 100–107 (2003)CrossRefGoogle Scholar
  90. 13.90
    P. Zhang, C. Dunlap, P. Florian, P.J. Grandinetti, I. Farnan, J.F. Stebbins: Silicon site distributions in an alkali silicate glass derived by two-dimensional 29Si nuclear magnetic resonance, J. Non-Cryst. Solids 204, 294–300 (1996)CrossRefGoogle Scholar
  91. 13.91
    M.C. Davis, D.C. Kaseman, S.M. Parvani, K.J. Sanders, P.J. Grandinetti, D. Massiot, P. Florian: Q(n) species distribution in K2O · 2 SiO2 glass by 29Si magic angle flipping NMR, J. Phys. Chem. A 114, 5503–5508 (2010)CrossRefGoogle Scholar
  92. 13.92
    M.E. Brandriss, J.F. Stebbins: Effects of temperature on the structures of silicate liquids: 29Si NMR results, Geochim. Cosmochim. Acta 52, 2659–2669 (1988)CrossRefGoogle Scholar
  93. 13.93
    B.O. Mysen, J.D. Frantz: Structure of silicate melts at high temperature: In-situ measurements in the system BaO–SiO2, Am. Mineral. 78, 699–709 (1993)Google Scholar
  94. 13.94
    B.O. Mysen, J.D. Frantz: Structure and properties of alkali silicate melts at magmatic temperatures, Eur. J. Mineral. 5, 393–407 (1993)CrossRefGoogle Scholar
  95. 13.95
    B.O. Mysen: Structure and properties of magmatic liquids: From haplobasalt to haploandesite, Geochim. Cosmochim. Acta 63, 95–112 (1999)CrossRefGoogle Scholar
  96. 13.96
    B.O. Mysen, D. Virgo, F.A. Seifert: The structure of silicate melts: Implications for chemical and physical properties of natural magma, Rev. Geophys. 20, 353–383 (1982)CrossRefGoogle Scholar
  97. 13.97
    B.O. Mysen, D. Virgo, F.A. Seifert: Relationships between properties and structure of aluminosilicate melts, Am. Mineral. 70, 88–105 (1985)Google Scholar
  98. 13.98
    R. Dupree, D. Holland, P.W. McMillan, R.F. Pettifer: The structure of soda-silica glasses: A mas NMR study, J. Non-Cryst. Solids 68, 399–410 (1984)CrossRefGoogle Scholar
  99. 13.99
    B.A. Shakhmatkin, N.M. Vedishcheva, M.M. Shultz, A.C. Wright: The thermodynamic properties of oxide glasses and glass-forming liquids and their chemical structure, J. Non-Cryst. Solids 177, 249–256 (1994)CrossRefGoogle Scholar
  100. 13.100
    N.M. Vedishcheva, B.A. Shakhmatkin, M.M. Shultz, A.C. Wright: The thermodynamic modelling of glass properties: A practical proposition?, J. Non-Cryst. Solids 196, 239–243 (1996)CrossRefGoogle Scholar
  101. 13.101
    J. Schneider, V.R. Mastelaro, E.D. Zanotto, B.A. Shakhmatkin, N.M. Vedishcheva, A.C. Wright, H. Panepucci: Qn distribution in stoichiometric silicate glasses: thermodynamic calculations and 29Si high resolution NMR measurements, J. Non-Cryst. Solids 325, 164–178 (2003)CrossRefGoogle Scholar
  102. 13.102
    A. Gaddam, L. Montagne, J.M.F. Ferreira: Statistics of silicate units in binary glasses, J. Chem. Phys. 145, 124505 (2016)CrossRefGoogle Scholar
  103. 13.103
    L. Olivier, X. Yuan, A.N. Cormack, C. Jäger: Combined 29Si double quantum NMR and MD simulation studies of network connectivities of binary Na2O · SiO2 glasses: New prospects and problems, J. Non-Cryst. Solids 293, 53–66 (2001)CrossRefGoogle Scholar
  104. 13.104
    J. Machacek, O. Gedeon, M. Liska: Group connectivity in binary silicate glasses, J. Non-Cryst. Solids 352, 2173–2179 (2006)CrossRefGoogle Scholar
  105. 13.105
    C.J.B. Fincham, F.D. Richardson: The behaviour of sulphur in silicate and aluminate melts, Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 223, 40–62 (1954)CrossRefGoogle Scholar
  106. 13.106
    R. Moretti: Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts, Ann. Geophys. (2005),  https://doi.org/10.4401/ag-3221CrossRefGoogle Scholar
  107. 13.107
    G. Ottonello, R. Moretti, L. Marini, M. Vetuschi Zuccolini: Oxidation state of iron in silicate glasses and melts: A thermochemical model, Chem. Geol. 174, 157–179 (2001)CrossRefGoogle Scholar
  108. 13.108
    P. Zhang, P.J. Grandinetti, J.F. Stebbins: Anionic species determination in CaSiO3 glass using two-dimensional 29Si NMR, J. Phys. Chem. B 101, 4004–4008 (1997)CrossRefGoogle Scholar
  109. 13.109
    H.W. Nesbitt, G.M. Bancroft, G.S. Henderson, R. Ho, K.N. Dalby, Y. Huang, Z. Yan: Bridging, non-bridging and free (O2-) oxygen in Na2O-SiO2 glasses: An x-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study, J. Non-Cryst. Solids 357, 170–180 (2011)CrossRefGoogle Scholar
  110. 13.110
    R. Sawyer, H.W. Nesbitt, R.A. Secco: High resolution x-ray photoelectron spectroscopy (XPS) study of K2O–SiO2 glasses: Evidence for three types of O and at least two types of Si, J. Non-Cryst. Solids 358, 290–302 (2012)CrossRefGoogle Scholar
  111. 13.111
    H.W. Nesbitt, G.M. Bancroft, G.S. Henderson, R. Sawyer, R.A. Secco: Direct and indirect evidence for free oxygen (O2-) in MO-silicate glasses and melts (M = Mg, Ca, Pb), Am. Mineral. 100, 2566–2578 (2015)CrossRefGoogle Scholar
  112. 13.112
    H. Flood, T. Förland: The acidic and basic properties of oxides, Acta Chem. Scand. 1, 592–604 (1947)CrossRefGoogle Scholar
  113. 13.113
    J.A. Duffy: A review of optical basicity and its applications to oxidic systems, Geochim. Cosmochim. Acta 57, 3961–3970 (1993)CrossRefGoogle Scholar
  114. 13.114
    D.G. Fraser: Activities of trace elements in silicate melts, Geochim. Cosmochim. Acta 39, 1525–1530 (1975)CrossRefGoogle Scholar
  115. 13.115
    D.G. Fraser: Thermodynamic properties of silicate melts. In: Thermodynamics in Geology, ed. by D.G. Fraser (D. Reidel, Dordrecht 1977) pp. 301–325CrossRefGoogle Scholar
  116. 13.116
    R.W. Young, J.A. Duffy, G.J. Hassall, Z. Xu: Use of optical basicity concept for determining phosphorus and sulphur slag–metal partitions, Ironmak. Steelmak. 19, 201–219 (1992)Google Scholar
  117. 13.117
    J.A. Duffy, M.D. Ingram: Ultraviolet spectra of Pb2+ and Bi3+ in glasses, Phys. Chem. Glasses 15, 34–35 (1974)Google Scholar
  118. 13.118
    J.A. Duffy, M.D. Ingram: Optical basicity—IV: Influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses, J. Inorg. Nucl. Chem. 37, 1203–1206 (1975)CrossRefGoogle Scholar
  119. 13.119
    D.J. Sosinsky, I.D. Sommerville: The composition and temperature dependence of the sulfide capacity of metallurgical slags, Metall. Trans. B 17, 331–337 (1986)CrossRefGoogle Scholar
  120. 13.120
    D.R. Gaskell: On the correlation between the distribution of phosphorus between slag and metal and the theoretical optical basicity of the slag, Trans. Iron Steel Inst. Japan 22, 997–1000 (1982)CrossRefGoogle Scholar
  121. 13.121
    C.K. Jørgensen: Absorption Spectra and Chemical Bonding in Complexes (Pergamon, Oxford 1962)Google Scholar
  122. 13.122
    J.A. Duffy, M.D. Ingram: An interpretation of glass chemistry in terms of the optical basicity concept, J. Non-Cryst. Solids 21, 373–410 (1976)CrossRefGoogle Scholar
  123. 13.123
    H. Doweidar: Density-structure correlations in Na2O–Al2O3–SiO2 glasses, J. Non-Cryst. Solids 240, 55–65 (1998)CrossRefGoogle Scholar
  124. 13.124
    H. Doweidar: Density-structure correlations in silicate glasses, J. Non-Cryst. Solids 249, 194–200 (1999)CrossRefGoogle Scholar
  125. 13.125
    H. Doweidar, S. Feller, M. Affatigato, B. Tischendorf, C. Ma, E. Hammarsten: Density and molar volume of extremely modified alkali silicate glasses, Phys. Chem. Glasses 40, 339–344 (1999)Google Scholar
  126. 13.126
    R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  127. 13.127
    J.F. Stebbins: Cation sites in mixed-alkali oxide glasses: Correlations of NMR chemical shift data with site size and bond distance, Solid State Ion. 112, 137–141 (1998)CrossRefGoogle Scholar
  128. 13.128
    L. Cormier, D. Ghaleb, D.R. Neuville, J.-M. Delaye, G. Calas: Chemical dependence of network topology of calcium aluminosilicate glasses: A computer simulation study, J. Non-Cryst. Solids 332, 255–270 (2003)CrossRefGoogle Scholar
  129. 13.129
    D.R. Neuville, L. Cormier, A.-M. Flank, R.J. Prado, P. Lagarde: Na K-edge XANES spectra of minerals and glasses, Eur. J. Mineral. 16, 809–816 (2004)CrossRefGoogle Scholar
  130. 13.130
    A.M. George, J.F. Stebbins: Dynamics of Na in sodium aluminosilicate glasses and liquids, Phys. Chem. Miner. 23, 526–534 (1996)CrossRefGoogle Scholar
  131. 13.131
    H. Uhlig, M.J. Hoffmann, H.-P. Lamparter, F. Aldinger, R. Bellissent, S. Steeb: Short-range and medium-range order in lithium silicate glasses, Part I: Diffraction experiments and results, J. Am. Ceram. Soc. 79, 2833–2838 (1996)CrossRefGoogle Scholar
  132. 13.132
    N. Zotov, H. Keppler: The structure of sodium tetrasilicate glass from neutron diffraction, reverse Monte Carlo simulations and Raman spectroscopy, Phys. Chem. Miner. 25, 259–267 (1998)CrossRefGoogle Scholar
  133. 13.133
    S. Ispas, M. Benoit, P. Jund, R. Jullien: Structural properties of glassy and liquid sodium tetrasilicate: Comparison between ab initio and classical molecular dynamics simulations, J. Non-Cryst. Solids 307–310, 946–955 (2002)CrossRefGoogle Scholar
  134. 13.134
    J. Du, L.R. Corrales: Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: A molecular dynamics study, J. Non-Cryst. Solids 352, 3255–3269 (2006)CrossRefGoogle Scholar
  135. 13.135
    P. Richet: Heat capacity of silicate glasses, Chem. Geol. 62, 111–124 (1987)CrossRefGoogle Scholar
  136. 13.136
    P. Richet: Viscosity and configurational entropy of silicate melts, Geochim. Cosmochim. Acta 48, 471–483 (1984)CrossRefGoogle Scholar
  137. 13.137
    G. Adam, J.H. Gibbs: On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 43, 139–146 (1965)CrossRefGoogle Scholar
  138. 13.138
    B.O. Mysen: Experimental, in situ, high-temperature studies of properties and structure of silicate melts relevant to magmatic processes, Eur. J. Mineral. 7, 745–766 (1995)CrossRefGoogle Scholar
  139. 13.139
    M.J. Toplis: Quantitative links between microscopic properties and viscosity of liquids in the system SiO2–Na2O, Chem. Geol. 174, 321–331 (2001)CrossRefGoogle Scholar
  140. 13.140
    S.K. Lee, J.F. Stebbins: Nature of cation mixing and ordering in Na-Ca silicate glasses and melts, J. Phys. Chem. B 107, 3141–3148 (2003)CrossRefGoogle Scholar
  141. 13.141
    S.K. Lee, B.O. Mysen, G.D. Cody: Chemical order in mixed-cation silicate glasses and melts, Phys. Rev. B (2003),  https://doi.org/10.1103/PhysRevB.68.214206CrossRefGoogle Scholar
  142. 13.142
    A.M. George, J.F. Stebbins: Structure and dynamics of magnesium in silicate melts: A high-temperature 25Mg NMR study, Am. Mineral. 83, 1022–1029 (1998)CrossRefGoogle Scholar
  143. 13.143
    D. Li, M. Peng, T. Murata: Coordination and local structure of magnesium in silicate minerals and glasses: Mg K-edge XANES study, Can. Mineral. 37, 199–206 (1999)Google Scholar
  144. 13.144
    D.R. Neuville, L. Cormier, A.-M. Flank, V. Briois, D. Massiot: Al speciation and Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-edge x-ray absorption spectroscopy, Chem. Geol. 213, 153–163 (2004)CrossRefGoogle Scholar
  145. 13.145
    G.N. Greaves: EXAFS and the structure of glass, J. Non-Cryst. Solids 71, 203–217 (1985)CrossRefGoogle Scholar
  146. 13.146
    L. Cormier, D.R. Neuville: Ca and Na environments in Na2O–CaO–Al2O3–SiO2 glasses: Influence of cation mixing and cation-network interactions, Chem. Geol. 213, 103–113 (2004)CrossRefGoogle Scholar
  147. 13.147
    G.N. Greaves, A. Fontaine, P. Lagarde, D. Raoux, S.J. Gurman: Local structure of silicate glasses, Nature 293, 611–616 (1981)CrossRefGoogle Scholar
  148. 13.148
    G.N. Greaves: EXAFS, glass structure and diffusion, Philos. Mag. B 60, 793–800 (1989)CrossRefGoogle Scholar
  149. 13.149
    G.N. Greaves, K.L. Ngai: Reconciling ionic-transport properties with atomic structure in oxide glasses, Phys. Rev. B 52, 6358–6380 (1995)CrossRefGoogle Scholar
  150. 13.150
    J.P. Poole: Viscosité à basse temperature des verres alcalino-silicatés, Verres Refract. 2, 222–228 (1948)Google Scholar
  151. 13.151
    J.P. Poole: Low-temperature viscosity of alkali silicate glasses, J. Am. Ceram. Soc. 32, 230–233 (1949)CrossRefGoogle Scholar
  152. 13.152
    O. Mazurin, E. Borisovskii: Neutralization reduction of electrical conductivity in silica glasses, Sov. Phys.-Tech. Phys. 2, 243–254 (1957)Google Scholar
  153. 13.153
    S.K. Lee, J.F. Stebbins: The distribution of sodium ions in aluminosilicate glasses: A high-field Na-23 MAS and 3Q MAS NMR study, Geochim. Cosmochim. Acta 67, 1699–1709 (2003)CrossRefGoogle Scholar
  154. 13.154
    S.K. Lee: Microscopic origins of macroscopic properties of silicate melts and glasses at ambient and high pressure: Implications for melt generation and dynamics, Geochim. Cosmochim. Acta 69, 3695–3710 (2005)CrossRefGoogle Scholar
  155. 13.155
    S. Lee, J. Stebbins: Effects of the degree of polymerization on the structure of sodium silicate and aluminosilicate glasses and melts: An 17O NMR study, Geochim. Cosmochim. Acta 73, 1109–1119 (2009)CrossRefGoogle Scholar
  156. 13.156
    J.O. Isard: The mixed alkali effect in glass, J. Non-Cryst. Solids 1, 235–261 (1969)CrossRefGoogle Scholar
  157. 13.157
    D.E. Day: Mixed alkali glasses – Their properties and uses, J. Non-Cryst. Solids 21, 343–372 (1976)CrossRefGoogle Scholar
  158. 13.158
    B. Roling, M.D. Ingram: Mixed alkaline–earth effects in ion conducting glasses, J. Non-Cryst. Solids 265, 113–119 (2000)CrossRefGoogle Scholar
  159. 13.159
    C. Calahoo, J.W. Zwanziger: The mixed modifier effect in ionic conductivity and mechanical properties for xMgO-(50-x)CaO-50SiO2 glasses, J. Non-Cryst. Solids 460, 6–18 (2017)CrossRefGoogle Scholar
  160. 13.160
    W. Hummel, J. Arndt: Variation of viscosity with temperature and composition in the plagioclase system, Contrib. Mineral. Petrol. 90, 83–92 (1985)CrossRefGoogle Scholar
  161. 13.161
    J.C. Lapp, J.E. Shelby: The mixed alkali effect in lithium-sodium aluminosilicate glasses, J. Non-Cryst. Solids 95/96, 889–896 (1987)CrossRefGoogle Scholar
  162. 13.162
    J. Kjeldsen, M.M. Smedskjaer, J.C. Mauro, R.E. Youngman, L. Huang, Y. Yue: Mixed alkaline earth effect in sodium aluminosilicate glasses, J. Non-Cryst. Solids 369, 61–68 (2013)CrossRefGoogle Scholar
  163. 13.163
    M.M. Smedskjaer, S.J. Rzoska, M. Bockowski, J.C. Mauro: Mixed alkaline earth effect in the compressibility of aluminosilicate glasses, J. Chem. Phys. 140, 054511 (2014)CrossRefGoogle Scholar
  164. 13.164
    G.H. Frischat, J.F. Poggemann, G. Heide: Nanostructure and atomic structure of glass seen by atomic force microscopy, J. Non-Cryst. Solids 345/346, 197–202 (2004)CrossRefGoogle Scholar
  165. 13.165
    B. Vessal, G.N. Greaves, P.T. Marten, A.V. Chadwick, R. Mole, S. Houde-Walter: Cation microsegregation and ionic mobility in mixed alkali glasses, Nature 356, 504–506 (1992)CrossRefGoogle Scholar
  166. 13.166
    J. Du, A.N. Cormack: The medium range structure of sodium silicate glasses: A molecular dynamics simulation, J. Non-Cryst. Solids 349, 66–79 (2004)CrossRefGoogle Scholar
  167. 13.167
    A. Meyer, J. Horbach, W. Kob, F. Kargl, H. Schober: Channel formation and intermediate range order in sodium silicate melts and glasses, Phys. Rev. Lett. 93, 1–4 (2004)Google Scholar
  168. 13.168
    F. Kargl, A. Meyer: Inelastic neutron scattering on sodium aluminosilicate melts: Sodium diffusion and intermediate range order, Chem. Geol. 213, 165–172 (2004)CrossRefGoogle Scholar
  169. 13.169
    F. Kargl, A. Meyer, M.M. Koza, H. Schober: Formation of channels for fast-ion diffusion in alkali silicate melts: A quasielastic neutron scattering study, Phys. Rev. B 74, 014304 (2006)CrossRefGoogle Scholar
  170. 13.170
    F. Kargl, A. Meyer: Na-relaxation and intermediate range structure in sodium–potassium silicate melts, Chem. Geol. 256, 278–285 (2008)CrossRefGoogle Scholar
  171. 13.171
    P. Florian, K.E. Vermillion, P.J. Grandinetti, I. Farnan, J.F. Stebbins: Cation distribution in mixed alkali disilicate glasses, J. Am. Chem. Soc. 118, 3493–3497 (1996)CrossRefGoogle Scholar
  172. 13.172
    F. Angeli, O. Villain, S. Schuller, S. Ispas, T. Charpentier: Insight into sodium silicate glass structural organization by multinuclear NMR combined with first-principles calculations, Geochim. Cosmochim. Acta 75, 2453–2469 (2011)CrossRefGoogle Scholar
  173. 13.173
    S. Balasubramanian, K.J. Rao: A molecular dynamics study of the mixed alkali effect in silicate glasses, J. Non-Cryst. Solids 181, 157–174 (1995)CrossRefGoogle Scholar
  174. 13.174
    D.W. Matson, S.K. Sharma, J.A. Philpotts: The structure of high-silica alkali-silicate glasses. A Raman spectroscopic investigation, J. Non-Cryst. Solids 58, 323–352 (1983)CrossRefGoogle Scholar
  175. 13.175
    C. Le Losq, B.O. Mysen, G.D. Cody: Water and magmas: Insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid-state NMR spectroscopies, Prog. Earth Planet. Sci. (2015),  https://doi.org/10.1186/s40645-015-0052-7CrossRefGoogle Scholar
  176. 13.176
    U. Voigt, H. Lammert, H. Eckert, A. Heuer: Cation clustering in lithium silicate glasses: Quantitative description by solid-state NMR and molecular dynamics simulations, Phys. Rev. B 72, 064207 (2005)CrossRefGoogle Scholar
  177. 13.177
    Corning: How It’s Made | Glass Composition | Corning Gorilla Glass, https://www.corning.com/gorillaglass/worldwide/en/technology/how-it-s-made.html, Accessed 9 Jan 2018 (2018)
  178. 13.178
    A.E. Saal, S.R. Hart, N. Shimizu, E.H. Hauri, G.D. Layne: Pb isotopic variability in melt inclusions from oceanic island basalts, Polynesia, Science 282, 1481–1484 (1998)CrossRefGoogle Scholar
  179. 13.179
    A.J. Berry, L.V. Danyushevsky, H.S.C. O’Neill, M. Newville, S.R. Sutton: Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle, Nature 455, 960–963 (2008)CrossRefGoogle Scholar
  180. 13.180
    C. Spandler, H.S.C. O’Neill, V.S. Kamenetsky: Survival times of anomalous melt inclusions from element diffusion in olivine and chromite, Nature 447, 303–306 (2007)CrossRefGoogle Scholar
  181. 13.181
    E. Roedder, P.W. Weiblen: Silicate liquid immiscibility in lunar magmas, evidenced by melt inclusions in lunar rocks, Science 167, 641–644 (1970)CrossRefGoogle Scholar
  182. 13.182
    E.H. Hauri, T. Weinreich, A.E. Saal, M.C. Rutherford, J.A.V. Orman: High pre-eruptive water contents preserved in lunar melt inclusions, Science 333, 213–215 (2011)CrossRefGoogle Scholar
  183. 13.183
    L.T. Elkins-Tanton: Magma oceans in the inner solar system, Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012)CrossRefGoogle Scholar
  184. 13.184
    D.E. Day, G.E. Rindone: Properties of soda aluminosilicate glasses: III, coordination of aluminum ions, J. Am. Ceram. Soc. 45, 579–581 (1962)CrossRefGoogle Scholar
  185. 13.185
    E.F. Riebling: Structure of sodium aluminosilicate melts containing at least \({\mathrm{50}}\,{\mathrm{mol\%}}\) SiO2 at 1500 °C, J. Chem. Phys. 44, 2857–2865 (1966)CrossRefGoogle Scholar
  186. 13.186
    T.D. Taylor, G.E. Rindone: Properties of soda aluminosilicate glasses: V, Low-temperature viscosities, J. Am. Ceram. Soc. 53, 692–695 (1970)CrossRefGoogle Scholar
  187. 13.187
    D.A. McKeown, F.L. Galeener, G.E. Brown Jr: Raman studies of Al coordination in silica-rich sodium aluminosilicate glasses and some related minerals, J. Non-Cryst. Solids 68, 361–378 (1984)CrossRefGoogle Scholar
  188. 13.188
    P.F. McMillan, R.J. Kirkpatrick: Al coordination in magnesium aluminosilicate glasses, Am. Mineral. 77, 898–900 (1992)Google Scholar
  189. 13.189
    J.F. Stebbins, S. Kroeker, S.K. Lee, T.J. Kiczenski: Quantification of five- and six-coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27Al NMR, J. Non-Cryst. Solids 275, 1–6 (2000)CrossRefGoogle Scholar
  190. 13.190
    M.J. Toplis, S.C. Kohn, M.E. Smith, J.F. Poplett: Fivefold-coordinated aluminum in tectosilicate glasses observed by triple quantum MAS NMR, Am. Mineral. 85, 1556–1560 (2000)CrossRefGoogle Scholar
  191. 13.191
    D.R. Neuville, L. Cormier, D. Massiot: Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy, Chem. Geol. 229, 173–185 (2006)CrossRefGoogle Scholar
  192. 13.192
    P. Florian, N. Sadiki, D. Massiot, J.P. Coutures: 27Al NMR study of the structure of lanthanum- and yttrium-based aluminosilicate glasses and melts, J. Phys. Chem. B 111, 9747–9757 (2007)CrossRefGoogle Scholar
  193. 13.193
    J.F. Stebbins, Z. Xu: NMR evidence for excess non-bridging oxygen in an aluminosilicate glass, Nature 390, 60–62 (1997)CrossRefGoogle Scholar
  194. 13.194
    B.O. Mysen, M.J. Toplis: Structural behavior of Al3+ in peralkaline, metaluminous, and peraluminous silicate melts and glasses at ambient pressure, Am. Mineral. 92, 933–946 (2007)CrossRefGoogle Scholar
  195. 13.195
    L.M. Thompson, J.F. Stebbins: Non-bridging oxygen and high-coordinated aluminum in metaluminous and peraluminous calcium and potassium aluminosilicate glasses: High-resolution 17O and 27Al MAS NMR results, Am. Mineral. 96, 841–853 (2011)CrossRefGoogle Scholar
  196. 13.196
    J.R. Allwardt, J.F. Stebbins, B.C. Schmidt, D.J. Frost, A.C. Withers, M.M. Hirschmann: Aluminum coordination and the densification of high-pressure aluminosilicate glasses, Am. Mineral. 90, 1218–1222 (2005)CrossRefGoogle Scholar
  197. 13.197
    K.E. Kelsey, J.F. Stebbins, D.M. Singer, G.E. Brown Jr., J.L. Mosenfelder, P.D. Asimow: Cation field strength effects on high pressure aluminosilicate glass structure: Multinuclear NMR and La XAFS results, Geochim. Cosmochim. Acta 73, 3914–3933 (2009)CrossRefGoogle Scholar
  198. 13.198
    L.M. Thompson, J.F. Stebbins: Non-stoichiometric non-bridging oxygens and five-coordinated aluminum in alkaline earth aluminosilicate glasses: Effect of modifier cation size, J. Non-Cryst. Solids 358, 1783–1789 (2012)CrossRefGoogle Scholar
  199. 13.199
    E.I. Morin, J. Wu, J.F. Stebbins: Modifier cation (Ba, Ca, La, Y) field strength effects on aluminum and boron coordination in aluminoborosilicate glasses: The roles of fictive temperature and boron content, Appl. Phys. A 116, 479–490 (2014)CrossRefGoogle Scholar
  200. 13.200
    S. Takahashi, D.R. Neuville, H. Takebe: Thermal properties, density and structure of percalcic and peraluminus CaO–Al2O3–SiO2 glasses, J. Non-Cryst. Solids 411, 5–12 (2015)CrossRefGoogle Scholar
  201. 13.201
    A.N. Novikov, D.R. Neuville, L. Hennet, Y. Gueguen, D. Thiaudière, T. Charpentier, P. Florian: Al and Sr environment in tectosilicate glasses and melts: Viscosity, Raman and NMR investigation, Chem. Geol. (2016),  https://doi.org/10.1016/j.chemgeo.2016.11.023CrossRefGoogle Scholar
  202. 13.202
    S. Iftekhar, B. Pahari, K. Okhotnikov, A. Jaworski, B. Stevensson, J. Grins, M. Edén: Properties and structures of RE2O3–Al2O3–SiO2 (RE = Y, Lu) glasses probed by molecular dynamics simulations and solid-state NMR: The roles of aluminum and rare-earth ions for dictating the microhardness, J. Phys. Chem. C 116, 18394–18406 (2012)CrossRefGoogle Scholar
  203. 13.203
    D.R. Neuville, L. Cormier, D. Massiot: Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation, Geochim. Cosmochim. Acta 68, 5071–5079 (2004)CrossRefGoogle Scholar
  204. 13.204
    J.R. Allwardt, B.T. Poe, J.F. Stebbins: The effect of fictive temperature on Al coordination in high-pressure (10 GPa) sodium aluminosilicate glasses, Am. Mineral. 90, 1453–1457 (2005)CrossRefGoogle Scholar
  205. 13.205
    K. Kanehashi, J.F. Stebbins: In situ high temperature 27Al NMR study of structure and dynamics in a calcium aluminosilicate glass and melt, J. Non-Cryst. Solids 353, 4001–4010 (2007)CrossRefGoogle Scholar
  206. 13.206
    D.R. Neuville, L. Cormier, D. de Ligny, J. Roux, A.-M. Flank, P. Lagarde: Environments around Al, Si, and Ca in aluminate and aluminosilicate melts by x-ray absorption spectroscopy at high temperature, Am. Mineral. 93, 228–234 (2008)CrossRefGoogle Scholar
  207. 13.207
    W.J. Malfait, R. Verel, P. Ardia, C. Sanchez-Valle: Aluminum coordination in rhyolite and andesite glasses and melts: Effect of temperature, pressure, composition and water content, Geochim. Cosmochim. Acta 77, 11–26 (2012)CrossRefGoogle Scholar
  208. 13.208
    S. Bista, J.F. Stebbins, W.B. Hankins, T.W. Sisson: Aluminosilicate melts and glasses at 1 to 3 GPa: Temperature and pressure effects on recovered structural and density changes, Am. Mineral. 100, 2298–2307 (2015)CrossRefGoogle Scholar
  209. 13.209
    J.F. Stebbins, E.V. Dubinsky, K. Kanehashi, K.E. Kelsey: Temperature effects on non-bridging oxygen and aluminum coordination number in calcium aluminosilicate glasses and melts, Geochim. Cosmochim. Acta 72, 910–925 (2008)CrossRefGoogle Scholar
  210. 13.210
    L.M. Thompson, J.F. Stebbins: Interaction between composition and temperature effects on non-bridging oxygen and high-coordinated aluminum in calcium aluminosilicate glasses, Am. Mineral. 98, 1980–1987 (2013)CrossRefGoogle Scholar
  211. 13.211
    J. Wu, J.F. Stebbins: Quench rate and temperature effects on boron coordination in aluminoborosilicate melts, J. Non-Cryst. Solids 356, 2097–2108 (2010)CrossRefGoogle Scholar
  212. 13.212
    T.J. Kiczenski, L.-S. Du, J. Stebbins: The effect of fictive temperature on the structure of E-glass: A high resolution, multinuclear NMR study, J. Non-Cryst. Solids 351, 3571–3578 (2005)CrossRefGoogle Scholar
  213. 13.213
    S.K. Lee, G.D. Cody, Y. Fei, B.O. Mysen: The effect of Na/Si on the structure of sodium silicate and aluminosilicate glasses quenched from melts at high pressure: A multi-nuclear (Al-27, Na-23, O-17) 1D and 2D solid-state NMR study, Chem. Geol. 229, 162–172 (2006)CrossRefGoogle Scholar
  214. 13.214
    M.J. Toplis, D.B. Dingwell, T. Lenci: Peraluminous viscosity maxima in Na2O–Al2O3–SiO2 liquids: The role of triclusters in tectosilicate melts, Geochim. Cosmochim. Acta 61, 2605–2612 (1997)CrossRefGoogle Scholar
  215. 13.215
    G. Gruener, O. Odier, D. De Sousa Meneses, P. Florian, P. Richet: Bulk and local dynamics in glass-forming liquids: A viscosity, electrical conductivity, and NMR study of aluminosilicate melts, Phys. Rev. B 64, 024206 (2001)CrossRefGoogle Scholar
  216. 13.216
    D. Neuville, L. Cormier, V. Montouillout, D. Massiot: Local Al site distribution in aluminosilicate glasses by 27Al MQMAS NMR, J. Non-Cryst. Solids 353, 180–184 (2007)CrossRefGoogle Scholar
  217. 13.217
    W. Loewenstein: The distribution of aluminium in the tetrahedra of silicates and aluminates, Am. Mineral. 39, 92–97 (1954)Google Scholar
  218. 13.218
    S.K. Lee, J.F. Stebbins: The degree of aluminum avoidance in aluminosilicate glasses, Am. Mineral. 84, 937–945 (1999)CrossRefGoogle Scholar
  219. 13.219
    S.K. Lee, J.F. Stebbins: Extent of intermixing among framework units in silicate glasses and melts, Geochim. Cosmochim. Acta 66, 303–309 (2002)CrossRefGoogle Scholar
  220. 13.220
    B.O. Mysen, A. Lucier, G.D. Cody: The structural behavior of Al3+ in peralkaline melts and glasses in the system Na2O-Al2O3-SiO2, Am. Mineral. 88, 1668–1678 (2003)CrossRefGoogle Scholar
  221. 13.221
    S.K. Lee, J. Stebbins: Al–O–Al and Si–O–Si sites in framework aluminosilicate glasses with Si/Al = 1: Quantification of framework disorder, J. Non-Cryst. Solids 270, 260–264 (2000)CrossRefGoogle Scholar
  222. 13.222
    Y. Xiang, J. Du, M.M. Smedskjaer, J.C. Mauro: Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations, J. Chem. Phys. 139, 044507 (2013)CrossRefGoogle Scholar
  223. 13.223
    M. Bauchy: Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: The role of the potential, J. Chem. Phys. 141, 024507 (2014)CrossRefGoogle Scholar
  224. 13.224
    S.K. Lee, H.-I. Kim, E.J. Kim, K.Y. Mun, S. Ryu: Extent of disorder in magnesium aluminosilicate glasses: Insights from 27Al and 17O NMR, J. Phys. Chem. C 120, 737–749 (2016)CrossRefGoogle Scholar
  225. 13.225
    D.R. Neuville, B.O. Mysen: Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO2-NaAlO2, Geochim. Cosmochim. Acta 60, 1727–1737 (1996)CrossRefGoogle Scholar
  226. 13.226
    M.J. Toplis, D.B. Dingwell, K.-U. Hess, T. Lenci: Viscosity, fragility, and configurational entropy of melts along the join SiO2-NaAlSiO4, Am. Mineral. 82, 979–990 (1997)CrossRefGoogle Scholar
  227. 13.227
    R. Vuilleumier, N. Sator, B. Guillot: Computer modeling of natural silicate melts: What can we learn from ab initio simulations, Geochim. Cosmochim. Acta 73, 6313–6339 (2009)CrossRefGoogle Scholar
  228. 13.228
    W. Li, S.H. Garofalini: Molecular dynamics simulation of lithium diffusion in Li2O–Al2O3–SiO2 glasses, Solid State Ion. 166, 365–373 (2004)CrossRefGoogle Scholar
  229. 13.229
    D.M. Zirl, S.H. Garofalini: Structure of sodium aluminosilicate glasses, J. Am. Ceram. Soc. 73, 2848–2856 (1990)CrossRefGoogle Scholar
  230. 13.230
    W.E. Jackson, G.E. Brown, C.W. Ponader: X-ray absorption study of the potassium coordination environment in glasses from the NaAlSi3O8-KAlSi3O8 binary, J. Non-Cryst. Solids 93, 311–322 (1987)CrossRefGoogle Scholar
  231. 13.231
    V. Petkov, T. Gerber, B. Himmel: Atomic ordering in Cax/2AlxSi1-xO2 glasses (x = 0, 0.34, 0.5, 0.68) by energy-dispersive x-ray diffraction, Phys. Rev. B 58, 11982 (1998)CrossRefGoogle Scholar
  232. 13.232
    V. Petkov, S.J.L. Billinge, S.D. Shastri, B. Himmel: Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction, Phys. Rev. Lett. 85, 3436 (2000)CrossRefGoogle Scholar
  233. 13.233
    L. Cormier, D.R. Neuville, G. Calas: Structure and properties of low-silica calcium aluminosilicate glasses, J. Non-Cryst. Solids 274, 110–114 (2000)CrossRefGoogle Scholar
  234. 13.234
    M. Guignard, L. Cormier: Environments of Mg and Al in MgO–Al2O3–SiO2 glasses: A study coupling neutron and x-ray diffraction and reverse Monte Carlo modeling, Chem. Geol. 256, 111–118 (2008)CrossRefGoogle Scholar
  235. 13.235
    D. Iuga, C. Morais, Z. Gan, D.R. Neuville, L. Cormier, D. Massiot: NMR heteronuclear correlation between quadrupolar nuclei in solids, J. Am. Chem. Soc. 127, 11540–11541 (2005)CrossRefGoogle Scholar
  236. 13.236
    J.F. Stebbins, S.K. Lee, J.V. Oglesby: Al-O-Al oxygen sites in crystalline aluminates and aluminosilicate glasses; high-resolution oxygen-17 NMR results, Am. Mineral. 84, 983–986 (1999)CrossRefGoogle Scholar
  237. 13.237
    J.V. Oglesby, P. Zhao, J.F. Stebbins: Oxygen sites in hydrous aluminosilicate glasses: The role of Al-O-Al and H2O, Geochim. Cosmochim. Acta 66, 291–301 (2002)CrossRefGoogle Scholar
  238. 13.238
    J.-P. Harvey, P.D. Asimow: Current limitations of molecular dynamic simulations as probes of thermo-physical behavior of silicate melts, Am. Mineral. 100, 1866–1882 (2015)CrossRefGoogle Scholar
  239. 13.239
    E.D. Lacy: Aluminium in glasses and melts, Phys. Chem. Glasses 4, 234–238 (1963)Google Scholar
  240. 13.240
    W.A. Deer, R.A. Howie, J. Zussman: An introduction to the rock-forming minerals (Longman, London 1992)Google Scholar
  241. 13.241
    I. Kushiro: Viscosity and structural changes of albite (NaAlSi3O8) melt at high pressures, Earth Planet. Sci. Lett. 41, 87–90 (1978)CrossRefGoogle Scholar
  242. 13.242
    S.K. Lee, G.D. Cody, Y. Fei, B.O. Mysen: Nature of polymerization and properties of silicate melts and glasses at high pressure, Geochim. Cosmochim. Acta 68, 4189–4200 (2004)CrossRefGoogle Scholar
  243. 13.243
    C. Le Losq, D.R. Neuville, W. Chen, P. Florian, D. Massiot, Z. Zhou, G.N. Greaves: Percolation channels: A universal idea to describe the atomic structure and dynamics of glasses and melts, Sci. Rep. 7, 16490 (2017)CrossRefGoogle Scholar
  244. 13.244
    M. Taylor, G.E. Brown: Structure of mineral glasses–I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8, Geochim. Cosmochim. Acta 43, 61–75 (1979)CrossRefGoogle Scholar
  245. 13.245
    J.D. Kubicki, D. Sykes: Molecular orbital calculations of vibrations in three-membered aluminosilicate rings, Phys. Chem. Miner. 19, 381–391 (1993)CrossRefGoogle Scholar
  246. 13.246
    W. Hater, W. Müller-Warmuth, M. Meier, G.H. Frischat: High-resolution solid-state NMR studies of mixed-alkali silicate glasses, J. Non-Cryst. Solids 113, 210–212 (1989)CrossRefGoogle Scholar
  247. 13.247
    F. Ali, A.V. Chadwick, G.N. Greaves, M.C. Jermy, K.L. Ngai, M.E. Smith: Examination of the mixed-alkali effect in (Li,Na) disilicate glasses by nuclear magnetic resonance and conductivity measurements, Solid State Nucl. Magn. Reson. 5, 133–143 (1995)CrossRefGoogle Scholar
  248. 13.248
    P.J. Bray, J.F. Emerson, D. Lee, S.A. Feller, D.L. Bain, D.A. Feil: NMR and NQR studies of glass structure, J. Non-Cryst. Solids 129, 240–248 (1991)CrossRefGoogle Scholar
  249. 13.249
    J.F. Emerson, P.J. Bray: Nuclear magnetic resonance and transmission electron microscopy studies of mixed-alkali silicate glasses, J. Non-Cryst. Solids 169, 87–95 (1994)CrossRefGoogle Scholar
  250. 13.250
    K.E. Kelsey, J.R. Allwardt, J.F. Stebbins: Ca–Mg mixing in aluminosilicate glasses: An investigation using 17O MAS and 3QMAS and 27Al MAS NMR, J. Non-Cryst. Solids 354, 4644–4653 (2008)CrossRefGoogle Scholar
  251. 13.251
    C. Weigel, C. Le Losq, R. Vialla, C. Dupas, S. Clément, D.R. Neuville, B. Rufflé: Elastic moduli of XAlSiO4 aluminosilicate glasses: Effects of charge-balancing cations, J. Non-Cryst. Solids 447, 267–272 (2016)CrossRefGoogle Scholar
  252. 13.252
    G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel: Poisson’s ratio and modern materials, Nat. Mater. 10, 823–837 (2011)CrossRefGoogle Scholar
  253. 13.253
    M.O.J.Y. Hunault, L. Galoisy, G. Lelong, M. Newville, G. Calas: Effect of cation field strength on Co2+ speciation in alkali-borate glasses, J. Non-Cryst. Solids 451, 101–110 (2016)CrossRefGoogle Scholar
  254. 13.254
    C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, J. Qiu: Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions, Mater. Lett. 61, 3608–3611 (2007)CrossRefGoogle Scholar
  255. 13.255
    A.M. Farias, M. Sandrini, J.R.M. Viana, M.L. Baesso, A.C. Bento, J.H. Rohling, Y. Guyot, D. De Ligny, L.A.O. Nunes, F.G. Gandra, J.A. Sampaio, S.M. Lima, L.H.C. Andrade, A.N. Medina: Emission tunability and local environment in europium-doped OH-free calcium aluminosilicate glasses for artificial lighting applications, Mater. Chem. Phys. 156, 214–219 (2015)CrossRefGoogle Scholar
  256. 13.256
    M.R. Cicconi, A. Veber, D. de Ligny, J. Rocherullé, R. Lebullenger, F. Tessier: Chemical tunability of europium emission in phosphate glasses, J. Lumin. 183, 53–61 (2017)CrossRefGoogle Scholar
  257. 13.257
    D.B. Dingwell, D. Virgo: The effet of oxydation state on the viscosity of melts in the system Na2O-FeO-Fe2O3-SiO2, Geochim. Cosmochim. Acta 51, 195–205 (1987)CrossRefGoogle Scholar
  258. 13.258
    D.B. Dingwell: Shear viscosities of ferrosilicate liquids, Am. Mineral. 74, 1038–1044 (1989)Google Scholar
  259. 13.259
    D.B. Dingwell: Redox viscometry of some Fe-bearing silicate melts, Am. Mineral. 76, 1560–1562 (1991)Google Scholar
  260. 13.260
    R.F. Fudali: Oxygen fugacities of basaltic and andesitic magmas, Geochim. Cosmochim. Acta 29, 1063–1075 (1965)CrossRefGoogle Scholar
  261. 13.261
    B.O. Mysen, C.M. Scarfe, D.J. Cronin: Viscosity and structure of iron- and aluminum-bearing calcium silicate melts at 1 atm, Am. Mineral. 70, 487–498 (1985)Google Scholar
  262. 13.262
    D.B. Dingwell, D. Virgo: Viscosities of melts in the Na2O–FeO–Fe2O3–SiO2 system and factors controlling relative viscosities of fully polymerized silicate melts, Geochim. Cosmochim. Acta 52, 395–403 (1988)CrossRefGoogle Scholar
  263. 13.263
    A. Paul, R.W. Douglas: Cerous-ceric equilibrium in binary alkali silicate glasses, Phys. Chem. Glasses 6, 212–215 (1965)Google Scholar
  264. 13.264
    H.D. Schreiber: Redox states of Ti, Zr, Hf, Cr, and EU in basaltic magmas – An experimental study. In: Proc. Lunar Sci. Conf., Vol. 8 (Pergamon Press, New York 1977) pp. 1785–1807Google Scholar
  265. 13.265
    H.D. Schreiber, T. Thanyasiri, J.J. Lach: Redox equilibria of Ti, Cr, and Eu in silicate melts – Reduction potentials and mutual interactions, Phys. Chem. Glas 19, 126–139 (1978)Google Scholar
  266. 13.266
    H.D. Schreiber, H.V. Lauer, T. Thanyasiri: The redox state of cerium in basaltic magmas: An experimental study of iron-cerium interactions in silicate melts, Geochim. Cosmochim. Acta 44, 1599–1612 (1980)CrossRefGoogle Scholar
  267. 13.267
    H.D. Schreiber: Redox processes in glass-forming melts, J. Non-Cryst. Solids 84, 129–141 (1986)CrossRefGoogle Scholar
  268. 13.268
    H.D. Schreiber: An electrochemical series of redox couples in silicate melts: A review and applications to geochemistry, J. Geophys. Res. Solid Earth 92, 9225–9232 (1987)CrossRefGoogle Scholar
  269. 13.269
    H.D. Schreiber, B.K. Kochanowski, C.W. Schreiber, A.B. Morgan, M.T. Coolbaugh, T.G. Dunlap: Compositional dependence of redox equilibria in sodium silicate glasses, J. Non-Cryst. Solids 177, 340–346 (1994)CrossRefGoogle Scholar
  270. 13.270
    H.D. Schreiber, N.R. Wilk Jr, C.W. Schreiber: A comprehensive electromotive force series of redox couples in soda–lime–silicate glass, J. Non-Cryst. Solids 253, 68–75 (1999)CrossRefGoogle Scholar
  271. 13.271
    W.D. Johnston: Oxidation-reduction equilibria in iron-containing glass, J. Am. Ceram. Soc. 47, 198–201 (1964)CrossRefGoogle Scholar
  272. 13.272
    B.O. Mysen: Redox equilibria and coordination of Fe2+ and Fe3+ in silicate glasses from 57Fe Mossbauer spectroscopy, J. Non-Cryst. Solids 95, 247–254 (1987)CrossRefGoogle Scholar
  273. 13.273
    B.O. Mysen, D. Virgo: Redox equilibria, structure, and properties of Fe-bearing aluminosilicate melts: Relationships among temperature, composition, and oxygen fugacity in the system Na2O-Al2O3-SiO2-Fe-O, Am. Mineral. 74, 58–76 (1989)Google Scholar
  274. 13.274
    V.C. Kress, I.S. Carmichael: The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states, Contrib. Mineral. Petrol. 108, 82–92 (1991)CrossRefGoogle Scholar
  275. 13.275
    H.V. Lauer, R.V. Morris: Redox equilibria of multivalent ions in silicate glasses, J. Am. Ceram. Soc. 60, 443–451 (1977)CrossRefGoogle Scholar
  276. 13.276
    B.O. Mysen, D. Virgo, F. Seifert: Redox equilibria of iron in alkaline earth silicate melts: Relationships between melt structure, oxygen fugacity, temperature and properties of iron-bearing silicate liquids, Am. Mineral. 69, 834–847 (1984)Google Scholar
  277. 13.277
    A.D. Burnham, A.J. Berry, H.R. Halse, P.F. Schofield, G. Cibin, J.F.W. Mosselmans: The oxidation state of europium in silicate melts as a function of oxygen fugacity, composition and temperature, Chem. Geol. 411, 248–259 (2015)CrossRefGoogle Scholar
  278. 13.278
    M.R. Ciccone, D.R. Neuville, I. Tannou, F. Baudelet, P. Floury, E. Paris, G. Giuli: Competition between two redox states in silicate melts: An in-situ experiment at the Fe K-edge and Eu L3-edge, Am. Mineral. 100(4), 1013–1016 (2015)CrossRefGoogle Scholar
  279. 13.279
    A.D. Burnham, A.J. Berry: The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts, Chem. Geol. 366, 52–60 (2014)CrossRefGoogle Scholar
  280. 13.280
    M.R. Cicconi, G. Giuli, W. Ertel-Ingrisch, E. Paris, D.B. Dingwell: The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses, Am. Mineral. 100, 1610–1619 (2015)CrossRefGoogle Scholar
  281. 13.281
    H.G. Drickamer, V.C. Bastron, D.C. Fisher, D.C. Grenoble: The high-pressure chemistry of iron, J. Solid State Chem. 2, 94–104 (1970)CrossRefGoogle Scholar
  282. 13.282
    P.J. Wang, H.G. Drickamer: Reduction of Cu(II) at high pressure, J. Chem. Phys. 59, 713–717 (1973)CrossRefGoogle Scholar
  283. 13.283
    R.V. Gibbons, T.J. Ahrens, G.R. Rossman: A spectrographic interpretation of the shock-produced color change in rhodonite (MnSiO3): The shock-induced reduction of Mn(III) to Mn(II), Am. Mineral. 59, 177–182 (1974)Google Scholar
  284. 13.284
    H.S.C. O’Neill: An experimental determination of the effect of pressure on the Fe3+/\(\sum\)Fe ratio of an anhydrous silicate melt to 3.0 GPa, Am. Mineral. 91, 404–412 (2006)CrossRefGoogle Scholar
  285. 13.285
    H.L. Zhang, M.M. Hirschmann, E. Cottrell, A.C. Withers: Effect of pressure on Fe3+/\(\sum\)Fe ratio in a mafic magma and consequences for magma ocean redox gradients, Geochim. Cosmochim. Acta 204, 83–103 (2017)CrossRefGoogle Scholar
  286. 13.286
    M.P. Dickenson, P.C. Hess: Redox equilibria and the structural role of iron in alumino-silicate melts, Contrib. Mineral. Petrol. 78, 352–357 (1982)CrossRefGoogle Scholar
  287. 13.287
    B.O. Mysen, D. Virgo, E.-R. Neumann, F.A. Seifert: Redox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO–MgO–AI2O3–SiO2–Fe–O: Relationships between redox equilibria, melt structure and liquidus phase equilibria, Am. Mineral. 70, 317–331 (1985)Google Scholar
  288. 13.288
    A.J. Berry, H.S.C. O’Neill, D.R. Scott, J.M.G. Shelley: The effect of composition on Cr2+/Cr3+ in silicate melts, Am. Mineral. 91, 1901–1908 (2006)CrossRefGoogle Scholar
  289. 13.289
    H.S.C. O’Neill, S.M. Eggins: The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts, Chem. Geol. 186, 151–181 (2002)CrossRefGoogle Scholar
  290. 13.290
    G. Giuli, E. Paris, J. Mungall, C. Romano, D. Dingwell: V oxidation state and coordination number in silicate glasses by XAS, Am. Mineral. 89, 1640–1646 (2004)CrossRefGoogle Scholar
  291. 13.291
    F. Farges, R.L. Linnen, G.E. Brown: Redox and speciation of tin in hydrous silicate glasses: A comparison with Nb, Ta, Mo and W, Can. Mineral. 44, 795–810 (2006)CrossRefGoogle Scholar
  292. 13.292
    R.V. Morris, L.A. Haskin: EPR measurement of the effect of glass composition on the oxidation states of europium, Geochim. Cosmochim. Acta 38, 1435–1445 (1974)CrossRefGoogle Scholar
  293. 13.293
    M.R. Cicconi, G. Giuli, E. Paris, W. Ertel-Ingrisch, P. Ulmer, D.B. Dingwell: Europium oxidation state and local structure in silicate glasses, Am. Mineral. 97, 918–929 (2012)CrossRefGoogle Scholar
  294. 13.294
    A. Lebouteiller, P. Courtine: Improvement of a bulk optical basicity table for oxidic systems, J. Solid State Chem. 137, 94–103 (1998)CrossRefGoogle Scholar
  295. 13.295
    R.O. Sack, I.S.E. Carmichael, M. Rivers, M.S. Ghiorso: Ferric-ferrous equilibria in natural silicate liquids at 1 bar, Contrib. Mineral. Petrol. 75, 369–376 (1980)CrossRefGoogle Scholar
  296. 13.296
    A. Kilinc, I.S.E. Carmichael, M.L. Rivers, R.O. Sack: The ferric-ferrous ratio of natural silicate liquids equilibrated in air, Contrib. Mineral. Petrol. 83, 136–140 (1983)CrossRefGoogle Scholar
  297. 13.297
    J.A. Tangeman, R. Lange, L. Forman: Ferric-ferrous equilibria in K2O-FeO-Fe2O3-SiO2 melts, Geochim. Cosmochim. Acta 65, 1809–1819 (2001)CrossRefGoogle Scholar
  298. 13.298
    V.C. Kress, I.S.E. Carmichael: Stoichiometry of the iron oxidation reaction in silicate melts, Am. Mineral. 73, 1267–1274 (1988)Google Scholar
  299. 13.299
    C.R. Thornber, P.L. Roeder, J.R. Foster: The effect of composition on the ferric-ferrous ratio in basaltic liquids at atmospheric pressure, Geochim. Cosmochim. Acta 44, 525–532 (1980)CrossRefGoogle Scholar
  300. 13.300
    M.D. Dyar: A review of Moessbauer data on inorganic glasses; the effects of composition on iron valency and coordination, Am. Mineral. 70, 304–316 (1985)Google Scholar
  301. 13.301
    D. Virgo, B.O. Mysen: The structural state of iron in oxidized vs. reduced glasses at 1 atm: A 57Fe Mössbauer study, Phys. Chem. Miner. 12, 65–76 (1985)CrossRefGoogle Scholar
  302. 13.302
    B. Hannoyer, M. Lenglet, J. Dürr, R. Cortes: Spectroscopic evidence of octahedral iron (III) in soda-lime silicate glasses, J. Non-Cryst. Solids 151, 209–216 (1992)CrossRefGoogle Scholar
  303. 13.303
    L. Galoisy, G. Calas, M.A. Arrio: High-resolution XANES spectra of iron in minerals and glasses: Structural information from the pre-edge region, Chem. Geol. 174, 307–319 (2001)CrossRefGoogle Scholar
  304. 13.304
    G.M. Partzsch, D. Lattard, C. McCammon: Mössbauer spectroscopic determination of Fe3+/Fe2+ in synthetic basaltic glass: A test of empirical fO2 equations under superliquidus and subliquidus conditions, Contrib. Mineral. Petrol. 145, 565–580 (2004)CrossRefGoogle Scholar
  305. 13.305
    F. Farges, Y. Lefrère, S. Rossano, A. Berthereau, G. Calas, G.E. Brown Jr.: The effect of redox state on the local structural environment of iron in silicate glasses: A combined XAFS spectroscopy, molecular dynamics, and bond valence study, J. Non-Cryst. Solids 344, 176–188 (2004)CrossRefGoogle Scholar
  306. 13.306
    W.E. Jackson, F. Farges, M. Yeager, P.A. Mabrouk, S. Rossano, G.A. Waychunas, E.I. Solomon, G.E. Brown: Multi-spectroscopic study of Fe(II) in silicate glasses: Implications for the coordination environment of Fe(II) in silicate melts, Geochim. Cosmochim. Acta 69, 4315–4332 (2005)CrossRefGoogle Scholar
  307. 13.307
    N. Métrich, J. Susini, E. Foy, F. Farges, D. Massare, L. Sylla, S. Lequien, M. Bonnin-Mosbah: Redox state of iron in peralkaline rhyolitic glass/melt: X-ray absorption micro-spectroscopy experiments at high temperature, Chem. Geol. 231, 350–363 (2006)CrossRefGoogle Scholar
  308. 13.308
    M. Wilke, F. Farges, G.M. Partzsch, C. Schmidt, H. Behrens: Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy, Am. Mineral. 92, 44–56 (2007)CrossRefGoogle Scholar
  309. 13.309
    S. Rossano, H. Behrens, M. Wilke: Advanced analyses of 57Fe Mössbauer data of alumino-silicate glasses, Phys. Chem. Miner. 35, 77–93 (2008)CrossRefGoogle Scholar
  310. 13.310
    G. Giuli, E. Paris, K.-U. Hess, D.B. Dingwell, M.R. Cicconi, S.G. Eeckhout, K.T. Fehr, P. Valenti: XAS determination of the Fe local environment and oxidation state in phonolite glasses, Am. Mineral. 96, 631–636 (2011)CrossRefGoogle Scholar
  311. 13.311
    G. Giuli, R. Alonso-Mori, M.R. Cicconi, E. Paris, P. Glatzel, S.G. Eeckhout, B. Scaillet: Effect of alkalis on the Fe oxidation state and local environment in peralkaline rhyolitic glasses, Am. Mineral. 97, 468–475 (2012)CrossRefGoogle Scholar
  312. 13.312
    G. Calas, J. Petiau: Coordination of iron in oxide glasses through high-resolution K-edge spectra: Information from the pre-edge, Solid State Commun. 48, 625–629 (1983)CrossRefGoogle Scholar
  313. 13.313
    G.A. Waychunas, G.E. Brown, C.W. Ponader, W.E. Jackson: Evidence from x-ray absorption for network-forming Fe2+ in molten alkali silicates, Nature 332, 251–253 (1988)CrossRefGoogle Scholar
  314. 13.314
    H.N. Keppler: Crystal field spectra and geochemistry of transition metal ions in silicate melts and glasses, Am. Mineral. 77, 62–75 (1992)Google Scholar
  315. 13.315
    W.E. Jackson, J.M. de Leon, G.E. Brown, G.A. Waychunas, S.D. Conradson, J.-M. Combes: High-temperature XAS study of Fe2SiO4 liquid: Reduced coordination of ferrous iron, Science 262, 229–233 (1993)CrossRefGoogle Scholar
  316. 13.316
    S. Rossano, E. Balan, G. Morin, J.-P. Bauer, G. Calas, C. Brouder: 57Fe Mössbauer spectroscopy of tektites, Phys. Chem. Miner. 26, 530–538 (1999)CrossRefGoogle Scholar
  317. 13.317
    S. Rossano, A. Ramos, J.-M. Delaye, S. Creux, A. Filipponi, C. Brouder, G. Calas: EXAFS and molecular dynamics combined study of CaO–FeO–2SiO2 glass. New insight into site significance in silicate glasses, Europhys. Lett. 49, 597 (2000)CrossRefGoogle Scholar
  318. 13.318
    A. Leonteva: Measurements of the viscosity of obsidian and of hydrated glasses, Izv. Akad. Nauk. SSSR Ser. Geol. 2, 44–54 (1940)Google Scholar
  319. 13.319
    H. Saucier: Quelques expériences sur la viscosité à haute température de verres ayant la composition d’un granite. Influence de la vapeur d’eau sous pression, Bull. Soc. Fr. Minéral. Cristallogr. 75, 1–45 (1952)CrossRefGoogle Scholar
  320. 13.320
    I. Friedman, W. Long, R.L. Smith: Viscosity and water content of rhyolite glass, J. Geophys. Res. 68, 6523–6535 (1963)CrossRefGoogle Scholar
  321. 13.321
    H.R. Shaw: Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700 °C to 900 °C, J. Geophys Res 68, 6337–6343 (1963)CrossRefGoogle Scholar
  322. 13.322
    D.B. Dingwell, C. Romano, K.-U. Hess: The effect of water on the viscosity of a haplogranitic melt under P-T-X conditions relevant to silicic volcanism, Contrib. Mineral. Petrol. 124, 19–28 (1996)CrossRefGoogle Scholar
  323. 13.323
    P. Richet, A.-M. Lejeune, F. Holtz, J. Roux: Water and the viscosity of andesite melts, Chem. Geol. 128, 185–197 (1996)CrossRefGoogle Scholar
  324. 13.324
    P. Richet, A. Polian: Water as a dense icelike component in silicate glasses, Science 281, 396–398 (1998)CrossRefGoogle Scholar
  325. 13.325
    F.A. Ochs, R.A. Lange: The density of hydrous magmatic liquids, Science 283, 1314–1317 (1999)CrossRefGoogle Scholar
  326. 13.326
    P. Richet, A. Whittington, F. Holtz, H. Behrens, S. Ohlhorst, M. Wilke: Water and the density of silicate glasses, Contrib. Mineral. Petrol. 138, 337–347 (2000)CrossRefGoogle Scholar
  327. 13.327
    W.J. Malfait, R. Seifert, S. Petitgirard, M. Mezouar, C. Sanchez-Valle: The density of andesitic melts and the compressibility of dissolved water in silicate melts at crustal and upper mantle conditions, Earth Planet. Sci. Lett. 393, 31–38 (2014)CrossRefGoogle Scholar
  328. 13.328
    W.J. Malfait, R. Seifert, S. Petitgirard, J.-P. Perrillat, M. Mezouar, T. Ota, E. Nakamura, P. Lerch, C. Sanchez-Valle: Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers, Nat. Geosci. 7, 122–125 (2014)CrossRefGoogle Scholar
  329. 13.329
    J. Andújar, B. Scaillet: Relationships between pre-eruptive conditions and eruptive styles of phonolite–trachyte magmas, Lithos 152, 122–131 (2012)CrossRefGoogle Scholar
  330. 13.330
    C. Le Losq, D.R. Neuville, R. Moretti, P.R. Kyle, C. Oppenheimer: Rheology of phonolitic magmas – The case of the Erebus lava lake, Earth Planet. Sci. Lett. 411, 53–61 (2015)CrossRefGoogle Scholar
  331. 13.331
    G. Luongo, A. Perrotta, C. Scarpati: Impact of the AD 79 explosive eruption on Pompeii, I. Relations amongst the depositional mechanisms of the pyroclastic products, the framework of the buildings and the associated destructive events, J. Volcanol. Geotherm. Res. 126, 201–223 (2003)CrossRefGoogle Scholar
  332. 13.332
    G. Luongo, A. Perrotta, C. Scarpati, E. De Carolis, G. Patricelli, A. Ciarallo: Impact of the AD 79 explosive eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties, J. Volcanol. Geotherm. Res. 126, 169–200 (2003)CrossRefGoogle Scholar
  333. 13.333
    H. Balcone-Boissard, G. Boudon, B. Villemant: Textural and geochemical constraints on eruptive style of the 79 AD eruption at Vesuvius, Bull. Volcanol. 73, 279–294 (2011)CrossRefGoogle Scholar
  334. 13.334
    T. Shea, E. Hellebrand, L. Gurioli, H. Tuffen: Conduit- to localized-scale degassing during Plinian eruptions: Insights from major element and volatile (Cl and H2O) analyses within Vesuvius AD 79 Pumice, J. Petrol. 55, 315–344 (2014)CrossRefGoogle Scholar
  335. 13.335
    D.B. Dingwell: Volcanic dilemma – Flow or blow?, Science 273, 1054–1055 (1996)CrossRefGoogle Scholar
  336. 13.336
    P. Papale: Strain-induced magma fragmentation in explosive eruptions, Nature 397, 425–428 (1999)CrossRefGoogle Scholar
  337. 13.337
    Y. Zhang: A criterion for the fragmentation of bubbly magma based on brittle failure theory, Nature 402, 648–650 (1999)CrossRefGoogle Scholar
  338. 13.338
    H. Scholze: Zur Frage der Unterscheidung zwischen H2O-Molekeln und OH-Gruppen in Gläsern und Mineralen, Naturwissenschaften 47, 226–227 (1960)CrossRefGoogle Scholar
  339. 13.339
    A.J. Moulson: Entry of water into silica glass, Nature 182, 200–201 (1958)CrossRefGoogle Scholar
  340. 13.340
    A.J. Moulson, J.P. Roberts: Water in silica glass, Trans, Faraday Soc. 57, 1208–1216 (1961)CrossRefGoogle Scholar
  341. 13.341
    R.F. Bartholomew, B.L. Butler, H.L. Hoover, C.K. Wu: Infrared spectra of a water-containing glass, J. Am. Ceram. Soc. 63, 481–485 (1980)CrossRefGoogle Scholar
  342. 13.342
    B.O. Mysen, D. Virgo, W.J. Harrison, C.M. Scarfe: Solubility mechanisms of H2O in silicate melts at high pressures and temperatures: A Raman spectroscopy study, Am. Mineral. 65, 900–914 (1980)Google Scholar
  343. 13.343
    A. Stolper: Water in silicate glasses: An infrared spectroscopic study, Contrib. Mineral. Petrol. 81, 1–17 (1982)CrossRefGoogle Scholar
  344. 13.344
    B.O. Mysen, D. Virgo: Volatiles in silicate melts at high pressure and temperature 1. Interaction between OH groups and Si4+, Al3+, Ca2+, Na+ and H, Chem. Geol. 57, 303–331 (1986)CrossRefGoogle Scholar
  345. 13.345
    P. McMillan, R.L.J. Remmele: Hydroxylsites in SiO2 glass: A note on infrared and Raman spectra, Am. Mineral. 71, 772–778 (1986)Google Scholar
  346. 13.346
    B.O. Mysen, D. Virgo: Volatiles in silicate melts at high pressure and temperature 2. Water in melts along the join NaAlO2–SiO2 and a comparison of solubility mechanisms of water and fluorine, Chem. Geol. 57, 333–358 (1986)CrossRefGoogle Scholar
  347. 13.347
    S.C. Kohn, R. Dupree, M.E. Smith: Proton environments and hydrogen-bonding in hydrous silicate glasses from proton NMR, Nature 337, 539–541 (1989)CrossRefGoogle Scholar
  348. 13.348
    S.C. Kohn, R. Dupree, M.E. Smith: A multinuclear magnetic resonance study of the structure of hydrous albite glass, Geochim. Cosmochim. Acta 53, 2925–2935 (1989)CrossRefGoogle Scholar
  349. 13.349
    K.M. Davis, M. Tomozawa: An infrared spectroscopic study of water-related species in silica glasses, J. Non-Cryst. Solids 201, 177–198 (1996)CrossRefGoogle Scholar
  350. 13.350
    B.C. Schmidt, H. Behrens, T. Riemer, R. Kappes, R. Dupree: Quantitative determination of water speciation in aluminosilicate glasses: A comparative NMR and IR spectroscopic study, Chem. Geol. 174, 195–208 (2001)CrossRefGoogle Scholar
  351. 13.351
    G.D. Cody, B.O. Mysen, S.K. Lee: Structure vs. composition: A solid-state 29Si NMR study of quenched glasses along the Na2O-SiO2-H2O join, Geochim. Cosmochim. Acta 69, 2373–2384 (2005)CrossRefGoogle Scholar
  352. 13.352
    B.O. Mysen: The solution behavior of H2O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts, Geochim. Cosmochim. Acta 71, 1820–1834 (2007)CrossRefGoogle Scholar
  353. 13.353
    W.J. Malfait, X. Xue: The nature of hydroxyl groups in aluminosilicate glasses: Quantifying Si–OH and Al–OH abundances along the SiO2–NaAlSiO4 join by 1H, 27Al–1H and 29Si–1H NMR spectroscopy, Geochim. Cosmochim. Acta 74, 719–737 (2010)CrossRefGoogle Scholar
  354. 13.354
    C. Le Losq, G.D. Cody, B.O. Mysen: Alkali influence on the water speciation and the environment of protons in silicate glasses revealed by 1H MAS NMR spectroscopy, Am. Mineral. 100, 466–473 (2015)CrossRefGoogle Scholar
  355. 13.355
    M. Nowak, H. Behrens: The speciation of water in haplogranitic glasses and melts determined by in situ near-infrared spectroscopy, Geochim. Cosmochim. Acta 59, 3445–3450 (1995)CrossRefGoogle Scholar
  356. 13.356
    J.R. Sowerby, H. Keppler: Water speciation in rhyolitic melt determined by in-situ infrared spectroscopy, Am. Mineral. 84, 1843–1849 (1999)CrossRefGoogle Scholar
  357. 13.357
    H. Behrens, S. Yamashita: Water speciation in hydrous sodium tetrasilicate and hexasilicate melts: Constraint from high temperature NIR spectroscopy, Chem. Geol. 256, 306–315 (2008)CrossRefGoogle Scholar
  358. 13.358
    N. Chertkova, S. Yamashita: In situ spectroscopic study of water speciation in the depolymerized Na2Si2O5 melt, Chem. Geol. 409, 149–156 (2015)CrossRefGoogle Scholar
  359. 13.359
    L.A. Silver, P.D. Ihinger, E. Stolper: The influence of bulk composition on the speciation of water in silicate glasses, Contrib. Mineral. Petrol. 104, 142–162 (1990)CrossRefGoogle Scholar
  360. 13.360
    S. Ohlhorst, H. Behrens, F. Holtz: Compositional dependence of molar absorptivities of near-infrared OH- and H2O bands in rhyolitic to basalitic glasses, Chem. Geol. 174, 5–20 (2001)CrossRefGoogle Scholar
  361. 13.361
    C. Le Losq, R. Moretti, D.R. Neuville: On the speciation and amphoteric behavior of water in aluminosilicate melts and glasses: High-Temperature Raman spectroscopy and reaction equilibria, Eur. J. Mineral. 25, 777–790 (2013)CrossRefGoogle Scholar
  362. 13.362
    R. Moretti, C. Le Losq, D.R. Neuville: The amphoteric behavior of water in silicate melts from the point of view of their ionic-polymeric constitution, Chem. Geol. 367, 23–33 (2014)CrossRefGoogle Scholar
  363. 13.363
    J. Deubener, R. Müller, H. Behrens, G. Heide: Water and the glass transition temperature of silicate melts, J. Non-Cryst. Solids 330, 268–273 (2003)CrossRefGoogle Scholar
  364. 13.364
    X. Xue, M. Kanzaki: Dissolution mechanisms of water in depolymerized silicate melts: Constraints from 29Si NMR spectroscopy and ab initio calculations, Geochim. Cosmochim. Acta 68, 5027–5057 (2004)CrossRefGoogle Scholar
  365. 13.365
    X. Xue, M. Kanzaki: Depolymerization effect of water in aluminosilicate glasses: Direct evidence from 27Al heteronuclear correlation NMR, Am. Mineral. 91, 1922–1926 (2006)CrossRefGoogle Scholar
  366. 13.366
    X. Xue, M. Kanzaki: Structure of hydrous aluminosilicate glasses along the diopside–anorthite join: A comprehensive one- and two-dimensional 1H and 27Al NMR study, Geochim. Cosmochim. Acta 72, 2331–2348 (2008)CrossRefGoogle Scholar
  367. 13.367
    B.O. Mysen, G. Cody: Solution mechanisms of H2O in depolymerized peralkaline melts, Geochim. Cosmochim. Acta 69, 5557–5566 (2005)CrossRefGoogle Scholar
  368. 13.368
    M. Mookherjee, L. Stixrude, B. Karki: Hydrous silicate melt at high pressure, Nature 452, 983–986 (2008)CrossRefGoogle Scholar
  369. 13.369
    S.C. Kohn, R. Dupree, M.G. Mortuza: The interaction between water and aluminosilicate magmas, Chem. Geol. 96, 399–409 (1992)CrossRefGoogle Scholar
  370. 13.370
    S.C. Kohn, M.E. Smith, P.J. Dirken, E.R.H. Van Eck, A.P.M. Kentgens, R. Dupree: Sodium environment in dry and hydrous albite glasses: Improved 23Na solid state NMR data and their implications for water dissolution mechanisms, Geochim. Cosmochim. Acta 62, 79–87 (1998)CrossRefGoogle Scholar
  371. 13.371
    A.G. Whittington, M.A. Bouhifd, P. Richet: The viscosity of hydrous NaAlSi3O8 and granitic melts: Configurational entropy models, Am. Mineral. 94, 1–16 (2009)CrossRefGoogle Scholar
  372. 13.372
    X. Xue: Water speciation in hydrous silicate and aluminosilicate glasses: Direct evidence from 29Si-1H and 27Al-1H double-resonance NMR, Am. Mineral. 94, 395–398 (2009)CrossRefGoogle Scholar
  373. 13.373
    W.J. Malfait, X. Xue: Hydroxyl speciation in felsic magmas, Geochim. Cosmochim. Acta 140, 606–620 (2014)CrossRefGoogle Scholar
  374. 13.374
    L. Silver, E. Stolper: Water in albitic glasses, J. Petrol. 30, 667–709 (1989)CrossRefGoogle Scholar
  375. 13.375
    J.E. Dixon, E.M. Stolper, J.R. Holloway: An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: Calibration and solubility models, J. Petrol 36, 1607–1631 (1995)Google Scholar
  376. 13.376
    M.A. Bouhifd, A.G. Whittington, P. Richet: Densities and volumes of hydrous silicate melts: New measurements and predictions, Chem. Geol. 418, 40–50 (2015)CrossRefGoogle Scholar
  377. 13.377
    M. Mercier, A.D. Muro, N. Métrich, D. Giordano, O. Belhadj, C.W. Mandeville: Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions, Geochim. Cosmochim. Acta 74, 5641–5656 (2010)CrossRefGoogle Scholar
  378. 13.378
    C. Le Losq, D.R. Neuville, R. Moretti, J. Roux: Determination of water content in silicate glasses using Raman spectrometry: Implications for the study of explosive volcanism, Am. Mineral. 97, 779–790 (2012)CrossRefGoogle Scholar
  379. 13.379
    M.A. Bouhifd, A. Whittington, J. Roux, P. Richet: Effect of water on the heat capacity of polymerized aluminosilicate glasses and melts, Geochim. Cosmochim. Acta 70, 711–722 (2006)CrossRefGoogle Scholar
  380. 13.380
    M.A. Bouhifd, A.G. Whittington, A.C. Withers, P. Richet: Heat capacities of hydrous silicate glasses and liquids, Chem. Geol. 346, 125–134 (2013)CrossRefGoogle Scholar
  381. 13.381
    P. Papale, R. Moretti, D. Barbato: The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts, Chem. Geol. 229, 78–95 (2006)CrossRefGoogle Scholar
  382. 13.382
    H. Ni, H. Keppler: Carbon in silicate melts, Rev. Mineral. Geochem. 75, 251–287 (2013)CrossRefGoogle Scholar
  383. 13.383
    B. Guillot, N. Sator: Carbone dioxide in silicate melts: A molecular dynamics simulation study, Geochim. Cosmochim. Acta 75, 1829–1857 (2011)CrossRefGoogle Scholar
  384. 13.384
    S. Pedeche, P. Simon, G. Matzen, B. Moulin, K. Blanchard, G. Querel: Probing gas bubbles inside industrial glasses by Raman scattering, J. Raman Spectrosc. 34, 248–252 (2003)CrossRefGoogle Scholar
  385. 13.385
    Y. Morizet, R.A. Brooker, G. Iacono-Marziano, B.A. Kjarsgaard: Quantification of dissolved CO2 in silicate glasses using micro-Raman spectroscopy, Am. Mineral. 98, 1788–1802 (2013)CrossRefGoogle Scholar
  386. 13.386
    B.O. Mysen, D. Virgo: The solubility behavior of CO2 in melts on the join NaAlSi3O8–CaAl2Si2O8–CO2 at high pressures and temperatures: A Raman spectroscopic study, Am. Mineral. 65, 1166–1175 (1980)Google Scholar
  387. 13.387
    R. Dasgupta, A. Mallik, K. Tsuno, A.C. Withers, G. Hirth, M.M. Hirschmann: Carbon-dioxide-rich silicate melt in the Earth’s upper mantle, Nature 493, 211–215 (2013)CrossRefGoogle Scholar
  388. 13.388
    R.A. Brooker, S.C. Kohn, J.R. Holloway, P.F. McMillan, M.R. Carroll: Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–SiO2 join, Geochim. Cosmochim. Acta 63, 3549–3565 (1999)CrossRefGoogle Scholar
  389. 13.389
    L.S. Armstrong, M.M. Hirschmann, B.D. Stanley, E.G. Falksen, S.D. Jacobsen: Speciation and solubility of reduced C–O–H–N volatiles in mafic melt: Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets, Geochim. Cosmochim. Acta 171, 283–302 (2015)CrossRefGoogle Scholar
  390. 13.390
    H. Verweij, H. Van Den Boom, R.E. Breemer: Raman scattering of carbonate ions dissolved in potassium silicate glasses, J. Am. Ceram. Soc. 60, 529–534 (1977)CrossRefGoogle Scholar
  391. 13.391
    S.K. Sharma: Structure and solubility of carbon dioxide in silicate glasses of diopside and sodium melilite compositions at high pressures from Raman spectroscopic data, Carnegie Inst. Wash. Yearb. 78, 532–537 (1979)Google Scholar
  392. 13.392
    B.O. Mysen, D. Virgo: Solubility mechanisms of carbon dioxide in silicate melts: A Raman spectroscopic study, Am. Mineral. 65, 885–899 (1980)Google Scholar
  393. 13.393
    C.S. Rai, S.K. Sharma, D.W. Muenow, D.W. Matson, C.D. Byers: Temperature dependence of CO2 solubility in high pressure quenched glasses of diopside composition, Geochim. Cosmochim. Acta 47, 953–958 (1983)CrossRefGoogle Scholar
  394. 13.394
    E.A.J. Burke, W.J. Lustenhouwer: The application of a multichannel laser Raman microprobe (Microdil-28®) to the analysis of fluid inclusions, Chem. Geol. 61, 11–17 (1987)CrossRefGoogle Scholar
  395. 13.395
    S. Nakano, M. Moritoki, K. Ohgaki: High-pressure phase equilibrium and Raman microprobe spectroscopic studies on the CO2 hydrate system, J. Chem. Eng. Data 43, 807–810 (1998)CrossRefGoogle Scholar
  396. 13.396
    R.A. Brooker, S.C. Kohn, J.R. Holloway, P.F. McMillan: Structural controls on the solubility of CO2 in silicate melts: Part II: IR characteristics of carbonate groups in silicate glasses, Chem. Geol. 174, 241–254 (2001)CrossRefGoogle Scholar
  397. 13.397
    A. Konschak, H. Keppler: The speciation of carbon dioxide in silicate melts, Contrib. Mineral. Petrol. 167, 998 (2014)CrossRefGoogle Scholar
  398. 13.398
    E. Bourgue, P. Richet: The effects of dissolved CO2 on the density and viscosity of silicate melts: A preliminary study, Earth Planet. Sci. Lett. 193, 57–68 (2001)CrossRefGoogle Scholar
  399. 13.399
    S. Ghosh, E. Ohtani, K. Litasov, A. Suzuki, T. Sakamaki: Stability of carbonated magmas at the base of the Earth’s upper mantle, Geophys. Res. Lett. 34, L22312 (2007)CrossRefGoogle Scholar
  400. 13.400
    Q. Liu, R.A. Lange: New density measurements on carbonate liquids and the partial molar volume of the CaCO3 component, Contrib. Mineral. Petrol. 146, 370–381 (2003)CrossRefGoogle Scholar
  401. 13.401
    W.K. Kot, H. Gan, I.L. Pegg: Sulfur incorporation in waste glass melts of various compositions. In: Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries, Ceramic Transactions, Vol. 107, ed. by G.T. Chandler, X. Feng (American Ceramic Society, Westerville 2000) pp. 441–449Google Scholar
  402. 13.402
    N. Métrich, C.W. Mandeville: Sulfur in magmas, Elements 6, 81–86 (2010)CrossRefGoogle Scholar
  403. 13.403
    E. Paris, G. Giuli, M.R. Carroll: The valence and speciation of sulfur in glasses by x-ray absorption spectroscopy, Can. Mineral. 39, 331–339 (2001)CrossRefGoogle Scholar
  404. 13.404
    M. Bonnin-Mosbah, N. Métrich, J. Susini, M. Salome, D. Massare, B. Menez: Micro x-ray absorption near edge structure at the sulfur and iron K-edges in natural silicate glasses, Spectrochim. Acta B 57, 711–725 (2002)CrossRefGoogle Scholar
  405. 13.405
    D. McKeown, I. Muller, H. Gan, I. Pegg, W. Stolte: Determination of sulfur environments in borosilicate waste glasses using x-ray absorption near-edge spectroscopy, J. Non-Cryst. Solids 333, 74–84 (2004)CrossRefGoogle Scholar
  406. 13.406
    M.E. Fleet: XANES spectroscopy of sulfur in Earth materials, Can. Mineral. 43, 1811–1838 (2005)CrossRefGoogle Scholar
  407. 13.407
    M. Wilke, P.J. Jugo, K. Klimm, J. Susini, R. Botcharnikov, S.C. Kohn, M. Janousch: The origin of S4+ detected in silicate glasses by XANES, Am. Mineral. 93, 235–240 (2008)CrossRefGoogle Scholar
  408. 13.408
    D.A. McKeown, I.S. Muller, H. Gan, I.L. Pegg, C.A. Kendziora: Raman studies of sulfur in borosilicate waste glasses: Sulfate environments, J. Non-Cryst. Solids 288, 191–199 (2001)CrossRefGoogle Scholar
  409. 13.409
    D. Manara, A. Grandjean, O. Pinet, J.L. Dussossoy, D.R. Neuville: Sulfur behavior in silicate glasses and melts: Implications for sulfate incorporation in nuclear waste glasses as a function of alkali cation and V2O5 content, J. Non-Cryst. Solids 353, 12–23 (2007)CrossRefGoogle Scholar
  410. 13.410
    M. Lenoir, A. Grandjean, S. Poissonnet, D.R. Neuville: Quantitation of sulfate solubility in borosilicate glasses using Raman spectroscopy, J. Non-Cryst. Solids 355, 1468–1473 (2009)CrossRefGoogle Scholar
  411. 13.411
    K. Klimm, R.E. Botcharnikov: The determination of sulfate and sulfide species in hydrous silicate glasses using Raman spectroscopy, Am. Mineral. 95, 1574–1579 (2015)CrossRefGoogle Scholar
  412. 13.412
    K. Klimm, S.C. Kohn, L.A. O’Dell, R.E. Botcharnikov, M.E. Smith: The dissolution mechanism of sulphur in hydrous silicate melts. I: Assessment of analytical techniques in determining the sulphur speciation in iron-free to iron-poor glasses, Chem. Geol. 322/323, 237–249 (2012)CrossRefGoogle Scholar
  413. 13.413
    R. Moretti, D.R. Baker: Modeling the interplay of fO2 and fS2 along the FeS-silicate melt equilibrium, Chem. Geol. 256, 286–298 (2008)CrossRefGoogle Scholar
  414. 13.414
    D.R. Baker, R. Moretti: Modeling the solubility of sulfur in magmas: A 50-year old geochemical challenge, Rev. Mineral. Geochem. 73, 167–213 (2011)CrossRefGoogle Scholar
  415. 13.415
    Y. Liu, N.-T. Samaha, D.R. Baker: Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts, Geochim. Cosmochim. Acta 71, 1783–1799 (2007)CrossRefGoogle Scholar
  416. 13.416
    H.S.C. O’Neill, J.A. Mavrogenes: The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 °C and 1 bar, J. Petrol. 43, 1049–1087 (2002)CrossRefGoogle Scholar
  417. 13.417
    J.L. Wykes, H.S.C. O’Neill, J.A. Mavrogenes: The effect of FeO on the sulfur content at sulfide saturation (SCSS) and the selenium content at selenide saturation of silicate melts, J. Petrol. 56, 1407–1424 (2015)CrossRefGoogle Scholar
  418. 13.418
    R. Moretti, P. Papale, G. Ottonello: A model for the saturation of C–O–H–S fluids in silicate melts, Geol. Soc. Lond. Spec. Publ. 213, 81–101 (2003)CrossRefGoogle Scholar
  419. 13.419
    R. Moretti, G. Ottonello: Polymerization and disproportionation of iron and sulfur in silicate melts: Insights from an optical basicity-based approach, J. Non-Cryst. Solids 323, 111–119 (2003)CrossRefGoogle Scholar
  420. 13.420
    R. Moretti, G. Ottonello: Solubility and speciation of sulfur in silicate melts: The conjugated Toop-Samis-flood-Grjotheim (CTSFG) model, Geochim. Cosmochim. Acta 69, 801–823 (2005)CrossRefGoogle Scholar
  421. 13.421
    A. Aiuppa, D.R. Baker, J.D. Webster: Halogens in volcanic systems, Chem. Geol. 263, 1–18 (2009)CrossRefGoogle Scholar
  422. 13.422
    O.V. Butov, K.M. Golant, A.L. Tomashuk, M.J.N. van Stralen, A.H.E. Breuls: Refractive index dispersion of doped silica for fiber optics, Opt. Commun. 213, 301–308 (2002)CrossRefGoogle Scholar
  423. 13.423
    H. Kakiuchida, E.H. Sekiya, N. Shimodaira, K. Saito, A.J. Ikushima: Refractive index and density changes in silica glass by halogen doping, J. Non-Cryst. Solids 353, 568–572 (2007)CrossRefGoogle Scholar
  424. 13.424
    Q. Zeng, J.F. Stebbins: Fluoride sites in aluminosilicate glasses: High-Resolution 19F NMR results, Am. Mineral. 85, 863–867 (2000)CrossRefGoogle Scholar
  425. 13.425
    B.O. Mysen, G.D. Cody, A. Smith: Solubility mechanisms of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures, Geochim. Cosmochim. Acta 68, 2745–2769 (2004)CrossRefGoogle Scholar
  426. 13.426
    T.J. Kiczenski, L.-S. Du, J.F. Stebbins: F-19 NMR study of the ordering of high field strength cations at fluoride sites in silicate and aluminosilicate glasses, J. Non-Cryst. Solids 337, 142–149 (2004)CrossRefGoogle Scholar
  427. 13.427
    T.J. Kiczenski, J.F. Stebbins: The effect of fictive temperature on the structural environment of fluorine in silicate and aluminosilicate glasses, J. Am. Ceram. Soc. 89, 57–64 (2006)CrossRefGoogle Scholar
  428. 13.428
    A. Baasner, B.C. Schmidt, R. Dupree, S.L. Webb: Fluorine speciation as a function of composition in peralkaline and peraluminous Na2O–CaO–Al2O3–SiO2 glasses: A multinuclear NMR study, Geochim. Cosmochim. Acta 132, 151–169 (2014)CrossRefGoogle Scholar
  429. 13.429
    C. Dalou, C. Le Losq, B.O. Mysen, G.D. Cody: Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature, Am. Mineral. 100, 2272–2283 (2015)CrossRefGoogle Scholar
  430. 13.430
    A. Baasner, B.C. Schmidt, S.L. Webb: Compositional dependence of the rheology of halogen (F, Cl) bearing aluminosilicate melts, Chem. Geol. 346, 172–183 (2013)CrossRefGoogle Scholar
  431. 13.431
    J.F. Stebbins, L.-S. Du: Chloride ion sites in silicate and aluminosilicate glasses: A preliminary study by 35Cl solid-state NMR, Am. Mineral. 87, 359–363 (2002)CrossRefGoogle Scholar
  432. 13.432
    T.O. Sandland, L.-S. Du, J.F. Stebbins, J.D. Webster: Structure of Cl-containing silicate and aluminosilicate glasses: A 35Cl MAS-NMR study, Geochim. Cosmochim. Acta 68, 5059–5069 (2004)CrossRefGoogle Scholar
  433. 13.433
    M. Zimova: The effect of chlorine on the viscosity of Na2O-Fe2O3-Al2O3-SiO2 melts, Am. Mineral. 91, 344–352 (2006)CrossRefGoogle Scholar
  434. 13.434
    K.A. Evans, J.A. Mavrogenes, H.S. O’Neill, N.S. Keller, L.-Y. Jang: A preliminary investigation of chlorine XANES in silicate glasses, Geochem. Geophys. Geosyst. (2008),  https://doi.org/10.1029/2008GC002157CrossRefGoogle Scholar
  435. 13.435
    A. Baasner, I. Hung, T.F. Kemp, R. Dupree, B.C. Schmidt, S.L. Webb: Constraints on the incorporation mechanism of chlorine in peralkaline and peraluminous Na2O-CaO-Al2O3-SiO2 glasses, Am. Mineral. 99, 1713–1723 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  2. 2.Dept. of Materials Science and EngineeringFriedrich-Alexander University Erlangen-NürnbergErlangenGermany
  3. 3.Dept. of Materials Science & MetallurgyUniversity of CambridgeCambridgeUK
  4. 4.Dept. of PhysicsAberystwyth UniversityAberystwythUK
  5. 5.Institut de Physique du Globe de Paris CNRS-IPGP-USPCParisFrance

Personalised recommendations